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ABSTRACT

After a flexible manufacturing system (FMS) is built and
configured, the two main problems left 1o be solved are planning
and scheduling. In this paper, a new approach that can dynamically
solve the planning and scheduling problem in an FMS is prescnted.
This problem is formulated as the determination of an optimal
assignment of p automated guided vehicles (AGV’s) among
m workstations in order to accomplish N tasks in an FMS. First we
introduce a useful task representation, called "workgraph”, to facili-
tate our later computation, and then we usc the A” scarch algo-
rithm, minimax criterion, and some hcuristic rules to solve this
routing assignment problem dynamically. Our approach obtains a
near-optimal solution in moderate compuiation time, and, in addi-
tion, solves some dynamic situations so as 1o make the FMS more
flexible.

routing

I. Introduction

An FMS is a large complex system consisting of many inter-
connected components of hardware and software, such as, pallets,
AGV’s, fixtures, and tool capacity [1] [2]. In an FMS, parts are
automatically transported via AGV’s from onc workstation to
another for processing under computer control. Several aspects of
current FMS planning and decision control system have been dis-
cussed in [2]-[6]. Due to the very flexibility of these planning and
decision control system, the productivity of an FMS is usually
much higher than that of a classical manufacturing system, in par-
ticular, when various parts of many kinds and of small volumes arc
produced.

Scveral approaches to planning, decision control, and schedul-
ing of an FMS have been suggesied in [7]-[11). However, the pro-
posed works can hardly solve the problem of planning and schedul-
ing dynamically, nor they are suitable for solving the routing prob-
lem of those indispensable AGV’s in an FMS. Chen et al. in [15)
formulate the task assignment problem as a routing problem of
autonomous vehicles and then solve it. But the representation for
tasks used th'erc is considerably simplificd and their method fails to
be a dynamic schemc. In this paper, a new approach aimed at
improving these shortings is proposcd.

This paper formulates the problem of dynamic planning and
scheduling as the onc of dctermining the optimal routing assign-
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ment of p AGV’s among m workstations to accomplish N tasks in
an FMS. The approach uscd here is a dynamic onc which solves the
problems of planning and scheduling as a wholec. Especially it can
handle some unexpected situations, ¢.g., when some workstations
break down, as well as can respond 1o some changes, such as, of
production target. In addition, since thc number of total tasks
needed to be accomplished is usually very large (in hundreds,
thousands, or more), such a method can be rcgarded as an imple-
mentation of an integrated version of medium-term and short-term
decision supporting software as described in [2).

The layout of this paper is as (ollows: in scction II, we formu-
late the problem and describe the optimality criterion for the solu-
tion; in section III, we introduce a useful representation of cach
task ready to be handled, and called it "workgraph™ scction 1V
explains how we use A* scarch algorithm and minimax strategy for
solving this routing problem; in section V, we proposc an approach
of dynamic routing assignment in an FMS.

I1. Problem Formulation and Optimality Criterion

The main problem left to be solved after an FMS is built and
configured is how to run the manufactory efficiently to get the max-
imum productivity. This problem is usually divided into two parts:
planning, or process routing, which is the selection of a scquence of
operations; and scheduling, which is the assignment of time and
resources. If we take these two problems into considcration simul-
tancously and find a method to solve them dynamically, then the
productivity may be improved greatly and the manufacturing sys-
tem may become more flexible under many dynamic situations.
Hence we define our problem as involving the determination of an
optimal routing assignment of p AGV’s among m workstations to
accomplish N tasks in order to minimize the total completion time.

Among N tasks, supposcd there arc k kinds of tasks and the
number of the ith kind is N;, 1< i< k, s0 that N= N;+ N+ .. +N,.
To accomplish a task is Lo let an AGV carry necessary materials for
this task (parts or subparts) and to assign the roulc among worksta-
tions so that every subtask of the task can be successfully processed
by the selected workstations. Thus, completing N tasks is Lo assign
routes for p AGV’s among m workstations. Morcover, the total
completion time of a task is thc sum of total exccution time
(through workstations), total travelling time of an AGV (among
workstations), and total waiting time (when two or more AGV’s
arrive at the same workstation). Now duc to the fact that a task is
accomplished through a sequence of processing by some sclected
workstations, performing the routing assignment is equivalent 10
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solving the problem of planning. Furthcrmore, because we use the
completion time as the main factor to assigning the route for every
AGV, the planning problem can also be trcated as a scheduling
problem. Conscquently, we can define the problem of planning and
scheduling together in an FMS as the routing assignment problem,
which can also be treated as an integration of medium-term and
short-term decision problem. Now various assumptions made about
the AGV’s, workstations, and tasks are discusscd in the following.
Assumptions :

1) All AGV’s are the same. Every AGV can carry all kinds of
materials necessary for all kinds of tasks. This implies that the
amount of processing time spent in any workstation to accomplish a
particular kind of subtask is the same for all AGV’s. But the start-
ing positions of all AGV’s are not necessarily the same, i.e., each
AGYV may start from any dispatching center.

2) All AGV’s are travelling at constant speed but the speed of
every AGV may be different. This facilitates the detection of colli-
sion among AGV’s at any workstation. It also allows us to calculate
the arrival time of every AGV at any workstation in order to find
the waiting time needed for other AGV’s when collisions are about
to occur.

3) The positions of all workstations are fixed and predeter-
mined. Thus the travelling time of any AGV from its starting posi-
tion to any workstation, or from onc workstation to another is
predetermined.

4) All workstations along with all paths connecting them form
a complete graph. This impliecs that there is exactly one
(undirected) edge beiween any two workstations, and any worksta-
tion can be reached from any other workstation by AGV’s.

5) There are no precedence consiraints bctween any two
tasks. And the task which can be handled here is the one that can
be represented by a "workgraph” which will be clearly defined in the
sequel. Denote the class of such tasks by H.

number of every part to be produced is predetermined. This
information is useful for the heuristic estimation in our later
dynamic planning and scheduling algorithm.

7) 1f an AGV has not finished the task assigned, it will not be
involved in the execution of another task.

Remark: The tasks which can bc represented by workgraphs
form, in fact, a subset of the tasks that can be represented by gen-
eral AND/OR graphs.

A. Representation of the System Model

A material handling system of an FMS can be represented by
atriplet S = (A, W, T ), in which thc argaments represent the
set of AGV’s , the sct of workstations, and the sct of ask graphs
respectively. Specifically, A = { vi. v2. . V, ), Where v; denotes
the ith AGV, and all p AGV’s are the same; W = (W, .., W,
Waits oo Wi ), where W;, 1<i< q, denotes the sct of real
workstations and W, q+ 1< j< m, denotes the sct of terminals for
AGV’s (loading and unloading places); and T = {T,, Ty, ..., Ty,
Ni, Ny, .., Ny ). where T; denotes the AND/OR task graph
representing the ith kind of tasks that belong to H and N; the
number of tasks of the same kind, for all 1S i<k, and N = N,
+ .+ Ng.

Remarks:
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(1) Later in the sequel, we will not distinguish the real worksta-
tions from terminals, and simply call W, the ith workstation,
1< i< m.

(2) We further denote T; = ( V; E; ), the ith task graph, where
V; represent the set of vertices and E; the sct of directed

links.

Because we assume the positions of all workstations are fixed
and predetermined, the distance between every two workstations is
known in advance. Furthermore, since the speed of all AGV’s are
constant, we can henceforth use a symmetric matrix to represent
the travelling time for an AGV between any two workstations. We
now let WTT” be this matrix, where the entry WTT'; ; denotes the
travelling time spent by the AGV v, when it travels from worksta-
tion i to workstation j, 1< i,j< m. Every task graph T; = (V; E; ) is
an AND/OR graph with directed edges. The dirccted edge from
vertex i to vertex j indicates that the subtask to be processed by
workstation i must go before the subtask to be processed by works-
tation j. An OR branch indicates that only one of the successive
subtasks associated with the branch nceds to be accomplished
whereas an AND branch indicates that they all have to be accom-
plished without any precedence and dependency relationships
among them (so that the order to accomplish these subtasks is not
important). We also note that in a rcal material handling sysiem of
an FMS, the number of vertices with zero indegree edge is always
one and the number of vertices with zero outdcgree edge is also
one, representing the loading and unloading places respectively. For
illustration, Table 1 and Figure 1 show a typical material handling
system with two AGV’s, seven workstations, and three different
kinds of tasks. The number of every kind of tasks is 100, 50, 75
respectively, and the number in every vertex indicates the amount
of execution time required in this workstation to accomplish the
corresponding subtask.

Table 1. Workstation travelling time matrix.

W1 W2 W3 W4 W5 W6 W7 W1 W2 W3 W4 W5 W6 W7
wilo 1 5 8 6 4 9 wijo 1 5 7 6 3 8
w2l1 0 4 35 6 4 w21 0 4 3 5 ¢ 4
wis 4 o 4 75 3 w3ls 4 0 4 6 5 3
wils 3 4 0 8 7 2 wal7 34 0 8 7 3
wsl6 5 78 0 6 7 Wle 568 0 56
wel4 6 5 7 6 0 8 wel3 6 57 5 0 7
w9 4 3 2 7 8 0 wilg 4 33 6 7 0

for AGV v, for AGsz

B. Cost Function

After using an workgraph to represent all possible ways Lo
accomplish a task, we must choosc a path from the initial state to
the final state to accomplish the task. It is equivalent to performing
planning in an FMS, that is to find a sequence of operations to
accomplish the task. The cost function uscd for scarching the
optimal planning is the sum of execution time through worksta-
tions, travelling time of an AGV among workstations, and waiting
time of that AGV for avoiding collisions when reaching worksta-
tions. Now suppose that the AGV v; is assigned to perform tasks
tiy, ..., 'y, sequentially, then its travelling sequence is denoted O =
( 04, Of ..., O) where O eW, 1<j<n;, and n; is the total
number of workstations travelled. Note that a workstation may be




Figure 1. System graph for p=2, m=6, k=3, N1=100, N2=50, N3=75,

Tj = (Vj , j ) is the ith kind of task graph for all i=1,2,3.

travellcd through more than once, and the sequence of worksta-
tions to be followed by any AGV for travelling when accomplish-
ing tasks. Given this notation, we are now ready to define travelling
time, execution time, and waiting time throughout a task exccution
by an AGYV, say, v; in detail as follows.
Definition 1: Let TTij denote the time spent by the AGV v; when
travelling from workstation O to workstation O’y out of the
sequence Of, 1< j< (ni-1). Then the travelling time of v to
accomplish the sequence of tasks t ..., ', is defined as:

Definition 2: Let E‘j denote the time required by workstation Oi,-
to complete its processing, 1< j< n;. Then task execution time
corresponding to the travelling sequence O is defined as:

9
ET'= ZIET‘J
=

Definition 3: If AGV v; and AGV v; arrive at a workstation at the
same time or a workstation is doing some subtask for AGV v; when
AGV v; arrives, then either of the two AGV’s, v; and v;, has to
wait or v; has to wait till the workstation finishes the current sub-
task. Hence we let WTi, be the waiting time of the AGV v; at the
workstation O from the travelling scquence O' so that the total
waiting time of the AGV v; to complete the travelling sequence O
is defined as:

0
WTi=Y WT},
j=1

As a result of the above definitions, the total completion time
Ti(S) spent by the AGV v; corresponding to the routing assign-
ments S for all AGV’s is the sum of travelling time, task execution
time, and waiting time as follows:

Ti(S) = TT' + ET' + WT!

C. Optimality Criterion

The purpose of the routing assignment in this problem is to
determine an optimal travelling sequence for p AGV’s among m
workstations in order to accomplish total N tasks. Let Q denote all
possible routing assignments for p AGV’s to accomplish all tasks.
Then our optimality criterion is to find an optimal routing assign-
ment S such that:
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S = argmin{ max (T(S)) )
Seq I<Sisp

It is well known that this problem is a NP-complcic problem.
Also in real practice, the number of each kind of tasks is quite large
5o that the optimal routing assignment can hardly be found in a
reasonable period of time. Moreover, the environment of a
manufacturing system may be changing dynamically (c.g., some N;
may be increased, or a workstation suddenly breaks down). There-
fore, it may be impractical to spent a lot of time to find an optimal
assignment in much advance of real running. In the following, we
will use a dynamic method to find a "ncar optimal” solution.

III. Workgraph

The first step of our approach is to find a good representation

of tasks to be accomplished. In an FMS, there are usually many
workstations installed, and in many cases therc may be morc than
one workstation which can perform a particular subtask. As a
result, there may be more than one way to accomplish a task. In [9]
Fox and Kempf used a precedence diagram to represent the possi-
ble solutions. However, their representation is not general enough
to represent all possible scquences. In fact, it can not represent the
"OR" relation in an AND/OR graph which may occur often in an
FMS. Homem in [11] used an AND/OR graph 1o represcnt a
decomposable assembly task, and his representation turns out to be
more general than the others. In this section, we will introduce
"workgraph” which is also a useful represcatation. Although a work-
graph is not as general as an AND/OR task graph, it can include
"OR" relation in the graph. Hence, here we will contend oursclves
by only considering a subclass of all decomposable tasks that can be
represented by our workgraph. The following is the recursive
definition of our workgraph:
Definition 4: A workgraph is a particular graph (V, E), where V is
the set of vertices, and E represents the set of directed edges which
connect all the vertices in V in a single chain. Every vertex has one
of the following interpretations:

(a) A workstation: which indicates that a subtask can be
accomplished by this workstation;

(b) Some other workgraphs with "OR" relationship: which
implies that only exactly onc of these workgraphs will be
chosen.

(c) Some other workgraphs with "AND" relationship: which

implies that all these workgraphs have to be chosen once
(the order of choices is non-important).

Several advantages of using workgraphs can be described as
follows. First, due to the hierarchical structure of workgraphs, a
task can be more clearly represented and choices as to accomplish-
ing the task can be more easily understood. Secondly, the heuristic
estimation h(n) of cvery node in expanding a workgraph when
using A" search algorithm can be very easy and precise. This point
will be explored more in detail in next scction. Finally, for our later
dynamic routing assignment algorithm, the idca of ordering all the
vertices in a sequence is very uscful, and, particularly, it will facili-
tate our dynamic routing assignment algorithm greatly. For illustra-
tion, Figure 2 shows the workgraphs corrcsponding to the task
graphs of Figure 1. ’

The procedure of constructing a workgraph is given in {16].
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Figure 2. Workgraphs for task 1, 2, 3.
IV. A* Search Algorithm and Minimax Strategy

After using workgraphs to represent tasks to be accomplished,
we can now apply our dynamic routing assignment algorithm to find
a near optimal solution. Because the algorithm involves repeated
use of A* algorithm (which will be described in detailed in next sec-
tion), in this section we will briefly review the A’ scarch algorithm
and the minimax strategy, and exemplify them by solving the sub-
problem in our later dynamic planning and scheduling algorithm:
given p tasks in total to be executed by p AGV’s, what is the
optimal routing assignment for all p AGV’s among m workstations?

This subproblem can be formulated as a statc space scarch
problem, and the well known A" algorithm and minimax strategy
can be used for solving this subproblem. In our subproblem here,
a solution is an optimal routing assignment for p AGV’s among m
workstations to accomplish p tasks. Supposc that the tasks assigned
to AGV vy ..., v, are ty, ..., L, respectively, then let WGy, ..., WG,
be their corresponding workgraphs. We¢ now give the state space
search mecthod as follows.

1) State Description : Let an ordered triplet set O = { (i,R},0 |
1< i< p ) denote a current routing assignment for p AGV’s, where
O' represents the current travelling sequence for the AGV v; as
mentioned before, and R} = { ((¢'},I}), (e'5,1), ...} rcpresents the
time history that records the entering time and the departing time
at every workstation for this AGV v;, i.e., cach ordered pair (el 1)
indicates that the time when the AGV v; cnters and leaves the
workstation Of; is e}; and I respectively. Thus each triplet (i,R},0%
represents that so far the AGV v; is assigned to the route O' and
the current travelling time history is R%.

2) Initial State : The initial state is O = { (i,0,0)|1s i€ p }
which means that no travelling scquencc is assigned to any AGV.

3) Operator : In the A search algorithm, the node to be
expanded in every step is determined by the so called cvaluation
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function f(n), where n denotes a node. The function f(n) is a cost
estimatc of the solution path in the state space which is constrained
to pass the node n. Usually, it can be written as:

f(n) = g(n) + h(n)

where g(n) denotes the cost associated with the path from the start-
ing node to the current node n, and h(n) denotes the heuristic cost
from the node n to a goal node. In our case, within each node, we
assign a cost estimate to each ordered triplet, namely, fi(n), i= 1,
..., P, and then we define T

f(n) = m‘ax fi(n)

Now if the node, say, n is chosen to be expanded next, the way we
expand it is (o change an ordered triplet, say, (,RL,0OY) o
(3.R"},0%), where f; is the smallest among fi(n), i= 1, ..., p, and o
is not complete in terms of its assigned task, by adding a worksta-
tion according to its workgraph to get 0’1 and finding its
corresponding R’%. Consequently, the descendant node will be of
the form

{ (1,R”,0Y, ...,(,R",0Y), ....(p.RP,0OP) }

where the original time travelling sequence R' may be changed to
R’i, i# j due to the change of O, but O, i# j remain the same.
Moreover, if there exist more than one choice to change (j,R3,09)
to (j,R’,0’)), e.g., when the added workstation turns out to be the
ORed workgraph, then more than one descendant nodes should all
be found. In this way we can develop the partial routing assign-
ments till all AGV’s have accomplished their assigned tasks accord-
ing to the corresponding workgraphs.

4) Goal State : Any state O = { (i,R,0 |1 i< p } is a goal
state if and only if every O' is a completed travelling sequence,
i= 1, .., p, ie., every workgraph WG; is traversed following the
sequence O, i= 1, ..., p. Each R! is then the final travelling time
history for AGV v; to accomplish its assigned task, and the total
amount of time nceded to accomplish all these tasks is max Iy,

where k; is the ith number of workstations (counting the multipli-
city) travelled by the AGV v;.

Next we will describe how to estimate the heuristic cost hy(n)
for the ith ordered triplet (i,R},0%) in the node to be expanded. But
before this, we will first introduce the heuristic cost associated with
each veriex of a workgraph in the following procedure.

Heuristic Estimation Procedure :

Step 1.For every vertex V; in the workgraph, do Step 1.1 and Step
12 to find the starting workstation set S; and the final
workstation set F;.

Step 1.1.1If the vertex consists of one workstation, then this
workstation is the only clement in the set S; and
the set F.

Step 1.2 If the veriex contains some workygraphs related by
AND or OR, then the sct S; is the union of the
starting workstation sets of these workgraphs, and
the set F; is the union of the final workstation sets
of these workgraphs. Here, the seis S; and F; of
the workgraph are actually obtained in a recursive
way.

Step 2.For every vertex V; in the workgraph, define the rough
heuristic cost, denoted rh;, as the minimum time needed to
accomplish this vertex, which can be computed by perform-
ing the following steps.

Step 2.1.1If the vertex contains only one workstation, then
the rough heuristic cost rh; is the execution time



spent in this workstation to accomplish the sub-
task.

Step 2.2.1f the vertex contains some workgraphs related by
OR, the the rough heuristic cost rh; is equal to the
smallest one of the rough heuristic costs of those
workgraphs.

Step 2.3.1f the vertex contains some workgraphs related by
AND, then the rough heuristic cost rh; is equal to
the sum of all the rough heuristic costs of those
workgraphs.

Step 3.If the number of vertices in this workgraph is n, then the
heuristic cost hh,, for vertex n is zero.

Step 4.For i= n-1 down 1o 1, do the following steps to find the
heuristic cost hh; for vertex V;, i= 1, .., n-1.

Step 4.1 Choose two workstations Wy and W, from F; and
from S;,; respectively, such that the travelling
time of, say, AGV v, between W, and W, is the
minimum and denote it tt;.

Step 4.2. The heuristic cost h; for vertex V; is the sum of
hhj,y, tt;, and rhy, ;. It means that the minimum
cost from this vertex to the last vertex is hh;.

Step 4.3.1f the vertex contains some workgraphs related by
OR or AND, then, when calculating the heuristic
costs of these workgraphs, the sum of hhy,j, tt;,
and rh;, | should be added in order 1o get a more
precise estimate.

Step 5.The heuristic cost of this workgraph is, hence, the heuristic
cost of vertex one, ie., hh;.

After computing the heuristic cost of every vertex in the
workgraph for all AGV’s, we can then calculate every cost estimate
fi(n) for every AGV v; with ordered triplet (i,R,0% at run time.
Recall that the definition of fi(n) is

fi(n) = gi(n) + hy(n)
where gi(n) is the total cost for the AGV v; to complete the travel-
ling sequence O, i= 1, ..., p, and is calculated precisely according to
the current routing information of all AGV’s. If the AGV v; is at
the vertex Viy in its workgraph after completing this sequence O,
then the heuristic function h;(n) is equal to hh,y, where hh-% is the
heuristic cost of vertex Vly. Thus we can obtain f(n) directly by
adding g(n) and hy(n) together. Finally, since the evaluation
function f(n) defined before satisfies the minimax strategy, i

f(n) = Irsniégpfi(n)

our principle for expanding nodes in A* search algorithm will obtain
an optimal solution. Now we have shown how to solve our sub-
problem by using A® search algorithm and minimax strategy.

V. Dynamic Routing Assignment Algorithm

After using workgraphs to represcnt tasks, we can use
dynamic routing assignment algorithm to find a near optimal solu-
tion. In this section we will describe the details of our dynamic
routing assignment algorithm in order to solve this routing assign-
ment problem completely. This algorithm consists of the following
two parts:

Part 1. If an AGV has just accomplished its assigned task and
becomes free now, and if there are some other tasks
ready to be processed, then we should assign this
AGYV 10 one of those tasks.

Part 2. After a task is chosen (so that the kind of this task is
determined) for the AGV, we should determine a

route for that AGV,

The two parts will be executed repeatcdly till all the tasks are
finished. Now we will describe how to proceed with each part to
complete our dynamic planning and scheduling algorithm.

Suppose the number of every kind of tasks to be accom-
plished is initially Ny, ..., N, as stated before. At some time later
the number of every kind of tasks which have been accomplished
becomes CNy, ..., CN;. Now if an AGV is freed and has not been
assigned to any other task, then the problem is to choose one kind
of uncompleted tasks for this AGV. To solve this problem, we first
calculate the accomplishment ratio of all different kinds of tasks,
that is to calculate all CNy¢/N; for all 1< i< k. then we choose one
kind of tasks with the smallest accomplishment ratio for this AGV.,
If there are more than one kind of tasks which have the same ratio,
then we can choose one of them randomly. Also note that if there
are more than one AGV being freed at the same time, then we
should use this heuristic rule repeatedly to assign tasks for those
free AGV’s.

After one kind of tasks for the frec AGV has been chosen,
the problem left is to choose a routing assignment for this AGV to
accomplish the assigned task. In order to find a near optimal solu-
tion to accomplish all tasks, we must take all the uncompleted sub-
tasks currently being taken care of by other AGV’s into considera-
tion. This means that if a busy AGV v; is assigned a workgraph
with vertices Vi, ..., Vni, and currently this AGYV is performing the
subtask in vertex Viy (1< ig< my), then we must consider all the
uncompleted subtasks in vertices VW,
find a better routing assignment. So the predetermined route for

» Vi, together in order to

AGV v; to travel through vertices V-,y”, - Vi, may be changed
after a free AGV is added in to perform its newly assigned task. To
be more specifically, suppose O is the predetermined routing
assignment for AGV v; to travel through vertices V,, V,, ..., Viy‘
and RY is its corresponding travelling time history. Then the state
description for AGV v; is (i.R".O") for now. Now, if there is an
AGYV, say, v,, being freed now, after assigning this AGV to some
kind of task, the state description of all AGV’s become (a,¢,0)
plus (i,R¥,0%) for all busy AGV’s v;. And then we can use A"
search algorithm and minimax strategy described as before to find a
near optimal solution. Also note that if there are more than one
AGYV being freed at the same time, say, v,, v,, ..., after assigning
these AGV’s to some kind of tasks, the current state description
then becomes (2,6,4), (b,6.¢), ..., plus (i,RY,0Y) for all busy
AGV’s v;, so that the same algorithm can be used likewise. Because
our approach repeatedly use A algorithm till all tasks to be
finished, and the routing assignment for all AGV’s change dynami-
cally to meet the near optimality requirement, this is the reason
why it constitutes a dynamic routing assignment algorithm. The more
detailed, and complete steps of our method are described as fol-
lows.

Dynamic Routing Assignment Algorithm :
Step 1.At some time, for each frec AGV, do the following steps:

Step 1.1.If there is no task to be assigned, then reset this
AGV; otherwise goto Step 1.2.

Step 1.2. Compute the accomplishment ratio for all kinds of
tasks uncompleted.

Step 1.3. Choose one kind of tasks with the smallest accom-




plishment ratio for this AGV to process. 1f there
are more than one kind of tasks with the same
smallesl ratio, choose one of them randomly.

Step 2.If all tasks have been accomplished so that all free AGV's
have no uncompleted task to be assigned, then exit this algo-
rithm; otherwise goto Step 3.
Step 3.For every busy AGV v;, do the following:
Step 3.1.Find the vertex V; in its workgraph such that the
AGYV is currently doing a subtask contained in this
vertex.
Step 3.2.Record the current travelling time history RY and
the current travelling workstation sequence oY (up
to the vertex Viy) for AGV v;.
Step 3.3.Build the state description (i,Riy,O") for the AGV
Vi
Step 4.Build the state description (a,9.¢), (b,¢,¢). ..., for all free

AGV’s v,, Vp, .., which have been assigned some new
tasks.

Step 5.Use the A" algorithm as described previously to find a new
routing assignments for all these AGV's.

Remark: If An AGV has just accomplished its assigned task and
it is freed at a loading/unloading center, then we will use our
dynamic routing assignment algorithm once to find new routes for

all AGV’s.

VII. Conclusion

In this paper, a new approach for solving the problem of plan-
ning and scheduling together was presented. This problem was first
formulated as the determination of an optimal routing assignment
for automated guided vehicles in an FMS. Later, we proposed a
new approach that can solve this routing assignment problem
dynamically. A computer simulation example is provided in [16]
which shows a satisfactory result. In fact, the total computational
time spent is also economical. The application of this method to an
FMS in a real environment will be quite promising. Ongoing
research will be on using more general representations for describ-
ing the class of decomposable tasks and better heuristics to improve
the performance of the method.
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