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Abstract 

Virtual factory (VF) can provide a total solution for 
shortening manufacturing cycle time and achieving 
customer satisfactions. Hence, many world-class 
companies dedicate themselves to establish their own 
virtual factories. However, it is di€ficult to implement a 
virtual factory because of the lack of assistant tools. A 
three-tier architecture based colored timed Petri net 
emulator is developed in this paper to provide such kind 
of tool. The three-tier architecture based emulator is 
easy to maintain and extend. This paper adopts IJML 
and Microsoft COMDCOM techniques to design and 
implement the emulator, respectively. The emulator is 
suitable to model complex systems, especially those 
with concurrent and asynchronous behaviors. In 
addition, this emulator provides distributed simulation 
ability. Each emulator can communicate with each other 
to achieve the concurrence among subnets. In particular, 
the proposed emulator can be integrated with WWW 
and voice system. Finally, the emulator is used to 
construct a flexible manufacturing system, and 
demonstrate its feasibility for virtual factory 
applications. 

1. Introduction 
Virtual factory has various definitions for different 

viewpoints and perspectives. One of the definitions is 
described as follows: a virtual factory is an environment 
that provides transparent descriptions and simulations 
of a real factory to users (internal or external) who are 
separated from the real entity in space andor time via 
open and easy access and real time response to users’ 
specific needs [1,7]. Inside a company a virtual factory 
integrates manufacturing resources with information, 
and in the outside world it provides satisfactory 
customer service. 

In order to establish the virtual factory applications, 
such as scheduler, simulator and product cycle time 
estimator, the first step is to construct a model that is 
parallel (or concurrent) to a real factory. However, the 
lack of powerful modeling tools for complex and 
highly-integrated systems often blocks the development 
speed of a virtual factory. This paper focuses its scope 
on the development of an emulator that can real-time 
generate and simulate the system. The proposed 
emulator is a three-tier architecture, object oriented, 
distributed and colored-timed Petri net based virtual 
factory emulator. 

The distributed and objected oriented features rely 
on COM (common object model) and DCOM 
(distributed COM). A COM object consists of one or 
more interfaces, and an interface consists of properties, 
methods, andor events. On the other hand, DCOM can 
be considered as a network version of COM. DCOM 
has three new elements built on COM: the technology 
for building remote objects; protocols for calling remote 
objects’ methods; security for accessing remote objects’ 
data. An ActiveX EXE server is a typical application of 
DCOM. By using COM/DCOM technology, the 

communication difference between applications is 
encapsulated. Namely, a client application can be easily 
built and call a COIWDCOM server, regardless of local 
machines or remote machines. 

Colored timed Petri nets (CTPNs) have been 
proven to be a powerful tool for modeling many 
systems, especially those with similar components 
and/or parallel processing [2]. The proposed 
communication places are used to relate macro 
transitions among Petri nets. There are four kinds of 
communication places, i.e. pitch-up, pitch-down, catch- 
up and catch-down places. Each pitch-up (or pitch- 
down) place in one Petri net has a matched catch-down 
(or catch-up) place in another Petri net. The state 
between the matched communication places is 
concurrent; i.e., when a token runs into or moves from a 
communication place, the same activity is occurred in 
its matched communication place. Petri nets with 
communication places not only have the hierarchical 
modeling ability but also have the distributed modeling 
ability. Namely, it is a hybrid architecture. In a critically 
hierarchical architecture, one layer is tightly related to 
its frst upper layer and its first lower layer. However, in 
a hybrid architecture, one layer can be related to any 
other layers in a model. Because of the superior 
modeling ability, the Petri net with communication 
places is a powerful modeling tool for distributed 
emulator. 

Fig. 1 Some extended places and transitions for Petri nets 
Finally, the proposed three-tier architecture, object 

oriented, distributed and colored-timed Petri net-based 
virtual factory emulator is justified by a flexible 
manufacturing system. 

2. Analysis and Design of Colored Timed 
Petri Net Emulator 

A. Overview of System Architecture 
A simulation process can be divided into three 

stages: modeling, simulation and simulation analysis. In 
modeling stage, a modeling tool with user friendly 
interface is required to construct and express a model 
for a real system. In simulation stage, a simulation 
engine is required to drive the simulation process. In 
this stage, the simulation performance should be 
considered. Finally, in simulation analysis stage, the 
simulation outputs have to include the event history, 
statistic lists and other useful information. UML 
(Unified Modeling Language) is used as the analyzing 
tool. The required output information in simulation 
analysis stage is always case by case. 
In order to satisfy these requirements, the following 
elements are designed for an emulator in this paper: 
1. Colored timed Petri nets with macro transitions and 

cominunication places are selected to be the 
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modeling tool. 
A Petri net designer with user-friendly interface is 
designed to construct colored timed Petri net models. 
A Petri net viewer is designed to monitor and 
analyze the simulation conditions. 
A Petri net engine is designed to execute the 
simulation process. The engine includes an 
interpreter to interpret and execute the codes in 
transition regions. 
A Petri net simulation driver is designed to setup and 
call Petri net engine. 
A communication component, which includes 
Windows sockets, is designed for the communication 
between communication places. 
A relational database is designed to store and share 
Petri net models and markings. 

An overview of the three-tier architecture is shown 
in Fig. 2. 

User Scrvicn Tier Burinns Services Tier Data Services Tier 

I I 

. 
Fig. 2 Physical architecture of colored 

timed Petri net emulator 
B. Petri Net Engine 

Petri net engine for CTPN emulators exists in the 
middle tier of the three-tier architecture. It is designed 
as an ActiveX EXE server - PetriNetEngexe. Since 
Petri net engine is a server component, the client 
application can use Petri net engine through DCOM 
technique. The main function of Petri net engine is to 
encapsulate the business policy of CTPNs, especially 
the firing rules. The following subsections will describe 
the design of Petri net engine. 
(1) Class Design of Petri Net Engine Kernel 

In order to manipulate operations over a CTPN 
model, Petri net engine has to know the whole 
architecture of the CTPN model firstly. Therefore, a 
number of classes are designed to display a CTPN 
model. A CTPN model, which is displayed by the 
CPetriNet class, mainly consists of places, transitions, 
arcs, colors, and tokens. The abstract classes CPlace and 
CTransition are designed to show the abstract 
operations of the Petri net elements. CNormalplace, 
CPitchUpPlace, CPitchDownPlace, CCatchUpPlace, 
and CCatchDownPlace classes inherit the abstract class 
CPlace and show the concrete Place elements. Similarly, 
CNormalTransition, CImmediateTransition and 
CInhibitorTransition classes inherit the abstract class 
CTransition and show the concrete transition elements. 
The connections between places and transitions are 
presented by CInputPlace and COutputPlace classes, 
instead of using CArc class. A CInputplace object 
shows an input place for a specific transition. In 
conmt, a COutputPlace object shows an output place 
for a specific transition. The arc type is denoted as an 
attribute within CInputPlace and COutputPlace classes. 
The residual classes used to display the architecture of a 
CTPN model are CToken and CColor classes. They are 
used to show the tokens and colors in a CTPN model 
respectively. 

The CTableInfo class and RDO (remote data object) 
provide the function of connecting to a database. A 
CTableInto object is used to store the database 
information, including the ODBC data source name, 
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database name, user’s identification and user’s 
password. RDO is a commercial object developed by 
Microsoft Corporation. It provides the connection frame 
between program languages and ODBC database 
servers. Because RDO can access any database severs 
that provide ODBC driver, the connection between Petri 
net engine and database servers is much more flexible. 

(2) Communication Mechanism 
When a large Petri net is divided into several small 

Petri nets, the synchronization among Petri nets is 
provided by communication places. Actually the 
concurrence is arrived by sending messages between 
nets. To implement this idea, an ActiveX DLL server - 
PNComm.dll - is designed to support the 
communication between Petri nets. 

A PNComm sever implements a CPNComm class. 
Each object of CPNComm class uses a fixed Windows 
socket to listen for an incoming connection for some 
ports. When the listening socket receives a connection 
request, a new socket is created to accept the request 
and prepare to get data. At the same time, the listening 
socket returns to listen for the next incoming connection. 
After the dynamically created socket has got all the data 
and stored the data into a buffer (an object of 
CDataBuffer class), it is destroyed immediately. Since 
the sockets used to get data are created dynamically, a 
Petri net engine with a CPNComm object can get data 
from several other Petri net engines concurrently. In 
addition to getting data, a CPNComm object also uses a 
fixed socket for sending data. Petri net engine can 
indirectly use this socket to send communication 
places’ information, such as adding tokens to a 
communication place or removing tokens from a 
communication place. 

Fig 3 shows the interactions between a CPetriNet 
object and a CPNComm object. 
(3) Interpreter 

There are three regions accompanying with a 
transition. Their functions are described in Fig. 4. 
Guard Region: The codes in a guard region define the 
constraints of enabling a transition. Hence, a transition 
can only be enabled by the specific tokens whose color 
values can satisfy those constraints. 
Action Region: The codes in an action region define 
the activities when a transition is firing. A general 
language, like meta language or Ci+, may be adopted 
to edit codes. Users can operate a global variable or 
send specific messages by coding this region. The 
action region can be further divided into three regions 
(Fig. 4): 

1.Activation region: The codes in this region are 
executed immediately when a transition fires. 

2.Continuous region: This region only resides in 
timed transitions. The codes in continuous region 
are continuously executed during the firing interval. 
If users need to send alarm messages continuously, 
or something else. thev can edit an alarm function in 

I I . I  

this region. 
3. Deactivation region: The codes in this region are 

executed immediately when the firing process 
terminates. 
Deposit Region: The codes in a deposit region 

define how the color values are assigned to each output 
tokens. 

In order to interpret and execute the codes in these 
regions. An interpreter is designed to accomplish this 
task. The interpreter can interpret all of the codes and 
restore them into a data structure before running 
simulation. Therefore, in simulation stage, the Petri net 
engine can execute the program codes efficiently. 
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Fig. 3 The interactions between CPetriNet 
object and CPNComm object 
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Fig. 4 Code regions in a transition 

(4) Algorithm Design for Solving Conflicts 
There are two different conflicts that may happen 

in a Petri net model. The conflict between tokens 
conflict of selecting resources or the conflict of 
selecting entities in a real system. The conflict between 
transitions means the conflict of selecting common 
resources or the conflict of selecting paths in a real 
system. 
0 For the conflict between tokens: 

The policies for deciding which token should be 
selected often depend on tokens’ attributes. The 
generally used policies are listed below: 
- Decision by some color values: A color is an attribute 

in a real system. In the real world, an activity always 
happens only when some attributes are matched. For 
example, a job may only be worked on some kind of 
machines. This policy points out this special property 
evidently. 

-Decision by token’s priority: Two conditions are 
considered in this policy. One is ‘the highest priority 
first’ (HPF) and the other is ‘the lowest priority first’ 
(LPF). If we use HPF policy, the token with the 
highest priority is selected. On the conhay, if we use 
LPF policy, the token with the lowest priority is 
Selected. 

- Decision by the token’s arrival time: Two conditions 
are considered in this policy. One is ‘first in first out’ 
(FIFO) and the other is ‘first in last out’ WO). If we 
use FIFO policy, the first arrival token is selected. On 
the contrary, if we use FILO policy, the last arrival 
token is selected. 

- Random selection: If a system does not care which 
token is selected first, this policy can provide a good 
solution. This policy is often called ‘service in 
random order’ (SIRO). 

described below: 

For the conflict between transitions: 
The proposed methods for solving this conflict are 

Decision by the total busy time: This is only suitable for 
timed transitions. The transition with the least total busy 
time is selected to fire. For example, if a transition 
represents a server, then the server that has the least 
working time is assigned to provide service for a 
customer. 
Decision by the time delay: Again, this policy is only 
suitable for timed transitions. By using this policy, the 
transition with the least time delay is selected to fire. For 

example, if a transition represents a machine, then the 
machine with the least process time (time delay) is 
selected to work. 

- Decision by a router: This is especially suitable when 
sirnulaling a flow-shop system. The token has a color to 
denote which transition should be selected to fire. On the 
other hand, the codes in a transition’s guard region 
define what color values can make this transition fire. 

- Decision by looking forward n steps: When using this 
policy, .the transition, which can gain the maximum 
benefit m the next n steps, is selected to lire. 

Since the conflict between tokens always happens 
in a place, it is easy to solve by adding a queue type to 
places. A Q-algorithm [8] for detecting if a transition is 
enabled can help us to know which transitions are 
conflictive. If a transition is enabled, it gives each 
enabling token an order. Therefore, after applying this 
algorithm to each transition, we can know which 
transitions are conflictive by detecting the ordering 
queue of tokens. An F-algorithm used to decide which 
transitions can fire is also developed in [SI 

C. Petri Net Designer and Petri Net Viewer 
The Petri net designer provides a graphical user 

interface to construct Petri net model directly. Users can 
use the designer to set places, transitions and arcs on a 
form, and edit their attributes. On the other hand, the 
Petri net viewer provides a number of classes to draw 
the Petri net elements. Though Petri net designer and 
Petri net viewer are logically separate, they are 
implemented in the same way. The Petri net designer 
and Petri net viewer shares the same classes to express a 
Petri net model. The classes designed in the Petri net 
viewer and Petri net designer is similar to those classes 
designed in Petri net engine. The main displays of Petri 
net designer are shown in Fig. 5 .  
D. Design of Database Tables 

To reuse and share Petri net models, the models 
have to be stored persistently. A relational database is 
designed to provide this service. The database has to 
store not only the static architecture but also the 
dynamic behavior setting of Petri nets. The definitions 
of each database table can be found in [SI. It should be 
noted that the term MACRO means a subnet; Le., it 
represents a subsystem. In addition, the term 
PETRMET means the collection of MACROS; i.e., it 
represents the whole system. 
E. AdiveX Control for Voice System 

Manufacturing execution system (MES) is the 
kernel of shop floor control systems [3]. The 
architecture of MES is demonstrated in Fig.6. MES 
manages the activities and dispatches resources in a 
factory. Its objective is to make a factory operate 
regularly and then achieve the production tasks. 

Virtual manufacturing system (VMS) is concurrent 
to the physical manufacturing system (PMS). It reflects 
the factory’s states to the supervisor and monitor. Based 
on monitoring of the responding states, the supervisor 
can corporate the factory’s operation activities. On the 
other hand, the monitor can detect if any machines work 
irregularly. If the monitor finds some problems on the 
machines, then the troubleshooter is called to solve the 
problem. The troubleshooter tries to find the solution 
from the knowledge base first. If a solution is found, 
then the knowledge is applied to solve the problem, 
otherwise maintenance engineer is called on duty. 

A number of researches had applied Petri nets to 
design the supervisor, monitor and troubleshooter [2,4]. 
In this paper, a voice system is further developed to 
enhance the notification ability of the troubleshooter. 
Tmditionally, the engineers have to spend a lot of effort 
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to find out troubles by monitoring or querying the 
control system. The process is time-consuming. With 
the assistance of voice system, the troubleshooter can 
not@ the engineers actively. 

The voice system can dial automatically and record 
the acceptor's message to a mailbox if necessary. An 
ActiveX control for playing sound and controlling RS- 
232 is designed to help implement the voice system. 

Fig. 5 Main displays of Petri net designer 

._..... ..._._....-.. ..._______ ___..____ $ -- Dan-- 

r .~ I -----I--- _______.. ~ ____.____..._._.. _....__.._._... ___...---..._._...-.-...-.~ 

3. Integration of WWW and CTPN Emulator 
The WWW is also powem for virtual factories. 

For the potential buyers, a company can post theu 
catalog and work-sheet applets on its Web site to allow 
customers to examine and simulate the functions of its 
products before buying them. For the customers who 
have ordered the products, a company can provide each 
customer an account and a password to allow them to 
queq the production status about their ordered products 
via the Web server. These are the functions of customer 
service system. Inside a company, the manufacturing 
information, such as part location and machine states, 
can be posted on the Web site to allow the operators to 

search for the parts and the engineers to monitor the 
factory's operation state. These applications make 
WWW an immensely powerful tool for virtual factories. 

Since CTPN emulator is a powerhl modeling tool 
for virtual factories, the idea of transferring it into 
WWW version is advised. Two techniques can be used 
to implement the idea. One is Sun's Java applet, the 
other is Microsoft's ACtiveX document. In this paper, 
Microsoft's ActiveX document is adopted to implement 
the WWW version of CTPN emulator. The transfer 
from desktop version to WWW version is quite easy via 
using Microsoft's ActiveX document technique, 
especially for those programs based on a three-tier 
architecture. The business services tier and the data 
services tier can be continuously used without any 
modification. The programmer has to only rewrite the 
graphical user interface with ActiveX document if the 
classes are well designed in advance. M e r  completing 
these jobs, the CTPN emulator can be exposed on a 
Web page. 

As mentioned before, when the Web users try to 
explore the Web page of CTPN emulator, the browser 
need not to download the whole program and install it. 
The browser only grabs the necessary components. 

The related files for WWW version of CTPN 
emulator are shown in Fig. 7. Fig. 8 gives its graphical 
user interface. 

4. Casestudy 
A. CaseProblem 

This case study will discuss the scheduling problem 
of an FMS (flexible manufacturing system). The 
scheduling problem is very difficult because an FMS 
allows different combinations of batches and machines 
to manufacture Merent kinds of products. Petri nets 
and colored timed Petri nets have been used to solve 
real-time scheduling and job dispatching problem in an 
FMS [2,6,9]. Those researches have proven Petri nets 
and colored timed Petri nets are good at dealing with 
scheduling ,g~vDda&M.hh problem. /a 

/ 
I 
I 

Fig. 7 Related files for WWW version 
of CTPN emulator 

The scheduler is one of applications of a virtual 
factory. The discussed FMS has three cells and one 
AGV, shown as Fig.9. Six kinds of products are 
processed in this FMS and each product has its own 
routing. There are one robot, two buffers and three 
machines in Cell 1. All of machines in Cell .1 are 
precisely the same and they can process each lund of 
products. In Cell 2, there are one robot, three buffers 
and three machines. M4 can process Prod.l - Prod.3; 
M5 can process Prod.4 - Prod.6; and M6 can process 
all kinds of products. Prod.1 to Rod.3 wait on Buffer3 
for processing and, in contrast, Prod.4 - Prod.6 wait on 
Buf€er4. Finally, Cell 3 has one robot, two buffers and 
two machines. Both M7 and M8 are batch-run machines 
with 2-capacity and they can process all kinds of 
products. In this case, the planning of robots' moving 
path is ignored. The relevant researches about the 
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trajectory planning of robots can be found in [3]. 'The 
transportation among cells relies on the AGV ' n e  
machines have different time specifications for each 
product and the AGV has different time specifications 
for each route among cells. 

Fig. 8 WWW version for CTPN emulator 
B. CTPN Models of Discussed FMS 

From the view of MES, a real-time scheduler is a 
part of decision system. In general, the factory model 
and the factory's real-time information in V M S  are used 
to decide the schedule. Therefore, a model of the 
studied FMS should be built first. The CTPN model of 
SCHEDULER is shown in Fig.ll. The detailed routing 
information of SCHEDULER is encapsulated in 
transitions' deposit-code regions. Similarly, the 
different operation times of machines and AVG are 
described in transitions' time-code region. The 
hierarchical architecture of these CTPN models is 
demonstrated in Fig. 10. Table 2 shows an example of 
CTPN properties for each cell can be found in [SI. 

@) L a y a t  of CCIJ 2 @) Lay& of Cdl3 

Fig. 9 Layout of FMS 

Fig. 10 Hierarchical architecture of FMS's CTPN models 
C. Simulation Results 

Since the CTPN emulator developed in this paper 
provides several policies to solve conflicts between 
transitions and between tokens, the scheduler can use 
these policies as dispatching rules. When a system is 
modeled as a combination of several subnets, like this 
case study, each subnet can apply one kind of policy to 
dispatch jobs. This is more superior to other simulation 
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software. In addition, a distributed CTPN emulator 
provides an additional benefit, i.e. the network 
bandwidth and communication time between computers 
can be certainly examined. Furthermore, if users want 
to get more detailed information, such as the peak 
queue length, they can use suitable time distribution to 
simulate the system. 

In order to synchronize the time base of each 
subnets, a time-setting server is designed to provide the 
reference time. The computer, which runs this server, 
can send its system time to other computers. Hence, the 
CTPN emulator can mod@ the computer's system time 
to the reference time. 

....................................................................... .. . 

h C T P N l n d d E R  

In the simulation, the queue type of all places is 
assumed to be FIFO. The time distribution mode of all 
timed transitions is deterministic. The system has 
twelve parts, two for each product, waiting for 
processing. The parts entering the system follow the 
order: PROD1 -> PROD2 -> PROD3 -> PROD4 -> 

PROD4 -> PROD5 -> PROD6. The diagram of 
distributed simulation is shown in Fig. 12. Now, three 
different combinations of dispatching rules for each 
subnet are used to demonstrate the simulation 
functionalily of the CTPN emulator. These 
combinations of dispatching rules are listed in Table 3. 
In Case 1, each subnet uses Random rule to solve the 
conflict of parts' path. In Case 2, AGV and 
SCHEDULER subnets use Random rule and the others 
use LPT rule to solve the conflict of parts' path. In Case 
3, AGV and SCHEDULER subnets use Random rule, 
CELL1 and CELL3 subnets use LBT rule, and CELL2 
use LFT rule to solve the conflict of parts' path. Since 
the queue type of each place is FIFO, the conflicts 
among resources and among parts are solved by the 
FIFO rule concededly. 

PROD5 -> PROD6 -> PROD1 -> PROD2 -> PROD3 -> 

Fig. 12 Diagram of distributed simulation 

The CTPN emulator provides users both output 
files and gaphical display to examine the simulation 
actions. The CTPN emulator also provides users a 
dialog to examine transitions' busy time, idle time and 
utilization ratio. An example is shown in Fig. 13. 

The simulation results are summarized in Table 4. 
From the results, we can generate the most suitable 
dispatching for tools. A Gantt chart of machines for 
Case1 is shown in Fig. 14. 
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Table 1 Dispatching rules for each simulation case 

Casel I Random I Random I Random I Random I 
NetCase I CELL1 I CELL2 I CELL3 I AGV I SCHEDULER 

Random 

Case 
Casel 
Case2 
Case3 

Case2 I LPT I LPT 1 LPT I Random 1 Random 
Case3 I LBT I LPT I LBT I Random I Random 

Robot1 Robot2 Robot3 
32.2 23.47 25.5 
32.5 23.1 25.1 
30.8 22.5 24.4 

Random: Random Selection, LFTLcast Process Time, LBT: Least Busy Time 

m m  

Fig. 13 Busy time, idle time and 
utilization ratio diagrams 

Table 2 Simulation results 
(a) Total processing time 

Case I Case1 I case2 I Case3 
Time I 44’44” 1 44’18’ I 46’43” 

(b) Departing order of parts 

1,4 ,5 ,6 ,1 ,2 ,6 ,5 ,4 ,3 ,2 ,3  
Case2 1,4,5, 1 ,6 ,2 ,4 ,5 ,6 ,3 ,2 ,3  

1 ,4 ,5 ,6 ,1 ,4 ,2 ,2 ,3 ,5 ,6 ,3  
(c) Utilization ratio of tools (unit: YO) 
Machines: 

Robots: 

41.85 

Case3 40.94 

5. Conclusion 
In this paper, a three-tier architecture based colored 

timed Petri net emulator is proposed and implemented. 
Such an environment can help users construct and 
simulate a virtual factory easily. The functions of the 
proposed emulator have been proven in the scheduling 
problem of an FMS. The proposed emulator adopts the 
concepts of stochastic timed transitions, macro 
transitions and communication places. These additional 
Petri net elements provide several powerful capabilities. 
Stochastic timed transitions help us to model and 
simulate systems’ timing behaviors reasonably. Macro 
transitions help us to model a complex system by 
several smaller subnets and communication places 
provide the communication ability between these 
subnets to achieve the concurrence. In addition, the Q- 
algorithm and F-algorithm are proposed to solve the 
resource conflict and the path conflict problems for run- 
time detecting and solving the conflicts between 

transitions and between tokens. The emulator was 
integrated with WWW and voice system. Since the 
proposed emulator is implemented on the basis of three- 
tier architecture and object-oriented method, it can be 
easily expanded and maintained. However, some other 
features may be added to the proposed emulator, such as 
develop a transaction server to manage ActiveX servers 
and achieve the fault tolerance, develop more ActiveX 
servers for various applications, and consider event- 
driven mode. 
Machine name 

0 5 IO IS 20 25 30 35 40 45 SO 
(- ) 

Fig. 14 Gantt chart of machines for Casel 
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