
Increamental Learning for Robot Control

I-Jen Chiang Jane Yung-jen Hsu
chiang@robot .csie.ntu.edu.tw yjhsu@csie.ntu.edu.tw

Department of Comuter Science and Information Engineering
National Taiwan University
Taipei, Taiwan 106, R.O.C.

Abstract
A robot can learn to act by trial and error in the
world. A robot continues to obtain information about
the environment from its sensors and to choose a suit-
able action to take. Having executed an action, the
robot receives a reinforcement signal from the world
indicating how well the action performed in that sit-
uation. The evaluation is used to adjust the robot’s
action selection policy for the given state. The pro-
cess of learning the state-action function has been ad-
dressed by Watkins’ &-learning, Sutton’s temporal-
difference method, and Kaelbling’s interval estima-
tion method. One common problem with these rein-
forcement learning methods is that the convergence
can be very slow due to the large state space. State
clustering by least-square-error or Hamming distance,
hierarchical learning architecture, and prioritized swap-
ping can reduce the number of states, but a large por-
tion of the space still has to be considered. This paper
presents a new solution to this problem. A state is
taken to be a combination of the robot’s sensor status.
Each sensor is viewed as an independent component.
The importance of each sensor status relative to each
action is computed based on the frequency of its oc-
currences. Not all sensors are needed for every action.
For example, the forward sensors play the most im-
portant roles when the robot is moving forward.

1 Introduction
A robot can learn to act by trial and error in the
world. The robot obtains the environment informa-
tion form its sensors and chooses an action to take.
Having executed an action, the robot will indicate
how well the action was performing at that situation.
From those state-action performing evaluation, the
robot will gradually improve its action choosing pol-
icy for every states. For the robot control, all we need
to do is to construct its state-action control function.
It is not a easy work in the nonlinear domain. We
need a refinement process to rectify the stateaction
[l] [2] to make i t adaptive to the real world. The pro-
cedure of the state-action choosing policy refinement
is a learning process. How to quickly and concisely

create a state-action controller for the robot in dy-
namic environment by a learning process is the main
purpose in this paper.

The reinforcement learning method [3] [4] [5] [SI [7]
[8] [9] [lo] 1121 [13] E141 [15] has been addressed to
construct the state-action function for the robot con-
trol, such as Watkins’ Q-learning [15] [8] [9], Sutton’s
temporal-difference method [12] [13], and Kaelbling’s
interval estimation method [5] [6] [7]. One common
problem with these reinforcement learning methods
is that the convergence can be very slow due to the
large state space. State clustering by least-square-
error or Hamming distance [14], hierarchical learning
architecture [8] [9], and prioritized swapping can re-
duce the number of states, but a large portion of the
space still has to be considered.

This paper presents a new solution to this prob-
lem. A state is taken to be a combination of the
robot sensor status. Each sensor is viewed as an inde-
pendent component. The sensors on different states
play different roles in performing an adion. For a
sensor-based robot, it is difficult to enumerate all the
mappings of the states and the actions to construct
the robot controller. In order to simplify all the state-
action mappings, the learning process needs to iden-
tify which the robot sensor status play the roles of as-
sistant, the resistant, or don’t care of executing that
action. As we seen, while a robot executing a for-
ward action, the forward sensors of it play the most
important roles to govern such operation. When the
forward sensors sense that the robot is approximate
to an obstacle, i t is not difficult to understand that
the robot needs to change the forward action; that
is, those sensors status are the resistant to the for-
ward action, but if they sense the robot is far from
an obstacle it is easy to perform the forward action;
that is, those sensors states are the assistants to the
forward operation. If we can clearly identify the sen-
sors’ characteristics for each robot action, the consid-
eration of sensor status for the action choosing policy
will be simplified. The different roles of sensor sta-
tus are represented as sensor status-action preference

0-7803-2559-1195 $4.00 0 1995 IEEE 433 1

values. The sensor status-action preference values for
all sensor status and actions will demonstrate their
effects in the action-selection policy. The bigger the
preference value of a sensor status to an action, the
more important the sensor status to assist it. The
value of the resistant is the minus sign value and the
preference value of the don't care status is zero.

This paper presents an unsupervisory, incremental
learning method to adapt robot operation in the envi-
ronment. In our framework, there are some primitive
actions given to the robot. The controller is a state-
action mapping function, which utilizes the previous
performing evaluation and the sensor status-action
preference values of the state, t o determine which
action is the most adaptive. The learning process
is based on the reinforcement learning methodology,
which includes three main procedures: (1) observe the
environment information from the robot sensors; (2)
choose the most suitable action according to state-
action performing evaluation; (3) cluster and adjust
the values of the evaluation function and the sensor
status-action preference function for each robot state
and action.

At each moment in time, the robot gets informa-
tion about the world form its sensors. According
to those sensor status and the current sensor status-
action preference values, we can sum up all the values
for each action individually to determine which action
is the most suitable, and perform that action. If the
robot succeeds to perform that action, all the sensor
status-action preference values will be increased by
a reward; otherwise, all of them get the punishment.
After the status-action preference refining process has
proceeded, we make a normalization on it. If a sensor
status has the role of assistant and resistant concur-
rently, plus these two different values to make it play
only one role. It is called the normalization. The
reward or the punishment given is according to the
error rate and the learning time it takes. The lower
the error, the smaller the reward and the punishment.
The reward and the punishment will approach to con-
stant values in a long run. Initially, the reward and
the punishment are constant values. As by the simu-
lated annealing procedure, they approach to zero.

Our method avoid the credit assignment problem.
It is difficult t o determine the values of the reward and
the punishment in the reinforcement learning process.
With unsuitable reward or punishment, the learning
could bring to no effect. In our learning method the
reward and punishment, which are initially constant,
are decreased by the error and the learning dura-
tion, and applied to each sensor status individually
at any moment. By the normalization process, we
can quickly identify the sensor status to be the assis-

tant, the resistant, or the don't care status.

In our experiments on mobile robot, we take 16
sonic sensors, which are independent one another around
the robot, and divide their sensed range into four
fixed status. And there are four primitive actions,
such as moving forward, moving backward, turning
right, turning left, given to the robot. We want to
use those sensory information and those basic actions
to construct a controller for mobile behavior, such as
following the wall, moving in the corridor, avoiding
the fixed and moving obstacle. As to the simulated
mobile robot process on SPARC I, let the robot self-
organize the behavior controller by our learning pro-
cess in some different generated areas. The error rate
can reduce to 1% within in five minutes at hundreds
of steps.

Based on the reinforcement learning method to carry
a conceptual learning [ll] into effect, we can identify
the feature of every sensor status for each action. By
the normalization process, we can quickly distinguish
what sensor status is no use for each action. When
getting the environment information in the world, the
robot can quickly and easily choose an action from
the sensory information by referring to their prefer-
ence values for every actions.

Section 2 will describe our definition and method.
The simulated experiment is presented in Section 3.
Section 4 will make a conclusion about our work.

2 Definition and Method
Let S be the state space, A be the set of actions, The
evaluation function f is a mapping from the state-
action pairs into real number, i.e. f : S x A -+ R.
Assume that each sensor affects the choices on ac-
tions independently, the function can be decomposed
as f = E?==, f i (s ; , a) , where s =< sl, s 2 , . " , s,, >,
and f; : S; x A + R is called the preference value for
the i th sensor.

During the learning process, the preference values
are adjusted according to the following procedure:

Sensor-differential learning a lgor i thm

Observing D

Get sensory information s

Choosing D

Perform the action that maximizes f(s, a)

Adjusting D

frequency(si) t frequency(si) + I, Vs,

4332

If the action succeeds,

success(si, a) t SUCceSS(Si, a) + 1, vsi
Total success count 9 t G + 1

Otherwise

faiZure(si, a) t faiZure(si, a) + 1, Vsi
Total failure count !€' e Q + 1

if success(si,a) - faiZure(si,a) > 0,
success(si ,a)-failure(s; ,a)

frequency(si)

0 fi(si, a) =

foilure(si , o) - a u ~ ~ e e e (a i , ~)
fregu.noy(si)

otherwise, f i (s i , a) = - *
f(s, 4 + a * f(s, a) + (1 - a) * = q = = , f i (S i , a)

The evaluation function f(s, a) is used for the robot
to determine which action a is the most suitable ac-
tion to perform while the current state is s. Initially,
f(s, a) is zero for each primitive action a and all the
preference values of its sensor status are zero. The
robot randomly selects an action to perform, and then
rectifies the value of the evaluation function for this
action. The rectification process depends on whether
this action is succeeded in performing the behavior
or not. Importantly, we make a sensor differentiat-
ing process for the sensor status in the rectification
process, seen in the adjusting procedure of the al-
gorithm. We keep recording the number of success
and failure for each individual sensor status while the
robot is performing an action, which are success(., .)
and failure(. , .) . We divide them by the number of
the sensor status that has happened to obtain the fre-
quency of success and failure of that action. Then we
divide the difference of those two frequency by the
total success count to obtain the sensor status-action
preference value if the frequency of success is bigger
than the frequency of failure; otherwise, divide it by
the total failure count.

The sensor status-action preference values are used
to determine the sensor status classification. If we
take the actions to be the concept on learning, the
sensors will be the attributes for classification, and
the sensor status are their values. For each sensor
status and each action, there exists a sensor status-
action preference value. The sensor status-action pref-
erence value demonstrates the degree that a sensor
status belongs to a concept which is an action. A ac-
tion is said to have the high probability to be chosen
to perform when the robot state is with much more
sensor status having high preference values of that ac-
tion than the others, and the value of the arbitration
rate, a, is much small.

Figure 1: In the initial stage, the robot wandered in
the map to learn the wall-following behavior

Figure 2: After about 15 minutes, the robot followed
the left wall under a lower error rate.

At each moment in time, the robot gets informa-
tion about the world from its sensors. According
to those sensor status and the current sensor status-
action preference values (fi(., .), Vi) , we integrate all
the values to determine which action is the most suit-
able and execute that action. The action which is
most suitable for current robot state is the action
with the maximum evaluation function value. If the
robot succeeds in performing that action, all the sen-
sor status-action preference values for the state will
be increased by a reward; otherwise, all of them get a
punishment. The preference values are then normal-
ize for more efficient computation.

3 Experiment
In our experiments using a Nomad 200 mobile robot,
16 sonar sensors around the robot are taken. The sen-
sor readings are divided into four states along each di-

4333

0.6 ;

0.5 .

0.4

0.3 '

.

0.2 '

0.1 .

Figure 3: The error rates of two variants of our
method.

rection. There are four primitive actions, moving for-
ward, moving backward, turning right, and turning
left, for the robot. The robot was trained to perform
several behaviors, such as following the wall, moving
along the corridor, and avoiding static obstacles in
randomly generated simulation environment. After
15 training episodes on the SPARC IPX, the error
rate can be reduced to 1% within ten minutes for the
wall-following behavior. On average, each training
experiment takes hundreds of steps when a: is zero.
The learned data can be used by the real robot with
good performance. After learning, the role of each
sensor status to each action is distinct.

For example, as seen in Figure.1 and Figure.%, with-
out any prior knowledge of a given map and the rules
of performing the wall-following behavior, the robot
started from wandering in the map to following the
wall by learning. Incrementally, the robot can correct
the stateaction function of doing the wall-following
behavior. And inductively, the robot can extract the
features of the robot sensors to deal with the wall-
following behavior. It demonstrates that the robot
can perform the wall-following behavior quite well
within about fifteen minutes.

The error rate can be reduced to 1% within ten
minutes by hundreds of steps, as shown in Figure.3
(The z-coordinate represents the number of learning
phases. Each sample is taken at every ten steps of
the robot operations.) On average, after about thirty
minutes, it is almost nearly error-free. But the error
rate is risen when the robot at a concave position, as
seen in Figure.4.

The robot was always wandering at a small con-

Figure 4: After about 30 minutes, the robot can per-
form the wall-following behavior quite well.

Figure 5: Partition range for robot's sensors.

cave area. That is because each sonic sensor of the
robot is constantly partitioned into four status. All
the sensor status can be drawn as four concentric cir-
cles around the robot as Figure.5. The robot situa-
tion is not enough to be represented by using the fixed
partition. It needs a more precise partition. One is to
increase the number of partition, but it will make the
convergent rate of leaning increase. Since the learn-
ing speed is reverse proportional t o the number of the
robot states. The other is t o make all robot sonar sen-
sors with variable partition range. According to the
sensors' characteristics for the wall-following behav-
ior, we divide them into a fixed number but different
partition boundary as the elliptical curves in Figure.5.
As we known, different robot behaviors have their
different characteristics. In order to learn different
behaviors, we need to differentiate the robot sensors
and make each robot sensor with different partition
boundary for each behavior. It is not an easy and eco-
nomic work. Dynamical adjustment may be a good
idea for the robot behavior learning.

There are two variants of our method in this pa-
per. Seen in Figure.3, they have very different learn-
ing performance. One is that we neglect the effect

4334

of the state that is reappeared again in the current
stage and the robot choose the same action to per-
form, we do not adjust the status-action preference
function value of each robot sensor. The other is that
we repeatedly increase the success function values of
current robot sensory status, if the robot can suc-
ceed to execute the same action; otherwise, increase
the failure function values of them. The former is
much better than the latter. That is because the for-
mer can avoid the over-rewarding and over-punishing.
Since we have given the reward or the punishment
to the state-action function, so it is not necessary
to distribute the effect of the success or the failure
to each robot sensor. The time that needs to con-
verge is also enlarged. The curves of the error rates of
those two methods are fluctuating periodically. This
is because the fixed partitions of the robot sensors
are not enough to represent their situation for the
wall-following behavior. That makes the robot stuck
at local minimum of the state-action function at the
concave region in our environment.

Average error rate after 300 steps

The table below shows part of the results from our
experiments, which indicates that different values of
a results in different convergence speeds and errors in
the learned behavior. a is called the arbitration rate.
It is used to adjust the reference degree between the
values of the robot state-action evaluation function
and the robot sensor status-action function.

0.321 0.0234 0.247

Table. Performance of learning the wall-following
behavior.

I a I 0.76 I 0.6 I 0.26 1 7 1

The smaller the value of the a, the less the elapsed
time when error 2 0,Ol. But the vibration of the
error rate is reverse proportional to the value of a.
Because if a is approximate to zero means that the
sensor status-action preference values are more im-
portant than the value of the previous stateaction
evaluation function. That is, the action selection pol-
icy almost full depends on the sensor status classifi-
cation information. It is dangerous to determine the
sensor status classification according to a few learn-
ing steps at the beginning. Those training examples
are not enough to classify all the sixteen sonic sensor
status. Some of sensor status will be classify to the
wrong concept. More examples are needed to adjust
it. In our experiments, it does not need much time
to collect enough examples.

In our experiments, while we dynamically were adding
or removing obstacles in our map, the robot was not
burdened with the new situation, as shown in Fig-
ure.6. The robot can deal with the new environment

Figure 6: Dynamically add an obstacle to the envi-
ronment.

according to its learned knowledge.

4 Conclusion
This paper presents a new approach to reinforcement
learning for the robot control that differentiates the
roles of multiple sensors in action selection. The ap-
proach assumes that each sensor can independently
contribute to the action selection policy.

By incrementally updating the preference value of
each sensor to each action, the proposed method can

differentiate important sensors from irrelevant ones;

reduce the state space and thereby enabling train-
ing to converge quickly;

and achieve learned behaviors for the robot with
low error rate.

Indirectly, the concept classification has been con-
structed by the sensor-differentiating process. Each
action of a behavior is viewed as a concept. Associ-
ated with the reinforcement learning, the role of the
sensor status for an action can be clearly differenti-
ated by the sensor-differentiating process. Since the
sonic sensors around our robot are independent, by
our method, we can quickly and correctly identify
their effects on performing that action without much
space. The only data structure that needs to maintain
is the sensor status-action preference value function.
By integrating all the sensor status-action preference
values for all actions, we can easily choose the most

4335

suitable action.

In our experiments, to differentiate the roles of mul-
tiple sensors for a action is a helpful method for the
robot control. It can quickly achieve the learned be-
haviors with low error rate. In our framework, all
the sensors are taken to be independent, but how to
do when some of them are relevant is an interesting
problem. In our future work, we t ry to establish a in-
cremental learning method for the robot control with
the relevant sensors.

In the future, we t ry to add the classification of
the relevant sensory information and the automatic
adjustment of the sensors' partition for different be-
havior in our learning process. This paper has shown
that the incremental learning by associating the con-
ceptual classification with reinforcement learning for
robot control can obtain a quite well performance.

References
[l] R.A. Brooks, "A robust layered control system

for a mobile robot," IEEE J. Rob. Autom., 2(1),
1986, pp. 1423.

[2] R.A. Brooks, "Elephants don't play chess,"
Robotics and Autonomow Systems, 6 , 1990, pp.
3-15.

[3] A.G. Barto, R.S. Sutton, andP.S.Brouwer, "As-
sociative search network: a reinforcement learn-
ing associative memory," Biological Cybernetics,
40, 1981, pp. 201-211.

141 D. Chapman and L. Kaelbling, "Learning from
delayed reinforcement in a complex domain," in:
Proceedings IJCAI-91, Sydney, NSW, 1991.

[5] L. Kaelbling, Learning in embedded systems,
Ph.D. Thesis, Stanford University, Stanford. CA,
1990.

[SI L. Kaelbling, "Associative reinforcement learn-
ing: function in k-DNF," Machine Learning, 15,
1994, pp. 279-298.

[7] L. Kaelbling, "Associative reinforcement learn-
ing: a generate and test algorithm," Machine
Learning, 15, 1994, pp. 299-319.

L. Lin, Self-improving reactive agents: case stud-
ies of reinforcement learning frameworks, Tech.
Rept. CMU-CS-90-109, Carnegie-Mellon Univer-
sity, Pittsbugh, PA, 1990.

L. Lin, "Programming robots using reinforce-
ment learning and teaching," in: Proceedings
AAAI-91, Anaheim, CA, 1991.

[8]

[9]

[lo] P. Maes and R.A. Brooks, "Learning to CO-

ordinat e behaviors ," in: Proceedings A AAI- 90,
Boston, MA, 1990, pp. 796-802.

[113 J.R. Quinlan, "Induction of decision trees," Ma-
chine Learning, 1991, pp. 338-342.

[12] R.S. Sutton, Temporal credit assignment in re-
inforcement learning, Ph.D. thesis, University of
Massachusetts, Amherst, MA, 1984

[13] R.S. Sutton, "Learning to predict by the method
of temporal differences," Machine Learning,
3(1), 1988, pp.9-44.

[14] S. Mahadevan and J. Connell, "Automatic pro-
gramming of behavior-based robots using rein-
forcement learning," Artificial Intelligence, 55,
1992, pp. 311-365.

[15] C. Watkins, Learning from delayed rewards,
Ph.D. Thesis, King's College, 1989.

4336

