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Abstract

This is a one-year project to use
computer vision and digital image processing
methods to automatically inspect and classify
PLED or LCD panel defects. We will study
the best camera and light source set-up and
noise-removal algorithms to inspects PLED
panel defects. Through defect classification
and clustering, we use pattern recognition and
statistical process control methods to analyse
and find the relationship between defect
classes and causes in order to improve
manufacturing process and yield rate.

Keywords: PLED, Defect Inspection,
Classification, Computer Vision, Digital
Image Processing
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Abstract
This paper has two parts: 1. low-resolution
defect inspection, 2. high-resolution defect
inspection. In low-resolution defect inspection,
we use CCD (Charge-Coupled Device) camera
of PLED
(Polymer Light-Emitting Diode) panels and

to inspection defective blocks

replace photometer to measure luminance. In
high resolution, we use CCD camera and
high-resolution lens to grab image and detect
defects based on computer vision and image
processing. The experimental result shows that
our inspection system achieves high accuracy
and high speed for industry and meets our
requirement.
1. Introduction

PLEDs work similarly as LEDs, which are
semiconductor devices that emit visible light
when electric current flows through them, except
they have different materials. PLEDs use organic
materials to produce and emit the light, but
LEDs use semiconductor materials.

Our PLED defect inspection system has
low-resolution  defect
and the
high-resolution defect inspection.

two parts. One is

inspection  system, other is
In low-resolution defect inspection, we use
the Minolta CS-100 photometer to calibrate our
CCD camera in order to measure the luminance
that PLEDs emit.
In high-resolution defect inspection, we
have to detect defects as precise as 10

micrometers. In the inspection process, we first

select a golden image and set up parameters
which depend on our requirement, and then we
find and segment blocks to detect defects.

This paper is organized as follows. Section
1 gives introduction to how PLEDs work and
PLED defect inspection system structure.
Section 2 describes some theoretical background
that we need to know for our inspection systems.
Sections 3 and 4 explain the inspection methods
and processes of our low-resolution and
high-resolution inspection systems, respectively.
Section 5 concludes our methods of PLED
inspection systems.

2. Background and Algorithm

Our PLED defect inspection system is
based on computer vision and digital image
processing and this section describes the
background and some algorithms.
2.1. Automatic Binarization

Because we need to segment bright blocks
from PLED panels automatically, we use the
minimizing within-group variance method [2] to
segment images. The method introduced here is
based on the minimizing within-group variance
method. We can use variance to measure group
homogeneity. A group with high homogeneity
will have low variance. A group with low
homogeneity will have high variance. Therefore,
we choose a threshold that minimizes the
weighted sum of group variance.
2.2. Pattern Matching

In order to detect defects of interest and

register images, we have to find subimages of



interest. Therefore, we use the correlation
approach [1] to match patterns.
2.3. Image Comparsion

Image Comparison is a simple method to
detect defects easily and quickly. First, we need
a golden image (image without defect) to serve
as a reference. We can compare the inspected
image with the golden image pixel by pixel to
gain a residual image. Setting a proper threshold
to binarize the residual image, we can detect
defects from the residual image.
2.4. Projection

Projection [2] is an easy edge detection
method when the objects of interest are aligned
along one image edge. Projection can be
horizontal, vertical, or at any direction. In our
PLED defect

horizontal projection and vertical projection to

inspection system, we use

segment each block in an inspected image.
2.5. Gamma Correction

Because we use CCD camera to replace
photometer to measure luminance that PLEDs
emit, we have to consider whether our CCD
camera need to do gamma correction. The gray

value of every pixel in an image is generally not

proportional to the light that CCD sensor absorbs.

Generally signal

generated by a physical device has power-law

speaking, when output
response to input signal, the value of the
exponent in the power-law equation is referred
to as gamma. Gamma correction is the process to
correct the power-law response phenomena
(11[4].

The power-law equation has the basic form

s=cr’

where ¢ and y are positive constants, § is
output signal, and ¢ is input signal. For
example, CRT (Cathode Ray Tube) devices have

an intensity-to-voltage response that a
power-law equation has ¥ varying from 1.8 to
2.5. We do some experiments to decide whether
our CCD camera has gamma correction problem.
3. Low-Resolution Defect Inspection
framework

low-resolution defect inspection system is shown

The inspection of our
in Figure 1. Our system consists of CCD camera,
lens, frame grabber, photometer, fixture, and
personal computer. In our system, we use
monochrome CCD camera to capture PLED
images that we want to inspect and analyze and
use frame grabber to grab images from CCD

camera and store in our computer.

Image Signal

I
|
I
| CCD Camera
|
|
|
l
|
!
i

Figure 1 The framework of low-resolution defect inspection

system.

In order to calibrate our CCD camera so that we
can use the CCD camera to measure luminance,
we use the photometer to do some experiments
and calibrate the CCD camera. The fixture can
supply PLED with power which PLED needs to
illuminate. It also generates five signal patterns
so that PLED can generate five patterns.

Because PLEDs are self-illuminant, we do not
need any light source. On the contrary, in our
inspection process we isolate ambient light from
our inspection system so that we can measure
luminance exactly.

In this inspection system we fix the CCD camera
and the fixture. When the fixture generates five



signal patterns respectively, the CCD camera
captures pattern images one by one.

Defects

—— Micro-Defect

Excessively Bright Block

\—— Insufficiently Bright Block

Shrinking Block

——— Dark Block

Erroneous Block

—— Macro-Defect

Excessively Bright Row or Column

Dark Row or Column

L— Unevenly Bright Pannel

Figure 2 Classification of low-resolution defects.

3.1. Classification of Defects

In the low-resolution defect inspection
system, we classify defects into macro-defects
and micro-defects. Detailed defects are
illustrated in Figure 2. Shrinking block means
bright blocks shrink and erroneous block means
bright block which should not emit light in some
patterns, but they emit light. Defect of unevenly
bright panel which means whole blocks emit

light unevenly.

wy

CCD Camera CS-100

Figure 3 Calibration structure.

3.2. CCD camera calibration
In order to use CCD camera to replace
photometer so that we can measure luminance,

we do some experiments to calibrate our CCD

camera and see whether we have to do gamma
correction in this CCD camera or not. First, we
have to check the relation between gray level
that frame grabber captures and luminance that
CCD sensor absorbs. Our experiment set-up is
shown in Figure 3. We use LCD (Liquid Crystal
Display) monitor, CCD camera, and Minolta
CS-100 photometer. The experiment we do is in
a dark room. Except the light that the LCD
monitor emits, no light is in a dark room. The
LCD monitor emits white, red, green, and blue
light respectively. Each channel of light that the
LCD monitor emits also has different intensities.
To begin with, the intensity of light is the lowest.
We gradually increase the intensity of light. In
each light intensity, we compute the average
gray level of the image that CCD camera
captures and use the photometer to measure
luminance that LCD monitor emits.

The relation between gray level and
luminance is illustrated in Figure 4. We can find
that gray level is proportional to luminance.
Hence, this shows that our camera does not need

gamma correction.

Figure 4 The relation between gray level and luminance.

How do we use CCD camera to replace
photometer? We replace LCD monitor with
PLED panel and tune voltage of PLED panel so
that PLED panel emits various luminance. We



use CS-100 to measure luminance and also
compute average gray level that CCD camera
captures. The result is shown in Figure 5. We
build a table storing the relationship of
luminance and gray level. When we inspect
PLED panels, we compute the average gray
level of image captured by CCD camera, and
then use the average gray level to check the table
to find the corresponding luminance. If the
average gray level does not exactly conform to
the gray level stored in the table, we use
find the

interpolation  to corresponding

luminance.

Figure 5 The relation between gray level and luminance

that PLED panel generates.

3.2. Low-Resolution Defect Analysis
In the low-resolution defect inspection

system, we have to inspect abnormal bright

blocks. The judgment criterion of defect is
shown as follows:

1. If the luminance of bright block is more
than luminance upper bound we set up
previously then we determine it as
excessively bright block.

2. If the luminance of bright block is less than
luminance lower bound we set up

previously then we classify the defect into

three classes:

1. If the area percentage whose

luminance is less than
luminance lower bound is less
than the area percentage of
insufficient bright block then
we determine it as
insufficiently bright block.

. If the area percentage whose
luminance is less than
luminance lower bound is less
than the area percentage of
shrinking block then determine
it as shrinking bright block.

1ii. If the area percentage whose
luminance is less than
luminance lower bound is
more than the area percentage
of shrinking block then we
determine it as dark block.

The process of defect detection is shown as
follows:

Step 1: Use automatic binarization to segment an
image and get the size of PLED panel

Step 2: If the panel size is larger than the
tolerance of standard panel size, we mark the
panel as size defect.

Step 3: Divide the panel image whose size is 590
(w) x 189 (h) pixels into 61 (w) x 14 (h)
blocks. Each block is about 9 (w) x 13 (h)
pixels.

Step 4: Evaluate the centroids of blocks, and
store centroids of blocks into an array.

Step 5: Expand 4 pixels from the centroid of
block to left and to right respectively. Expand up
and down 5 pixels from the centroid of block
respectively. Each block is 9 (w) x 11 (h)
pixels.

Step 6: Calculate average gray level of each
block, and use the table we build from CCD



camera calibration process to transform average
gray level to luminance.

Step 7: Use the judgment criterion of defect we
define previously to detect defects.

The defective signs are shown in Figure 6. We

mark excessively bright blocks as orange, dark

blocks green, shrinking blocks blue,
insufficiently bright blocks red, and erroneous
blocks yellow.
bnpivec | Dbk Sonogbiock ey FR
Figure 6 The defective signs.

Figure 7 shows that excessively bright column
and dark block are inspected. Figure 8 shows
that excessively bright blocks are inspected.
shows that blocks,
excessively bright blocks, and dark blocks are

Figure 9 erroncous
inspected. Figure 10 shows that the PLED panel
is excessively bright. Figure 11 show that
insufficiently bright blocks and shrinking blocks

are inspected.

woe s AEEGAASKES

Figure 7 Inspection result.

Figure 8 Inspecticn result.
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Figure 9 Inspection result.
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Figure 10 Inspection result.

Figure 11 Inspection result.

4. High-Resolution Defect Inspection

The inspection framework of our

high-resolution defect inspection system is

shown in Figure 12.

CCD Camesa

Cantrol Sigmal 2

Figure 12 The framework of high-resolution defect

inspection system.



l;] CCD Camera

Figure 13 The PLED block inspection sequence.

In the system, we fix the CCD camera and
send to the CNC X-Y-£ table control signals
which trigger the CNC X-Y-£ table to move so
that we can capture each block in PLED panels.
Figure 13 shows the PLED block inspection
sequence.

Because we use the telecentric, coaxial,
and high-resolution lens and the PLED is not
self-illuminant, we need a light source. We use
coaxial light to illuminate PLED panels.

4.1. Image Segmentation

In the high-resolution inspection system,
inspected images may have different sizes.
Besides, it is hard to use a single threshold to
binarize images to get defects. We have to divide
a block into several sub-blocks. For each
sub-block, we select a threshold to binarize to
detect defects. In this section, we propose a
method to segment images automatically.

We define two means,

dP(x) dP(x)
_2,3{ & 0}
v y {dP(x) dP(x)> 0
dx

and

}
y {dP(x) dP(x) 0}

M, ==
#{d_P(x_),‘ﬂi&o}
dx dx

We also define two standard deviations,

o, = a standard deviation for all 4P() __,
dx

and

o, =a standard deviation forall 4P(x) _,
dx

The edge-finding algorithm is explained as
follows:
Step 1: Take vertical and horizontal projections
of an image to get projection values.
Step 2: Operate low-pass filter on vertical and
horizontal projections.
Step 3: Perform the first-order derivative on
vertical and horizontal projections.
Step 4: EvaluateM,, M,, o, and 0, . Use
these values to find the ranges whose projection
values are above 1.5~1.7 standard deviations.
Step 5: We can find edge positions whose
projection values are the largest from these
ranges.
4.2. Image Inspection and Defect Analysis

We divide a block into 16 sub-blocks and
group these sub-blocks into two classes, edge
blocks which cover an edge and flat blocks
which do not cover any edge. Figure 14 shows
sub-blocks which we divide into. Figure 15

shows sub-blocks classification.

Figure 14 The sub-blocks that we want to segment.

FEdge Block Defect Inspection

We propose a method for edge block
defect inspection. Edge blocks have two kinds of
edges, vertical edge and horizontal edge. For



example, edge block 1 has a vertical edge and
edge block 4 has a horizontal edge. In the
following, we illustrate the method for edge
blocks which have a horizontal edge.

Step 1: We sum up columns in an edge block.
Evaluate column average.

Step 2: Compare each column with column
average pixel by pixel to gain a residual column
for each column.

Step 3: Using the threshold we set up previously
to binarize each residual column, we can detect
defects from the residual column.

For edge blocks which have a vertical edge, we

replace column with row instead.

Edge

Edge Biock 3 Bloks

Edge
Block 1

Eoge
Flar Block 1 Edge Fiat Block 3 | Block 11
Block 6
Bage Bage
Block 4 A{ Block 9
|
Edge Flag Biock 2 Eq Flat Block @

Block 2

Edge
Block S

Figure 15 Sub-blocks classification.

Edge
Biock 12

Eage
Block 10

q
|
|

Edge Block Average Column

Figure 16 Compare each column with column average

pixel by pixel to get a residual column for each column.

High-Resolution Defect Analysis

We have to inspect defects whose widths
or heights are as small as 10 micrometers.
Moreover, the resolution of the lens we used
achieves 1 pixel equal to 2.136 micrometer. We
define the defect bounding box width as w and
height as 4. The judgment criterion of defect is

according to the following:
If (w > 4 pixels and # > 2 pixels), or (w > 2
pixel and » > 4 pixel), we determine the
defect as the fatal defect. Otherwise, we
determine the defect as the non-fatal
defect.
For all fatal defects we mark them as red color.
The process of defect detection is shown as
follows:
Step 1: Use the alignment we develop to align
CCD camera and CNC X-Y-@ table and get
how many micrometers a pixel is equal to.
Step 2: Grab a golden image from a non-defect
block of PLED to get parameters such as block
width, block height, and so on. Besides, we set
up parameters such as gray level tolerance,
blocks size tolerance.
Step 3: Segment the block to group sub-blocks
into edge blocks and flat blocks to get sub-block
sizes and sub-block average gray levels. If one
of the block sizes of edge blocks or flat blocks is
more than our set tolerance, determine it as size
defect, compare the block with the golden block
pixel by pixel, and go to Step 5.
Step 4: For flat blocks, compare every pixel with
its average gray level. If it is more than our set
tolerance, mark it as defect pixel. For edge
blocks, use the method we develop above to
detect defect pixels.
Step S§: Perform the connected component
labeling on those defect pixels to get bounding
boxes of defects. Use the judgment criterion of
defect to get fatal defect and mark it as red color.
Figures 17 and 18 show that defects in edge

neighborhoods are easily detected.
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Figure 17 Inspected image (u,:>r) and inspection

result (lower).

Figure 18 Inspected image (upp« 1 and inspection result

(lower).

5. Conclusions

In this paper, we develop two kinds of
PLED  defect inspection systems, the
low-resolution defect inspection system and the
high-resolution defect inspection system.

In the low-resolution defect inspection
system, we use CCD camera to replace
photometer so that we can measure luminance
quickly. The judgment criterion is based on
luminance. We previously set up luminance
range. Therefore, if the luminance we get from
inspection does not meet our requirement, we
classify it as defect. In the low-resolution defect
inspection system, we can inspect PLED panels
quickly and robustly.

In the high-resolution defect inspection
system, we can inspect PLED panels quickly and
robustly and can detect defect size as small as 10
micrometers.

For edge blocks, the method we develop
based on image comparison can detect defects
easily.

REFERENCES

[11 R. C. Gonzalez and R. E. Woods, Digital
Image Processing, Addison Wesley, Reading,
MA, 2002.

[2] R. M. Haralick and L. G. Shapiro,
Computer and Robot Vision, Vol. 1, Addison
Wesley, Reading, MA, 1992.

[3] R. M. Haralick and L. G. Shapiro,
Computer and Robot Vision, Vol. 2, Addison
Wesley, Reading, MA, 1992.

[4]1 G C. Holst, CCD Arrays, Cameras, and
Displays, SPIE Press, Bellingham, Washington,
1998.



