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Abstract 
A robot can learn to act by trial and error in the 
world. A robot continues to  obtain information about 
the environment from its sensors and to choose a suit- 
able action to take. Having executed an action, the 
robot receives a reinforcement signal from the world 
indicating how well the action performed in that sit- 
uation. The evaluation is used to adjust the robot’s 
action selection policy for the given state. The pro- 
cess of learning the state-action function has been ad- 
dressed by Watkins’ &-learning, Sutton’s temporal- 
difference method, and Kaelbling’s interval estima- 
tion method. One common problem with these rein- 
forcement learning methods is that the convergence 
can be very slow due to the large state space. State 
clustering by least-square-error or Hamming distance, 
hierarchical learning architecture, and prioritized swap- 
ping can reduce the number of states, but a large por- 
tion of the space still has to be considered. This paper 
presents a new solution to this problem. A state is 
taken to be a combination of the robot’s sensor status. 
Each sensor is viewed as an independent component. 
The importance of each sensor status relative to each 
action is computed based on the frequency of its oc- 
currences. Not all sensors are needed for every action. 
For example, the forward sensors play the most im- 
portant roles when the robot is moving forward. 

1 Introduction 
A robot can learn to act by trial and error in the 
world. The robot obtains the environment informa- 
tion form its sensors and chooses an action to take. 
Having executed an action, the robot will indicate 
how well the action was performing at that situation. 
From those state-action performing evaluation, the 
robot will gradually improve its action choosing pol- 
icy for every states. For the robot control, all we need 
to do is to construct its state-action control function. 
It is not a easy work in the nonlinear domain. We 
need a refinement process to rectify the stateaction 
[l] [2] to make i t  adaptive to the real world. The pro- 
cedure of the state-action choosing policy refinement 
is a learning process. How to quickly and concisely 

create a state-action controller for the robot in dy- 
namic environment by a learning process is the main 
purpose in this paper. 

The reinforcement learning method [3] [4] [5] [SI [7] 
[8] [9] [lo] 1121 [13] E141 [15] has been addressed to 
construct the state-action function for the robot con- 
trol, such as Watkins’ Q-learning [15] [8] [9], Sutton’s 
temporal-difference method [12] [13], and Kaelbling’s 
interval estimation method [5] [6] [7]. One common 
problem with these reinforcement learning methods 
is that the convergence can be very slow due to the 
large state space. State clustering by least-square- 
error or Hamming distance [14], hierarchical learning 
architecture [8] [9], and prioritized swapping can re- 
duce the number of states, but a large portion of the 
space still has to be considered. 

This paper presents a new solution to this prob- 
lem. A state is taken to be a combination of the 
robot sensor status. Each sensor is viewed as an inde- 
pendent component. The sensors on different states 
play different roles in performing an adion. For a 
sensor-based robot, it is difficult to enumerate all the 
mappings of the states and the actions to construct 
the robot controller. In order to simplify all the state- 
action mappings, the learning process needs to iden- 
tify which the robot sensor status play the roles of as- 
sistant, the resistant, or don’t care of executing that 
action. As we seen, while a robot executing a for- 
ward action, the forward sensors of it play the most 
important roles to govern such operation. When the 
forward sensors sense that the robot is approximate 
to an obstacle, i t  is not difficult to understand that 
the robot needs to change the forward action; that 
is, those sensors status are the resistant to the for- 
ward action, but if they sense the robot is far from 
an obstacle it is easy to perform the forward action; 
that is, those sensors states are the assistants to the 
forward operation. If we can clearly identify the sen- 
sors’ characteristics for each robot action, the consid- 
eration of sensor status for the action choosing policy 
will be simplified. The different roles of sensor sta- 
tus are represented as sensor status-action preference 
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values. The sensor status-action preference values for 
all sensor status and actions will demonstrate their 
effects in the action-selection policy. The bigger the 
preference value of a sensor status to  an action, the 
more important the sensor status to  assist it. The 
value of the resistant is the minus sign value and the 
preference value of the don't care status is zero. 

This paper presents an unsupervisory, incremental 
learning method to  adapt robot operation in the envi- 
ronment. In our framework, there are some primitive 
actions given to  the robot. The controller is a state- 
action mapping function, which utilizes the previous 
performing evaluation and the sensor status-action 
preference values of the state, t o  determine which 
action is the most adaptive. The learning process 
is based on the reinforcement learning methodology, 
which includes three main procedures: (1) observe the 
environment information from the robot sensors; (2) 
choose the most suitable action according to  state- 
action performing evaluation; (3) cluster and adjust 
the values of the evaluation function and the sensor 
status-action preference function for each robot state 
and action. 

At each moment in time, the robot gets informa- 
tion about the world form its sensors. According 
to  those sensor status and the current sensor status- 
action preference values, we can sum up all the values 
for each action individually to  determine which action 
is the most suitable, and perform that action. If the 
robot succeeds to  perform that action, all the sensor 
status-action preference values will be increased by 
a reward; otherwise, all of them get the punishment. 
After the status-action preference refining process has 
proceeded, we make a normalization on it. If a sensor 
status has the role of assistant and resistant concur- 
rently, plus these two different values to  make it play 
only one role. It is called the normalization. The 
reward or the punishment given is according to  the 
error rate and the learning time it takes. The lower 
the error, the smaller the reward and the punishment. 
The reward and the punishment will approach to  con- 
stant values in a long run. Initially, the reward and 
the punishment are constant values. As by the simu- 
lated annealing procedure, they approach to zero. 

Our method avoid the credit assignment problem. 
It is difficult t o  determine the values of the reward and 
the punishment in the reinforcement learning process. 
With unsuitable reward or punishment, the learning 
could bring to  no effect. In our learning method the 
reward and punishment, which are initially constant, 
are decreased by the error and the learning dura- 
tion, and applied to each sensor status individually 
at any moment. By the normalization process, we 
can quickly identify the sensor status to  be the assis- 

tant, the resistant, or the don't care status. 

In our experiments on mobile robot, we take 16 
sonic sensors, which are independent one another around 
the robot, and divide their sensed range into four 
fixed status. And there are four primitive actions, 
such as moving forward, moving backward, turning 
right, turning left, given to  the robot. We want to  
use those sensory information and those basic actions 
to  construct a controller for mobile behavior, such as 
following the wall, moving in the corridor, avoiding 
the fixed and moving obstacle. As to  the simulated 
mobile robot process on SPARC I, let the robot self- 
organize the behavior controller by our learning pro- 
cess in some different generated areas. The error rate 
can reduce to  1% within in five minutes at hundreds 
of steps. 

Based on the reinforcement learning method to carry 
a conceptual learning [ll] into effect, we can identify 
the feature of every sensor status for each action. By 
the normalization process, we can quickly distinguish 
what sensor status is no use for each action. When 
getting the environment information in the world, the 
robot can quickly and easily choose an action from 
the sensory information by referring to  their prefer- 
ence values for every actions. 

Section 2 will describe our definition and method. 
The simulated experiment is presented in Section 3. 
Section 4 will make a conclusion about our work. 

2 Definition and Method 
Let S be the state space, A be the set of actions, The 
evaluation function f is a mapping from the state- 
action pairs into real number, i.e. f : S x A -+ R. 
Assume that each sensor affects the choices on ac- 
tions independently, the function can be decomposed 
as f = E?==, f i ( s ; , a ) ,  where s =< sl, s 2 , . " ,  s,, >, 
and f; : S; x A + R is called the preference value for 
the i th sensor. 

During the learning process, the preference values 
are adjusted according to  the following procedure: 

Sensor-differential learning a lgor i thm 

Observing D 

Get sensory information s 

Choosing D 

Perform the action that maximizes f(s,  a) 

Adjusting D 

frequency(si) t frequency(si) + I, Vs, 
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If the action succeeds, 

success(si, a) t SUCceSS(Si, a) + 1, vsi  
Total success count 9 t G + 1 

Otherwise 

faiZure(si, a) t faiZure(si, a) + 1, Vsi 
Total failure count !€' e Q + 1 

if success(si,a) - faiZure(si,a) > 0, 
success(si  ,a)-failure(s; ,a) 

frequency(si) 

0 fi(si, a) = 

foilure(si , o ) - a u ~ ~ e e e ( a i , ~ )  
fregu.noy(si) 

otherwise, f i ( s i , a )  = - * 
f(s, 4 + a * f(s, a) + (1 - a) * = q = = , f i ( S i ,  a) 

The evaluation function f(s, a) is used for the robot 
to  determine which action a is the most suitable ac- 
tion to  perform while the current state is s. Initially, 
f(s, a) is zero for each primitive action a and all the 
preference values of its sensor status are zero. The 
robot randomly selects an action to  perform, and then 
rectifies the value of the evaluation function for this 
action. The rectification process depends on whether 
this action is succeeded in performing the behavior 
or not. Importantly, we make a sensor differentiat- 
ing process for the sensor status in the rectification 
process, seen in the adjusting procedure of the al- 
gorithm. We keep recording the number of success 
and failure for each individual sensor status while the 
robot is performing an action, which are success(., .) 
and failure(. , . ) .  We divide them by the number of 
the sensor status that  has happened to  obtain the fre- 
quency of success and failure of that action. Then we 
divide the difference of those two frequency by the 
total success count to  obtain the sensor status-action 
preference value if the frequency of success is bigger 
than the frequency of failure; otherwise, divide it by 
the total failure count. 

The sensor status-action preference values are used 
to  determine the sensor status classification. If we 
take the actions to be the concept on learning, the 
sensors will be the attributes for classification, and 
the sensor status are their values. For each sensor 
status and each action, there exists a sensor status- 
action preference value. The sensor status-action pref- 
erence value demonstrates the degree that a sensor 
status belongs to  a concept which is an action. A ac- 
tion is said to  have the high probability to  be chosen 
to  perform when the robot state is with much more 
sensor status having high preference values of that ac- 
tion than the others, and the value of the arbitration 
rate, a, is much small. 

Figure 1: In the initial stage, the robot wandered in 
the map to  learn the wall-following behavior 

Figure 2: After about 15 minutes, the robot followed 
the left wall under a lower error rate. 

At each moment in time, the robot gets informa- 
tion about the world from its sensors. According 
to  those sensor status and the current sensor status- 
action preference values (fi(., .), Vi ) ,  we integrate all 
the values to  determine which action is the most suit- 
able and execute that action. The action which is 
most suitable for current robot state is the action 
with the maximum evaluation function value. If the 
robot succeeds in performing that action, all the sen- 
sor status-action preference values for the state will 
be increased by a reward; otherwise, all of them get a 
punishment. The preference values are then normal- 
ize for more efficient computation. 

3 Experiment 
In our experiments using a Nomad 200 mobile robot, 
16 sonar sensors around the robot are taken. The sen- 
sor readings are divided into four states along each di- 
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Figure 3: The error rates of two variants of our 
method. 

rection. There are four primitive actions, moving for- 
ward, moving backward, turning right, and turning 
left, for the robot. The robot was trained to  perform 
several behaviors, such as following the wall, moving 
along the corridor, and avoiding static obstacles in 
randomly generated simulation environment. After 
15 training episodes on the SPARC IPX, the error 
rate can be reduced to  1% within ten minutes for the 
wall-following behavior. On average, each training 
experiment takes hundreds of steps when a: is zero. 
The learned data can be used by the real robot with 
good performance. After learning, the role of each 
sensor status to  each action is distinct. 

For example, as seen in Figure.1 and Figure.%, with- 
out any prior knowledge of a given map and the rules 
of performing the wall-following behavior, the robot 
started from wandering in the map to  following the 
wall by learning. Incrementally, the robot can correct 
the stateaction function of doing the wall-following 
behavior. And inductively, the robot can extract the 
features of the robot sensors to  deal with the wall- 
following behavior. It demonstrates that the robot 
can perform the wall-following behavior quite well 
within about fifteen minutes. 

The error rate can be reduced to  1% within ten 
minutes by hundreds of steps, as shown in Figure.3 
(The z-coordinate represents the number of learning 
phases. Each sample is taken at every ten steps of 
the robot operations.) On average, after about thirty 
minutes, it is almost nearly error-free. But the error 
rate is risen when the robot at a concave position, as 
seen in Figure.4. 

The robot was always wandering at a small con- 

Figure 4: After about 30 minutes, the robot can per- 
form the wall-following behavior quite well. 

Figure 5: Partition range for robot's sensors. 

cave area. That is because each sonic sensor of the 
robot is constantly partitioned into four status. All 
the sensor status can be drawn as four concentric cir- 
cles around the robot as Figure.5. The robot situa- 
tion is not enough to  be represented by using the fixed 
partition. It needs a more precise partition. One is to  
increase the number of partition, but it will make the 
convergent rate of leaning increase. Since the learn- 
ing speed is reverse proportional t o  the number of the 
robot states. The other is t o  make all robot sonar sen- 
sors with variable partition range. According to  the 
sensors' characteristics for the wall-following behav- 
ior, we divide them into a fixed number but different 
partition boundary as the elliptical curves in Figure.5. 
As we known, different robot behaviors have their 
different characteristics. In order to  learn different 
behaviors, we need to  differentiate the robot sensors 
and make each robot sensor with different partition 
boundary for each behavior. It is not an easy and eco- 
nomic work. Dynamical adjustment may be a good 
idea for the robot behavior learning. 

There are two variants of our method in this pa- 
per. Seen in Figure.3, they have very different learn- 
ing performance. One is that we neglect the effect 
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of the state that is reappeared again in the current 
stage and the robot choose the same action to  per- 
form, we do not adjust the status-action preference 
function value of each robot sensor. The other is that 
we repeatedly increase the success function values of 
current robot sensory status, if the robot can suc- 
ceed to  execute the same action; otherwise, increase 
the failure function values of them. The former is 
much better than the latter. That is because the for- 
mer can avoid the over-rewarding and over-punishing. 
Since we have given the reward or the punishment 
to  the state-action function, so it is not necessary 
to distribute the effect of the success or the failure 
to  each robot sensor. The time that needs to  con- 
verge is also enlarged. The curves of the error rates of 
those two methods are fluctuating periodically. This 
is because the fixed partitions of the robot sensors 
are not enough to  represent their situation for the 
wall-following behavior. That makes the robot stuck 
at local minimum of the state-action function at the 
concave region in our environment. 

Average error rate after 300 steps 

The table below shows part of the results from our 
experiments, which indicates that different values of 
a results in different convergence speeds and errors in 
the learned behavior. a is called the arbitration rate. 
It is used to  adjust the reference degree between the 
values of the robot state-action evaluation function 
and the robot sensor status-action function. 

0.321 0.0234 0.247 

Table. Performance of learning the wall-following 
behavior. 

I a I 0.76 I 0.6 I 0.26 1 7 1  

The smaller the value of the a, the less the elapsed 
time when error 2 0,Ol. But the vibration of the 
error rate is reverse proportional to  the value of a. 
Because if a is approximate to  zero means that the 
sensor status-action preference values are more im- 
portant than the value of the previous stateaction 
evaluation function. That is, the action selection pol- 
icy almost full depends on the sensor status classifi- 
cation information. It is dangerous to  determine the 
sensor status classification according to  a few learn- 
ing steps at the beginning. Those training examples 
are not enough to  classify all the sixteen sonic sensor 
status. Some of sensor status will be classify to  the 
wrong concept. More examples are needed to  adjust 
it. In our experiments, it does not need much time 
to  collect enough examples. 

In our experiments, while we dynamically were adding 
or removing obstacles in our map, the robot was not 
burdened with the new situation, as shown in Fig- 
ure.6. The robot can deal with the new environment 

Figure 6: Dynamically add an obstacle to  the envi- 
ronment. 

according to  its learned knowledge. 

4 Conclusion 
This paper presents a new approach to  reinforcement 
learning for the robot control that differentiates the 
roles of multiple sensors in action selection. The ap- 
proach assumes that each sensor can independently 
contribute to  the action selection policy. 

By incrementally updating the preference value of 
each sensor to  each action, the proposed method can 

differentiate important sensors from irrelevant ones; 

reduce the state space and thereby enabling train- 
ing to  converge quickly; 

and achieve learned behaviors for the robot with 
low error rate. 

Indirectly, the concept classification has been con- 
structed by the sensor-differentiating process. Each 
action of a behavior is viewed as a concept. Associ- 
ated with the reinforcement learning, the role of the 
sensor status for an action can be clearly differenti- 
ated by the sensor-differentiating process. Since the 
sonic sensors around our robot are independent, by 
our method, we can quickly and correctly identify 
their effects on performing that action without much 
space. The only data structure that needs to  maintain 
is the sensor status-action preference value function. 
By integrating all the sensor status-action preference 
values for all actions, we can easily choose the most 
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suitable action. 

In our experiments, to  differentiate the roles of mul- 
tiple sensors for a action is a helpful method for the 
robot control. It can quickly achieve the learned be- 
haviors with low error rate. In our framework, all 
the sensors are taken to  be independent, but how to  
do when some of them are relevant is an interesting 
problem. In our future work, we t ry  to  establish a in- 
cremental learning method for the robot control with 
the relevant sensors. 

In the future, we t ry  to  add the classification of 
the relevant sensory information and the automatic 
adjustment of the sensors' partition for different be- 
havior in our learning process. This paper has shown 
that the incremental learning by associating the con- 
ceptual classification with reinforcement learning for 
robot control can obtain a quite well performance. 
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