
Proceedings of the 1999 IEEE
International Conference on Robotics & Automation

Detroit. Michigan May 1999

Development of a Virtual Factory Emulator Based on Three-Tier Architecture
Han-Pang Huang* , Chien-Fa Yeh*

Robotics Laboratory, Department of Mechanical Engineering
National Taiwan University, Taipei, TAIWAN 10674, R.O.C.

e-mail: hanpang@ccms.ntu.edu.tw
TFiL/FAX: (886) 2-23633875

*Professor and correspondence addressee *Graduate student
Abstract

Virtual factory (VF) can provide a total solution for
shortening manufacturing cycle time and achieving
customer satisfactions. Hence, many world-class
companies dedicate themselves to establish their own
virtual factories. However, it is di€ficult to implement a
virtual factory because of the lack of assistant tools. A
three-tier architecture based colored timed Petri net
emulator is developed in this paper to provide such kind
of tool. The three-tier architecture based emulator is
easy to maintain and extend. This paper adopts IJML
and Microsoft COMDCOM techniques to design and
implement the emulator, respectively. The emulator is
suitable to model complex systems, especially those
with concurrent and asynchronous behaviors. In
addition, this emulator provides distributed simulation
ability. Each emulator can communicate with each other
to achieve the concurrence among subnets. In particular,
the proposed emulator can be integrated with WWW
and voice system. Finally, the emulator is used to
construct a flexible manufacturing system, and
demonstrate its feasibility for virtual factory
applications.

1. Introduction
Virtual factory has various definitions for different

viewpoints and perspectives. One of the definitions is
described as follows: a virtual factory is an environment
that provides transparent descriptions and simulations
of a real factory to users (internal or external) who are
separated from the real entity in space andor time via
open and easy access and real time response to users’
specific needs [1,7]. Inside a company a virtual factory
integrates manufacturing resources with information,
and in the outside world it provides satisfactory
customer service.

In order to establish the virtual factory applications,
such as scheduler, simulator and product cycle time
estimator, the first step is to construct a model that is
parallel (or concurrent) to a real factory. However, the
lack of powerful modeling tools for complex and
highly-integrated systems often blocks the development
speed of a virtual factory. This paper focuses its scope
on the development of an emulator that can real-time
generate and simulate the system. The proposed
emulator is a three-tier architecture, object oriented,
distributed and colored-timed Petri net based virtual
factory emulator.

The distributed and objected oriented features rely
on COM (common object model) and DCOM
(distributed COM). A COM object consists of one or
more interfaces, and an interface consists of properties,
methods, andor events. On the other hand, DCOM can
be considered as a network version of COM. DCOM
has three new elements built on COM: the technology
for building remote objects; protocols for calling remote
objects’ methods; security for accessing remote objects’
data. An ActiveX EXE server is a typical application of
DCOM. By using COM/DCOM technology, the

communication difference between applications is
encapsulated. Namely, a client application can be easily
built and call a COIWDCOM server, regardless of local
machines or remote machines.

Colored timed Petri nets (CTPNs) have been
proven to be a powerful tool for modeling many
systems, especially those with similar components
and/or parallel processing [2]. The proposed
communication places are used to relate macro
transitions among Petri nets. There are four kinds of
communication places, i.e. pitch-up, pitch-down, catch-
up and catch-down places. Each pitch-up (or pitch-
down) place in one Petri net has a matched catch-down
(or catch-up) place in another Petri net. The state
between the matched communication places is
concurrent; i.e., when a token runs into or moves from a
communication place, the same activity is occurred in
its matched communication place. Petri nets with
communication places not only have the hierarchical
modeling ability but also have the distributed modeling
ability. Namely, it is a hybrid architecture. In a critically
hierarchical architecture, one layer is tightly related to
its frst upper layer and its first lower layer. However, in
a hybrid architecture, one layer can be related to any
other layers in a model. Because of the superior
modeling ability, the Petri net with communication
places is a powerful modeling tool for distributed
emulator.

Fig. 1 Some extended places and transitions for Petri nets
Finally, the proposed three-tier architecture, object

oriented, distributed and colored-timed Petri net-based
virtual factory emulator is justified by a flexible
manufacturing system.

2. Analysis and Design of Colored Timed
Petri Net Emulator

A. Overview of System Architecture
A simulation process can be divided into three

stages: modeling, simulation and simulation analysis. In
modeling stage, a modeling tool with user friendly
interface is required to construct and express a model
for a real system. In simulation stage, a simulation
engine is required to drive the simulation process. In
this stage, the simulation performance should be
considered. Finally, in simulation analysis stage, the
simulation outputs have to include the event history,
statistic lists and other useful information. UML
(Unified Modeling Language) is used as the analyzing
tool. The required output information in simulation
analysis stage is always case by case.
In order to satisfy these requirements, the following
elements are designed for an emulator in this paper:
1. Colored timed Petri nets with macro transitions and

cominunication places are selected to be the

0-7803-51 80-0-5199 $10.00 0 1999 IEEE 2434

2.

3.

4.

5 .

6 .

modeling tool.
A Petri net designer with user-friendly interface is
designed to construct colored timed Petri net models.
A Petri net viewer is designed to monitor and
analyze the simulation conditions.
A Petri net engine is designed to execute the
simulation process. The engine includes an
interpreter to interpret and execute the codes in
transition regions.
A Petri net simulation driver is designed to setup and
call Petri net engine.
A communication component, which includes
Windows sockets, is designed for the communication
between communication places.
A relational database is designed to store and share
Petri net models and markings.

An overview of the three-tier architecture is shown
in Fig. 2.

User Scrvicn Tier Burinns Services Tier Data Services Tier

I I

.
Fig. 2 Physical architecture of colored

timed Petri net emulator
B. Petri Net Engine

Petri net engine for CTPN emulators exists in the
middle tier of the three-tier architecture. It is designed
as an ActiveX EXE server - PetriNetEngexe. Since
Petri net engine is a server component, the client
application can use Petri net engine through DCOM
technique. The main function of Petri net engine is to
encapsulate the business policy of CTPNs, especially
the firing rules. The following subsections will describe
the design of Petri net engine.
(1) Class Design of Petri Net Engine Kernel

In order to manipulate operations over a CTPN
model, Petri net engine has to know the whole
architecture of the CTPN model firstly. Therefore, a
number of classes are designed to display a CTPN
model. A CTPN model, which is displayed by the
CPetriNet class, mainly consists of places, transitions,
arcs, colors, and tokens. The abstract classes CPlace and
CTransition are designed to show the abstract
operations of the Petri net elements. CNormalplace,
CPitchUpPlace, CPitchDownPlace, CCatchUpPlace,
and CCatchDownPlace classes inherit the abstract class
CPlace and show the concrete Place elements. Similarly,
CNormalTransition, CImmediateTransition and
CInhibitorTransition classes inherit the abstract class
CTransition and show the concrete transition elements.
The connections between places and transitions are
presented by CInputPlace and COutputPlace classes,
instead of using CArc class. A CInputplace object
shows an input place for a specific transition. In
conmt, a COutputPlace object shows an output place
for a specific transition. The arc type is denoted as an
attribute within CInputPlace and COutputPlace classes.
The residual classes used to display the architecture of a
CTPN model are CToken and CColor classes. They are
used to show the tokens and colors in a CTPN model
respectively.

The CTableInfo class and RDO (remote data object)
provide the function of connecting to a database. A
CTableInto object is used to store the database
information, including the ODBC data source name,

2

database name, user’s identification and user’s
password. RDO is a commercial object developed by
Microsoft Corporation. It provides the connection frame
between program languages and ODBC database
servers. Because RDO can access any database severs
that provide ODBC driver, the connection between Petri
net engine and database servers is much more flexible.

(2) Communication Mechanism
When a large Petri net is divided into several small

Petri nets, the synchronization among Petri nets is
provided by communication places. Actually the
concurrence is arrived by sending messages between
nets. To implement this idea, an ActiveX DLL server -
PNComm.dll - is designed to support the
communication between Petri nets.

A PNComm sever implements a CPNComm class.
Each object of CPNComm class uses a fixed Windows
socket to listen for an incoming connection for some
ports. When the listening socket receives a connection
request, a new socket is created to accept the request
and prepare to get data. At the same time, the listening
socket returns to listen for the next incoming connection.
After the dynamically created socket has got all the data
and stored the data into a buffer (an object of
CDataBuffer class), it is destroyed immediately. Since
the sockets used to get data are created dynamically, a
Petri net engine with a CPNComm object can get data
from several other Petri net engines concurrently. In
addition to getting data, a CPNComm object also uses a
fixed socket for sending data. Petri net engine can
indirectly use this socket to send communication
places’ information, such as adding tokens to a
communication place or removing tokens from a
communication place.

Fig 3 shows the interactions between a CPetriNet
object and a CPNComm object.
(3) Interpreter

There are three regions accompanying with a
transition. Their functions are described in Fig. 4.
Guard Region: The codes in a guard region define the
constraints of enabling a transition. Hence, a transition
can only be enabled by the specific tokens whose color
values can satisfy those constraints.
Action Region: The codes in an action region define
the activities when a transition is firing. A general
language, like meta language or Ci+, may be adopted
to edit codes. Users can operate a global variable or
send specific messages by coding this region. The
action region can be further divided into three regions
(Fig. 4):

1.Activation region: The codes in this region are
executed immediately when a transition fires.

2.Continuous region: This region only resides in
timed transitions. The codes in continuous region
are continuously executed during the firing interval.
If users need to send alarm messages continuously,
or something else. thev can edit an alarm function in

I I . I

this region.
3. Deactivation region: The codes in this region are

executed immediately when the firing process
terminates.
Deposit Region: The codes in a deposit region

define how the color values are assigned to each output
tokens.

In order to interpret and execute the codes in these
regions. An interpreter is designed to accomplish this
task. The interpreter can interpret all of the codes and
restore them into a data structure before running
simulation. Therefore, in simulation stage, the Petri net
engine can execute the program codes efficiently.

435

Fig. 3 The interactions between CPetriNet
object and CPNComm object

A d d m * M I * ” j+!i!E+ %.4* A& uir.

Fig. 4 Code regions in a transition

(4) Algorithm Design for Solving Conflicts
There are two different conflicts that may happen

in a Petri net model. The conflict between tokens
conflict of selecting resources or the conflict of
selecting entities in a real system. The conflict between
transitions means the conflict of selecting common
resources or the conflict of selecting paths in a real
system.
0 For the conflict between tokens:

The policies for deciding which token should be
selected often depend on tokens’ attributes. The
generally used policies are listed below:
- Decision by some color values: A color is an attribute

in a real system. In the real world, an activity always
happens only when some attributes are matched. For
example, a job may only be worked on some kind of
machines. This policy points out this special property
evidently.

-Decision by token’s priority: Two conditions are
considered in this policy. One is ‘the highest priority
first’ (HPF) and the other is ‘the lowest priority first’
(LPF). If we use HPF policy, the token with the
highest priority is selected. On the conhay, if we use
LPF policy, the token with the lowest priority is
Selected.

- Decision by the token’s arrival time: Two conditions
are considered in this policy. One is ‘first in first out’
(FIFO) and the other is ‘first in last out’ WO). If we
use FIFO policy, the first arrival token is selected. On
the contrary, if we use FILO policy, the last arrival
token is selected.

- Random selection: If a system does not care which
token is selected first, this policy can provide a good
solution. This policy is often called ‘service in
random order’ (SIRO).

described below:

For the conflict between transitions:
The proposed methods for solving this conflict are

Decision by the total busy time: This is only suitable for
timed transitions. The transition with the least total busy
time is selected to fire. For example, if a transition
represents a server, then the server that has the least
working time is assigned to provide service for a
customer.
Decision by the time delay: Again, this policy is only
suitable for timed transitions. By using this policy, the
transition with the least time delay is selected to fire. For

example, if a transition represents a machine, then the
machine with the least process time (time delay) is
selected to work.

- Decision by a router: This is especially suitable when
sirnulaling a flow-shop system. The token has a color to
denote which transition should be selected to fire. On the
other hand, the codes in a transition’s guard region
define what color values can make this transition fire.

- Decision by looking forward n steps: When using this
policy, .the transition, which can gain the maximum
benefit m the next n steps, is selected to lire.

Since the conflict between tokens always happens
in a place, it is easy to solve by adding a queue type to
places. A Q-algorithm [8] for detecting if a transition is
enabled can help us to know which transitions are
conflictive. If a transition is enabled, it gives each
enabling token an order. Therefore, after applying this
algorithm to each transition, we can know which
transitions are conflictive by detecting the ordering
queue of tokens. An F-algorithm used to decide which
transitions can fire is also developed in [SI

C. Petri Net Designer and Petri Net Viewer
The Petri net designer provides a graphical user

interface to construct Petri net model directly. Users can
use the designer to set places, transitions and arcs on a
form, and edit their attributes. On the other hand, the
Petri net viewer provides a number of classes to draw
the Petri net elements. Though Petri net designer and
Petri net viewer are logically separate, they are
implemented in the same way. The Petri net designer
and Petri net viewer shares the same classes to express a
Petri net model. The classes designed in the Petri net
viewer and Petri net designer is similar to those classes
designed in Petri net engine. The main displays of Petri
net designer are shown in Fig. 5 .
D. Design of Database Tables

To reuse and share Petri net models, the models
have to be stored persistently. A relational database is
designed to provide this service. The database has to
store not only the static architecture but also the
dynamic behavior setting of Petri nets. The definitions
of each database table can be found in [SI. It should be
noted that the term MACRO means a subnet; Le., it
represents a subsystem. In addition, the term
PETRMET means the collection of MACROS; i.e., it
represents the whole system.
E. AdiveX Control for Voice System

Manufacturing execution system (MES) is the
kernel of shop floor control systems [3]. The
architecture of MES is demonstrated in Fig.6. MES
manages the activities and dispatches resources in a
factory. Its objective is to make a factory operate
regularly and then achieve the production tasks.

Virtual manufacturing system (VMS) is concurrent
to the physical manufacturing system (PMS). It reflects
the factory’s states to the supervisor and monitor. Based
on monitoring of the responding states, the supervisor
can corporate the factory’s operation activities. On the
other hand, the monitor can detect if any machines work
irregularly. If the monitor finds some problems on the
machines, then the troubleshooter is called to solve the
problem. The troubleshooter tries to find the solution
from the knowledge base first. If a solution is found,
then the knowledge is applied to solve the problem,
otherwise maintenance engineer is called on duty.

A number of researches had applied Petri nets to
design the supervisor, monitor and troubleshooter [2,4].
In this paper, a voice system is further developed to
enhance the notification ability of the troubleshooter.
Tmditionally, the engineers have to spend a lot of effort

2436

to find out troubles by monitoring or querying the
control system. The process is time-consuming. With
the assistance of voice system, the troubleshooter can
not@ the engineers actively.

The voice system can dial automatically and record
the acceptor's message to a mailbox if necessary. An
ActiveX control for playing sound and controlling RS-
232 is designed to help implement the voice system.

Fig. 5 Main displays of Petri net designer

._..... ..._._....-.. ..._______ ___..____ $ -- Dan--

r .~ I -----I--- _______.. ~ ____.____..._._.. _....__.._._... ___...---..._._...-.-...-.~

3. Integration of WWW and CTPN Emulator
The WWW is also powem for virtual factories.

For the potential buyers, a company can post theu
catalog and work-sheet applets on its Web site to allow
customers to examine and simulate the functions of its
products before buying them. For the customers who
have ordered the products, a company can provide each
customer an account and a password to allow them to
queq the production status about their ordered products
via the Web server. These are the functions of customer
service system. Inside a company, the manufacturing
information, such as part location and machine states,
can be posted on the Web site to allow the operators to

search for the parts and the engineers to monitor the
factory's operation state. These applications make
WWW an immensely powerful tool for virtual factories.

Since CTPN emulator is a powerhl modeling tool
for virtual factories, the idea of transferring it into
WWW version is advised. Two techniques can be used
to implement the idea. One is Sun's Java applet, the
other is Microsoft's ACtiveX document. In this paper,
Microsoft's ActiveX document is adopted to implement
the WWW version of CTPN emulator. The transfer
from desktop version to WWW version is quite easy via
using Microsoft's ActiveX document technique,
especially for those programs based on a three-tier
architecture. The business services tier and the data
services tier can be continuously used without any
modification. The programmer has to only rewrite the
graphical user interface with ActiveX document if the
classes are well designed in advance. M e r completing
these jobs, the CTPN emulator can be exposed on a
Web page.

As mentioned before, when the Web users try to
explore the Web page of CTPN emulator, the browser
need not to download the whole program and install it.
The browser only grabs the necessary components.

The related files for WWW version of CTPN
emulator are shown in Fig. 7. Fig. 8 gives its graphical
user interface.

4. Casestudy
A. CaseProblem

This case study will discuss the scheduling problem
of an FMS (flexible manufacturing system). The
scheduling problem is very difficult because an FMS
allows different combinations of batches and machines
to manufacture Merent kinds of products. Petri nets
and colored timed Petri nets have been used to solve
real-time scheduling and job dispatching problem in an
FMS [2,6,9]. Those researches have proven Petri nets
and colored timed Petri nets are good at dealing with
scheduling ,g~vDda&M.hh problem. /a

/
I
I

Fig. 7 Related files for WWW version
of CTPN emulator

The scheduler is one of applications of a virtual
factory. The discussed FMS has three cells and one
AGV, shown as Fig.9. Six kinds of products are
processed in this FMS and each product has its own
routing. There are one robot, two buffers and three
machines in Cell 1. All of machines in Cell .1 are
precisely the same and they can process each lund of
products. In Cell 2, there are one robot, three buffers
and three machines. M4 can process Prod.l - Prod.3;
M5 can process Prod.4 - Prod.6; and M6 can process
all kinds of products. Prod.1 to Rod.3 wait on Buffer3
for processing and, in contrast, Prod.4 - Prod.6 wait on
Buf€er4. Finally, Cell 3 has one robot, two buffers and
two machines. Both M7 and M8 are batch-run machines
with 2-capacity and they can process all kinds of
products. In this case, the planning of robots' moving
path is ignored. The relevant researches about the

243 7

trajectory planning of robots can be found in [3]. 'The
transportation among cells relies on the AGV ' n e
machines have different time specifications for each
product and the AGV has different time specifications
for each route among cells.

Fig. 8 WWW version for CTPN emulator
B. CTPN Models of Discussed FMS

From the view of MES, a real-time scheduler is a
part of decision system. In general, the factory model
and the factory's real-time information in V M S are used
to decide the schedule. Therefore, a model of the
studied FMS should be built first. The CTPN model of
SCHEDULER is shown in Fig.ll. The detailed routing
information of SCHEDULER is encapsulated in
transitions' deposit-code regions. Similarly, the
different operation times of machines and AVG are
described in transitions' time-code region. The
hierarchical architecture of these CTPN models is
demonstrated in Fig. 10. Table 2 shows an example of
CTPN properties for each cell can be found in [SI.

@) L a y a t of CCIJ 2 @) Lay& of Cdl3

Fig. 9 Layout of FMS

Fig. 10 Hierarchical architecture of FMS's CTPN models
C. Simulation Results

Since the CTPN emulator developed in this paper
provides several policies to solve conflicts between
transitions and between tokens, the scheduler can use
these policies as dispatching rules. When a system is
modeled as a combination of several subnets, like this
case study, each subnet can apply one kind of policy to
dispatch jobs. This is more superior to other simulation

24

software. In addition, a distributed CTPN emulator
provides an additional benefit, i.e. the network
bandwidth and communication time between computers
can be certainly examined. Furthermore, if users want
to get more detailed information, such as the peak
queue length, they can use suitable time distribution to
simulate the system.

In order to synchronize the time base of each
subnets, a time-setting server is designed to provide the
reference time. The computer, which runs this server,
can send its system time to other computers. Hence, the
CTPN emulator can mod@ the computer's system time
to the reference time.

... .. .

h C T P N l n d d E R

In the simulation, the queue type of all places is
assumed to be FIFO. The time distribution mode of all
timed transitions is deterministic. The system has
twelve parts, two for each product, waiting for
processing. The parts entering the system follow the
order: PROD1 -> PROD2 -> PROD3 -> PROD4 ->

PROD4 -> PROD5 -> PROD6. The diagram of
distributed simulation is shown in Fig. 12. Now, three
different combinations of dispatching rules for each
subnet are used to demonstrate the simulation
functionalily of the CTPN emulator. These
combinations of dispatching rules are listed in Table 3.
In Case 1, each subnet uses Random rule to solve the
conflict of parts' path. In Case 2, AGV and
SCHEDULER subnets use Random rule and the others
use LPT rule to solve the conflict of parts' path. In Case
3, AGV and SCHEDULER subnets use Random rule,
CELL1 and CELL3 subnets use LBT rule, and CELL2
use LFT rule to solve the conflict of parts' path. Since
the queue type of each place is FIFO, the conflicts
among resources and among parts are solved by the
FIFO rule concededly.

PROD5 -> PROD6 -> PROD1 -> PROD2 -> PROD3 ->

Fig. 12 Diagram of distributed simulation

The CTPN emulator provides users both output
files and gaphical display to examine the simulation
actions. The CTPN emulator also provides users a
dialog to examine transitions' busy time, idle time and
utilization ratio. An example is shown in Fig. 13.

The simulation results are summarized in Table 4.
From the results, we can generate the most suitable
dispatching for tools. A Gantt chart of machines for
Case1 is shown in Fig. 14.

.38

Table 1 Dispatching rules for each simulation case

Casel I Random I Random I Random I Random I
NetCase I CELL1 I CELL2 I CELL3 I AGV I SCHEDULER

Random

Case
Casel
Case2
Case3

Case2 I LPT I LPT 1 LPT I Random 1 Random
Case3 I LBT I LPT I LBT I Random I Random

Robot1 Robot2 Robot3
32.2 23.47 25.5
32.5 23.1 25.1
30.8 22.5 24.4

Random: Random Selection, LFTLcast Process Time, LBT: Least Busy Time

m m

Fig. 13 Busy time, idle time and
utilization ratio diagrams

Table 2 Simulation results
(a) Total processing time

Case I Case1 I case2 I Case3
Time I 44’44” 1 44’18’ I 46’43”

(b) Departing order of parts

1,4 ,5 ,6 ,1 ,2 ,6 ,5 ,4 ,3 ,2 ,3
Case2 1,4,5, 1 ,6 ,2 ,4 ,5 ,6 ,3 ,2 ,3

1 ,4 ,5 ,6 ,1 ,4 ,2 ,2 ,3 ,5 ,6 ,3
(c) Utilization ratio of tools (unit: YO)
Machines:

Robots:

41.85

Case3 40.94

5. Conclusion
In this paper, a three-tier architecture based colored

timed Petri net emulator is proposed and implemented.
Such an environment can help users construct and
simulate a virtual factory easily. The functions of the
proposed emulator have been proven in the scheduling
problem of an FMS. The proposed emulator adopts the
concepts of stochastic timed transitions, macro
transitions and communication places. These additional
Petri net elements provide several powerful capabilities.
Stochastic timed transitions help us to model and
simulate systems’ timing behaviors reasonably. Macro
transitions help us to model a complex system by
several smaller subnets and communication places
provide the communication ability between these
subnets to achieve the concurrence. In addition, the Q-
algorithm and F-algorithm are proposed to solve the
resource conflict and the path conflict problems for run-
time detecting and solving the conflicts between

transitions and between tokens. The emulator was
integrated with WWW and voice system. Since the
proposed emulator is implemented on the basis of three-
tier architecture and object-oriented method, it can be
easily expanded and maintained. However, some other
features may be added to the proposed emulator, such as
develop a transaction server to manage ActiveX servers
and achieve the fault tolerance, develop more ActiveX
servers for various applications, and consider event-
driven mode.
Machine name

0 5 IO IS 20 25 30 35 40 45 SO
(-)

Fig. 14 Gantt chart of machines for Casel

References
R.S. Fuo, Y.H. S y S.C. Chang, Y.W. Lee, T.L. Choy
“Real Competitiveness via V i Fab,“ Proceedings of
the 1997 National Conference on Management of

C.H. Kuo and H.P. Huang, “Colored Timed Petri
Net Based Statistical Process Control and Fault
Diagnosis to Flexible Manufacturing Systems,”
IEEE ht. Cod. on Robotics and Automation, New
Mexico, Vol. 4, pp. 2741-2746, April, 1997.
GR. Liang, “Fault Recovery in Automated
Manufacturing System Using Extended HTM,”
Proceedings of the Asia-Pacific Conference and CIJE
National Conference, pp. 591496,1994.
Y.H. Liu, “Multi-user Remote Control of Flexible
Conveyor System Using Virtual Manufacturing
Devices,” Master Thesis, Department of Industrial
Engineering, National Chiao Tung University, 1995.
S.P. Sethi, C. Sriskandarajah, G Sorger, J. Blazewicz, W.
Kubiak, “Sequencing of Parts and Robot Moves in a
Robotic Cell,” The International Joumal of Flexible

C.T. Shen, “Automatic Petri-Net Generator for
Modeling and Scheduling of Flexible Manufacturing
Cell,” Master Thesis, Department of Information
Engineering, National Taiwan University, 1995.
D.M. Upton and A. McAfee, “The Real Vutual
Factory,” Harvard Business Review, pp. 123-133, July-
August, 1996.
C.F. Yeh, “Development of Colored-Timed Petri Net
Emulator based on Three-Tier Architecture,” Master
Thesis, Department of Mechanical Engineering,
National Taiwan University, 1998.
M.C. Yeh, “Development of Shop Floor Control System
for Flexible Manufacturing Systems,” Master Thesis,
Department of Mechanical Engineering, National
Taiwan University, 1995.

Technology, pp. 156-163,1997.

Manufacturing Systems, p ~ . 331-358,1992.

2439

