
行政院國家科學委員會專題研究計畫 成果報告

子計畫二:嵌入式 JAVA 及 JINI 系統之設計與實作

計畫類別：整合型計畫

計畫編號：NSC91-2218-E-002-006-

執行期間：91年08月01日至92年07月31日

執行單位：國立臺灣大學資訊工程學系暨研究所

計畫主持人：陳俊良

報告類型：完整報告

處理方式：本計畫可公開查詢

中 華 民 國 93年2月20日

i

行政院國家科學委員會補助專題研究計畫成果報告

eHome：電子家庭雛型之設計與實作(3/3)

子計畫二：嵌入式 Java及 Jini系統之設計與實作

計畫類別：整合型計畫

計畫編號：NSC 91－2218－E－002－006－
執行期間：91年08月01日至92年07月31日

計畫主持人：陳俊良

共同主持人：

計畫參與人員：

成果報告類型(依經費核定清單規定繳交)：完整報告

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

□出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、

列管計畫及下列情形者外，得立即公開查詢

 □涉及專利或其他智慧財產權，□一年□二年後可公開查詢

執行單位：國立台灣大學資訊工程學系

中 華 民 國92年12月31日

i

Abstract
HAVi, Home Audio/Video interoperability, is one of the leading home-networking
middleware technologies. Services in HAVi are modeled as objects called software
elements, the basic units in HAVi software framework. The design and
implementation of software elements greatly affect the performance of HAVi
networks. However, there is little explanation for software element design in the HAVi
specification. The purpose of this report is to discuss all software element design
issues that developers may encounter and to provide their solutions. This report may
serve as a guide for consumer electronics manufacturers and application developers to
design and implement software elements in HAVi.

ii

摘要
HAVi，即 Home Audio/Video interoperability 的縮寫，是目前家庭網路中間體

(middleware)的主流技術。HAVi 以 IEEE1394 為基礎，主要目的是將家電相互連

接且能傳送影音資料。在 HAVi 中，服務透過軟體元件(software element)提供，

軟體元件是 HAVi 軟體結構的基礎單位。如何設計與實作軟體元件將影響 HAVi
網路的效率。然而在 HAVi 的規格中，並沒有針對軟體元件做詳細說明。此篇論

文討論設計軟體元件將會遭遇的問題，並提供解決方案，其可供消費性電子廠商

及應用程式設計師作為設計與實作軟體元件的參考。

iii

Contents
Abstract ...i
摘要..ii
Contents ... iii
List of Figures ..v
List of Tables...vi
List of Examples ..vii
Chapter 1 Introduction ...1

1.1 Overview..1
1.2 Home Networking Technologies ...2
1.3 Middleware ..3
1.4 HAVi ..4

1.4.1 Overview...4
1.4.2 Benefits of HAVi...5

1.5 Goal of Report.. 錯誤! 尚未定義書籤。
1.6 Structure of Report...6

Chapter 2 Home Audio/Video Interoperability..7
2.1 Device Classification ...8

2.1.1

Full AV Devices ..8
2.1.2

Intermediate AV Devices ..8

2.1.3

Base AV Devices ...9

2.1.4 Legacy AV Devices ...9
2.2 Software Element...9

2.2.1 Software Element Identifier..12
2.3 Messaging System ...12

2.3.1 Description..12
2.3.2 Message Transfer Modes ..13

2.4 Registry ..15
2.5 Java and HAVi..15

2.5.1 The HAVi Java APIs ...16
2.5.2 The SoftwareElement Class ..17
2.5.3 The HaviListener Class...19
2.5.4 The HaviClient Class ..20
2.5.5 An Example...21

Chapter 3 Design Methodology of Software Element...24

iv

3.1 Pre-assumption of Messaging System ...24
3.2 Design Issues ...24

3.2.1 Blocking Time...25
3.2.2 Multiple Requests ...25
3.2.3 Synchronization ..26
3.2.4 Multicasting ..27

3.3 Design for Blocking Time..30
3.4 Design for Multiple Requests ..31
3.5 Design for Synchronization ...32
3.6 Design for Multicasting ...33

3.6.1 Synchronous Multicasting ..34
3.6.2 Asynchronous Multicasting ..35
3.6.3 Comparison ...36
3.6.4 A New API: msgSendMultipleRequest() ..36

Chapter 4 Implementation..38
4.1 Environment...38

4.1.1 HAVi stack ..38
4.1.2 Demonstration...39
4.1.3 Messaging System ..40

4.2 Implementation of msgSendMultipleRequest() ...40
4.3 An Example: A HAVi Application ...42

Chapter 5 Conclusion and Future Work...50
5.1 Conclusion ...50
5.2 Future Work ...51

References..52
Publication ...54

v

List of Figures
Figure 1-1: A possible future networked home--multiple technologies.........................2
Figure 2-1: An example of a HAVi home network ..7
Figure 2-2: HAVi architecture diagram (FAV)...10
Figure 2-3: Communication among HAVi devices ..12
Figure 2-4: An example of asynchronous message transfer ..13
Figure 2-5: Messaging failing due to time expiration..14
Figure 2-6: An example of synchronous message transfer ..14
Figure 3-1: Blocking time..25
Figure 3-2: A Registry forwards the query to every other Registry.............................26
Figure 3-3: Two Registries simultaneously query each other......................................27
Figure 3-4: A Registry forwards the query to all other Registries28
Figure 4-1: Our HAVi stack ...38
Figure 4-2: A HAVi network composed of two computers and a DV..........................39

vi

List of Tables
Table 1-1: Home networking technologies ..3
Table 1-2: Home networking middleware ...4
Table 2-1: Software elements presented on various device classes11
Table 2-2: Services provided by Registry..15
Table 3-1: Situation when a software element sends multiple HAVi messages...........29

vii

List of Examples
Example 2-1: IDL form of an API ...16
Example 2-2: Java binding for the API..16
Example 2-3: The SoftwareElement class ...18
Example 2-4: The HaviClient class and the RegistryClient class................................20
Example 2-5: A Simple HAVi Java application ...21
Example 3-1: Creating a thread to handle messages in the callback function.............30
Example 3-2: A software element with three threads ..31
Example 3-3: An example of interrupting a thread..33
Example 3-4: The design in synchronous multicasting ...34
Example 3-5: Using only one thread to send messages to all target software elements
..35
Example 3-6: The function prototype of the msgSendMultipleRequest() API............36
Example 4-1: Implementation of msgSendMultipleRequest()40
Example 4-2: Application.java--an application that implements the design
methodology ..43

1

Chapter 1

Introduction

1.1 Overview
In the past, a traditional home's only digital device was the PC. With the introduction
of various digital appliances (digital camcorder, digital STB, digital TV, web pad,
video games and so on.), the customer's need for inter-device information sharing,
efficient appliances, and the internet has skyrocketed. People also hope that home
appliances from different vendors can communicate to each other and be operated
from anywhere in the home, using whichever appliance is nearest. The need for
simple, flexible, and reliable home networks is greatly increasing. In this report, the
term “home networking” is defined as the intelligent communication and the mutual
data transfer among various digital home appliances.

Today, there are many home networking standards, both in underlying interconnection
technologies and middleware. These standards are competing to be the next
mainstream technology in home networking.

2

Figure 1-1: A possible future networked home--multiple technologies

1.2 Home Networking Technologies
Current home networking technologies can be divided into three categories: new
wiring, existing wiring, and wireless [1].

New wiring imply that tearing down walls and floors to place wires, yet it provides
several advantages such as high bandwidth, flexibility, and great security. The leading
technologies include Ethernet [2] and IEEE 1394 [3]. Ethernet, the most widely used
networking technology today, is transferred over cabling called CAT5. It is
economical and extremely reliable but may be difficult to install and configure. IEEE
1394, also known as i.LINK or FireWire, is ideal for multimedia home networking
due to its ability to provide high bandwidth (400Mbps) and isochronous data transfer.

Existing wiring system in home includes power lines and phone lines. HomePNA 2.0
[4], a phoneline home-networking technology, has 10Mbps bandwidth, and it can
coexist with voice and xDSL signals on a single piece of telephone wire. HomePlug
[5], CEBus, and X-10 are the leading powerline technologies. With multiple outlets in

Wireless
Network

Highspeed AV
Network

PC
Network

TV
Internet Access

3

almost every room, powerlines present a cost-effective, ubiquitous, easy-to-adopt
home networking solution.

Wireless home networking allows mobility and convenience that users can access
from anywhere in home. Nevertheless, bandwidth and cost remain issues. Leading
technologies include wireless LAN (IEEE 802.11) [6] and Bluetooth [7].

Table 1-1: Home networking technologies
Technologies Max Speed Media

New Wiring

Gigabit Ethernet 1000Mbps CAT5 UTP
IEEE 1394a 100-400Mbps STP

Existing Wiring

HomePNA 2.0 10Mbps Phonelines
HomePlug 1.0 14Mbps Powerlines

Wireless

WLAN 802.11b 11Mbps RF
Bluetooth 1.1 720Kbps RF

1.3 Middleware
Home network applications cover home automation, configuration of devices,
security tasks, multimedia applications, entertainment, communications, internet, and
many other areas. Therefore, there is a need of middleware that provides services such
as service and device discovery, co-scheduling of network resources, security, and
messaging. Simply speaking, home networking middleware is a layer of software that
lies between a home appliance operating system and applications. It provides
Application Programming Interfaces (APIs) allowing consumer electronics
manufacturers and third parties to develop applications for home networks. Leading
home middleware standards include HAVi (Home Audio/Video Interoperability) [8],
Jini [9], and UPnP (Universal Plug and Play) [10].

4

Table 1-2: Home networking middleware
Middleware Media Pioneered by Comments

HAVi IEEE 1394
Sony, Philips,
and others

 Use Java [11] for highest interoperability
 Focus on multimedia home networking

Jini Any media
Sun

Microsystems
 Based on the Java platform
 Use Java Remote Method Invocation [12]

UPnP Any media Microsoft
 Leverage TCP/IP and the Web technology
 Just send data over the network
 Independent of OS and language

Each technology presents unique pros and cons, yet home networking is incomplete
without the ability to transfer data, voice, and video together. Providing high-speed
and reliable delivery of audio/video content, the combination of IEEE 1394 and HAVi
show the most promise to become the standard for home networking.

1.4 HAVi

1.4.1 Overview

Home Audio/Video Interoperability, also known as HAVi, is a standard proposed by
Grundig A.G., Hitachi, Ltd., Matsushita Electric Industrial Co., Ltd. (Panasonic),
Royal Philips Electronics N.V., Sharp Corporation, Sony Corporation, Thomson
Multimedia, and Toshiba Corporation in 1998. The main goal is to allow home
appliances to communicate to each other. Moreover, HAVi has been designed to meet
the particular demands of digital audio and video.

Here are some possible applications of a HAVi home network.
 People can control all home appliances via any fully HAVi-compliant device.
 A TV connects to a video telephone. When a phone call comes in, the TV can be

muted and used as the display automatically. Then, people can answer the phone
via the TV.

 A video camera can automatically display a picture on the TV screen when a
visitor arrives; or start a recording if the same thing happens unexpectedly during
the night.

5

IEEE 1394 has been chosen as the underlying interconnection medium. It has capacity
to carry multiple digital audio and video streams simultaneously around the house,
and it provides support for digital copy protection.

1.4.2 Benefits of HAVi

A HAVi compliant appliance can offer some advantages [13].

 Brand independence: Devices from different manufactures can communicate with
each other in a HAVi network. For example, a Panasonic VCR can work with a
Sony amplifier and be controlled by a Mitsubishi TV as long as all these devices
are HAVi compliant.

 Interoperability: Functions on a device within a HAVi network can be controlled
from another device within the network. For example, search for an available
VCR to record a TV program, with commands being given via the menu selection
of another TV display.

 Legacy appliances support: HAVi supports legacy appliances, including
non-IEEE1394 devices and non-HAVi devices. This plays an important role since
the transition to networked devices is gradual and there could be multiple
standards in a home network.

 Plug and Play: A HAVi-compliant appliance can configure itself and integrate
itself into a HAVi network without user intervention. This can greatly simplify
installation and setup.

 Upgradeable: HAVi devices may have only basic function, and new functionality
can be automatically downloaded via the Internet. For instance, a HAVi Panasonic
VCR can install the necessary application on a Sony TV in order to make two
appliances interoperable.

Services in the HAVi are modeled as objects called software elements, accessible
through their APIs (application programming interface). A software element is a basic
unit in HAVi software framework. The design and implementation of software
elements greatly affect the performance of home networking. Although the HAVi
specification is available, there is little explanation about software element design.

6

The purpose of this project is to examine all issues that developers may encounter and
to provide their solutions. The report may serve as a guide for consumer electronics
manufacturers and application developers to design and implement software elements
in HAVi.

1.5 Structure of Report
The report is divided into five chapters. Chapter One gives an introduction about
home networking. The second chapter describes background about HAVi, and the
third chapter describes the software element architecture. The fourth chapter explains
our implementation. Chapter Five concludes the report.

7

Chapter 2

Home Audio/Video

Interoperability
The HAVi Architecture specifies a set of Application Programming Interfaces (APIs)
allowing consumer electronics manufacturers and third parties to develop applications
for the home network. The primary goal of the HAVi Architecture is to assure that
products from different vendors can interoperate, that is, can cooperate to perform
application tasks.

Figure 2-1: An example of a HAVi home network

Kitchen

Internet

IEEE 1394

TVFridge
DVD

DVCR

PC

STB camcorder

printer

1394

1394

1394

Broadband

Living Room

8

Typically, there will be several clusters of devices in the home, with one per floor or
one per room. A HAVi home network is viewed as a distributed computing platform,
and devices communicate in a peer-to-peer fashion, with no single master control
device. An example of a HAVi home network is shown below:

2.1 Device Classification
HAVi classifies consumer electronics (CE) devices into four categories: Full AV
devices (FAV), Intermediate AV devices (IAV), Base AV devices (BAV), and Legacy
AV devices (LAV). HAVi-compliant devices are those in the first three categories.
LAV is either a non-IEEE1394 device, or an IEEE 1394 device not supporting HAVi.

Usually FAV and IAV are controllers; BAV and LAV are controlled devices. A
controller is a device that acts as a host for a controlled device. A controller is said to
host a driver--Device Control Module (DCM) in terms of HAVi--for the controlled
device. The control interface is exposed via the API of this DCM. This API is the only
access point for applications to control the device. For instance, an intelligent
television in the living room might be the controller for a VCR. An application in the
TV could control the VCR via its DCM in the TV.

2.1.1 Full AV Devices

A Full AV device contains a complete set of HAVi software elements (see Figure 2-2).
This device class generally has greater computing power and more resources; thus, it
can support a complex software environment. The primary distinguishing feature of
an FAV is the presence of a runtime environment for Java bytecode. This allows an
FAV to upload bytecode from other devices and so provide enhanced capabilities for
their control. Likely FAV devices would be Set Top Boxes, televisions, residential
gateways, and home PCs.

2.1.2 Intermediate AV Devices

An Intermediate AV device is generally lower in cost and has fewer resources than a
FAV device. The main difference from FAVs is that IAVs have no Java runtime
environment, so IAVs cannot control arbitrary devices within the home network.

Television
PC

DVD

9

Nevertheless, an IAV still can control particular devices if it has native-code DCMs
for them. Possible IAV devices are DVD players and VCRs.

2.1.3 Base AV Devices

BAV devices support IEEE 1394 but they cannot act as controllers in a HAVi home
network. They can be controlled by an FAV or IAV device by providing uploadable
Java bytecode (DCM) in their ROM. They do not host any software element of the
HAVi Architecture. A FAV or IAV device and a BAV device communicate by the
IEEE 1394 command protocol used by the BAV device. Likely BAV devices are audio
players and camcorders.

Here is a possible scenario. A DVD player (BAV) contains Java bytecode that
constructs a user interface for the device and allows external control of the device.
When the DVD player connects to a television (FAV), the TV obtains the user
interface and control code from the DVD player. An icon representing the device may
then appear on the TV screen, and the device could be controlled via the TV.

2.1.4 Legacy AV Devices

LAV devices do not aware of the HAVi Architecture. The difference from BAVs is
that LAVs may not support IEEE 1394 and do not provide uploadable control code.
Hence, LAVs can work in a HAVi network only if an FAV or IAV recognize them and
use proprietary protocols for their control. An FAV or IAV device and a LAV
communicate by the legacy command protocol used by the LAV.

For example, a Sony VCD player, which does not support HAVi, connects with a
Sony TV (FAV). If the TV recognizes the VCD player and has the DCM for it, users
can control the VCD player via TV.

2.2 Software Element
As its name implies, a software element is the most basic unit in HAVi software
architecture. In terms of object-oriented concept, a software element is a HAVi object.

camcorder

10

Software elements provide services, which are accessible through the API. The
diagram below is a possible arrangement of software elements on an FAV device.

Figure 2-2: HAVi architecture diagram (FAV)

Here is the list of software elements in the HAVi Architecture and the services they
provide.

 1394 Communication Media Manager (CMM) – allows other software elements
to perform asynchronous and isochronous communication over IEEE 1394.

 Messaging System – responsible for passing messages between software
elements.

 Registry – serves as a directory service, allows any software element to locate
another software element in the home network

 Event Manager – serves as an event delivery service. An event is the change in
state of a software element or of the home network.

 Stream Manager – responsible for managing real-time transfer of AV and other
media.

CMM 1394

HAVi Java API

Application
Application

Messaging System

DCM

Vendor Specific Platform

Havlet
HavletHavlet

Platform Specific API

DCM
DCM

R
egistry

Event M
gr

Stream
 M

gr

R
esource M

gr

D
C

M
 M

gr

11

 Resource Manager – facilitates sharing of resources and scheduling of actions.

 Device Control Module (DCM) – a software element used to control a device.

 DCM Manager – responsible for installing and removing DCMs on FAV and IAV
devices.

 Havlet – a HAVi Java application, offers interaction with uses via user interface

“System software element” or “system component” is defined as a software element
providing basic system services. System software elements include CMM, Messaging
System, Event Manager, Registry, DCM Manager, Stream Manager, and Resource
Manager. Non-system software elements include Application, Havlet, and DCM.

The following table summarizes required and optional software elements for the four
device classes.

Table 2-1: Software elements presented on various device classes

Software Element FAV IAV BAV LAV

Java Runtime

Application Module [] []

DDI Controller [] []

Resource Manager []

Stream Manager []

DCM Manager []

Registry

Event Manager

Messaging System

1394 CMM

SDD Data []

DCM []
: required []: optional

12

2.2.1 Software Element Identifier

Each software element has a software element identifier (SEID), which is an 80-bit
value for identification and guaranteed to be unique. SEID are allocated by Messaging
System when a software element initiates. The Messaging System of a device
allocates SEIDs only for the software elements of that device. Software elements use
SEIDs to be registered on the home network, and to communicate (via HAVi
messages) with each other. For example, a software element wants to send HAVi
messages to another software element. The SEID of the destination SE has to be
specified when invoking the Messaging System API.

2.3 Messaging System

2.3.1 Description

HAVi network is message-based. All software elements communicate using messages
via Messaging System, which is independent of the network and transport layers. This
message passing mechanism abstracts from the details of physical location, that is,
there is no distinction between a software element on the same device and one on a
remote device. A Messaging System has mainly two jobs: forwards the messages from
local software elements to other MS and dispatches the incoming messages from other
MS to local software elements. A Messaging System is embedded in all FAV and IAV
devices, but not in BAV or LAV devices. Thus, FAV (or IAV) devices communicate by
HAVi messages via their Messaging System; FAV or IAV devices control BAV or
LAV devices by proprietary protocols (not HAVi messages).

Figure 2-3: Communication among HAVi devices

IEEE 1394

IAV or FAV

Application DCM

HAVi
Messages

proprietary
protocol

IAV or FAV LAV or BAV

controlled
device

controller

13

To receive messages, a software element has to indicate callback function to the
Messaging System. After Messaging System gets incoming messages, it will notify
the destination software element via its callback function. The request will be handled
in the callback function and corresponding actions will be executed. Callback function
also called listener.

Here we define “callback thread”. When a Messaging System receives a message, the
callback functions of the software element will be invoked. The thread that executes
the callback function of the software element is called “callback thread”.

2.3.2 Message Transfer Modes

Messaging System provides two modes to send a message: simple and reliable mode.
In this report, only reliable mode is discussed. In reliable mode, messages are sent
synchronously or asynchronously.

The asynchronous mode is described through the following example. Suppose that
there are two devices. Software element A and Messaging System 1 are on the same
device, and software element B and MS 2 are on the other device. When A sends a
message to B, the MS 1 sends the message to the MS 2. The MS 2 then tries to invoke
the callback function of B. If the callback function successfully returns without errors,
MS 2 sends an acknowledgment to MS 1. When MS 1 receives the acknowledgement,
the Messaging System API invoked by A will return. The acknowledgement timeout
is 30 seconds. That is, a caller software element always blocks until either the
acknowledgement returns or a 30 seconds timeout occurs.

Figure 2-4: An example of asynchronous message transfer

 Software Messaging Messaging Software
 Element A System 1 System 2 Element B

 msgSendRequest(B) Invocation
 msg_reliable(B)
 Callback(req) Invocation

 Callback(req) Return
 msg_reliable_ack(A)
 msgSendRequest(B) Return: OK

14

 Software Messaging Messaging Software
 Element A System 1 System 2 Element B

 msgSendRequest(B) Invocation
 msg_reliable(B)
 Callback(req) Invocation

 Callback(req) Return
 reliable ack lost
 msgSendRequest(B) Return: timeout

 Software Messaging Messaging Software
 Element A System 1 System 2 Element B

 msgSendRequestSync(B) Invocation
 msg_reliable(B)
 Callback(req) Invocation

 Callback(req) Return
 msg_reliable_ack(A)

 msgSendResponse(A, simple) Invocation
 msg_simple(A)
 msgSendRequestSync(B) Return: ok

Figure 2-5: Messaging failing due to time expiration

Note that when a callback function successfully returns, it indicates the destination
software element starts to process the request rather than finishes. When the response
returns, all callback function installed by the caller will be invoked. Then, the caller
uses the transactionId, an identifier is given while sending the message, to match the
corresponding incoming responses in the callback function.

In synchronous mode, a caller blocks until the response is received (not the
acknowledgment). A timeout parameter of the API indicates the maximum time that
the caller will be blocked. As shown in the following figure, when the caller receives
the acknowledgement, the caller keeps waiting until the response returns or a timeout
occurs. Note that the timeout here is the parameter given in the API rather than the
30-second acknowledgement timeout in asynchronous mode.

Figure 2-6: An example of synchronous message transfer

15

2.4 Registry
Registry serves as a software element directory, providing services for software
elements to search other software elements in the network. Software elements that
want to be contacted have to register with Registry. Registry maintains the SEID and
the attributes for each registered software element.

Table 2-2: Services provided by Registry
API Description

RegisterElement Add a software element in the Registry
UnregisterElement Remove a software element in the Registry
RetrieveAttributes Read the attributes of the given software element
GetElement Get software elements that satisfy the query parameter
MultipleGetElement Get software elements that satisfy the query parameter

2.5 Java and HAVi
HAVi specifies a Java programming environment for applications and DCMs. The use
of Java assures that applications and DCMs will run on any FAV device, the only
device class that offers runtime environment for Java bytecode. This is an important
feature because it allows third parties can also develop HAVi applications. Besides, it
assures HAVi is compatible with future home appliances because applications and
DCMs are upgradeable.

It is also possible to write HAVi applications in other languages, such as C or C++.
They are native applications, which execute on a device-specific platform and
therefore execute only on a particular HAVi device. Native applications can only be
written and supplied by the vendor of the HAVi device or by someone who has
specific knowledge of its platform. But anyone can write HAVi Java applications for
FAVs, not just the manufacturer of FAVs.

A portable HAVi application can run on any FAV device from any manufacture, but it
must be written in Java and confine itself to HAVi Java APIs, the set of Java class
packages specified by HAVi.

16

2.5.1 The HAVi Java APIs

Software elements offer their services to other software elements via APIs. HAVi
specifies APIs in IDL (Interface Definition Language) [14]. IDL is
programming-language independent; it indicates the input and output parameters of
interfaces, but not their implementation. HAVi provides a Java binding of IDL form
APIs. Example 2-1 shows the IDL form of the GetElement service of a Registry
software element and the Java representation is shown in Example 2-2.

Example 2-1: IDL form of an API

Status Registry::GetElement(in SimpleQuery query,

 out sequence<SEID> seidList)

Example 2-2: Java binding for the API

package org.havi.system;

public class RegistryClient extends HaviClient {

 void getElement(IntHolder transactionId, SimpleQuery query);

 void getElementSync(int timeout, SimpleQuery query,

 SEIDSeqHolder seidList);

}

In the IDL form, the service has a SimpleQuery input parameter and a SEID array
output parameter. In the Java representation, RegistryClient is a Java class whose
methods correspond to the services of Registry software elements. Note that each
service is mapped to two Java methods: asynchronous version and synchronous
version. Asynchronous one has the same name, and the synchronous one has the name
suffixed with “Sync”. Synchronous service methods have a timeout parameter. An
exception will be thrown if the Messaging System does not receive a response before
the specified timeout.

17

The set of packages defined by HAVi for developing in Java is called the HAVi Java
APIs [15]. A portable HAVi application can only use the packages appearing in the
HAVi Java APIs.

The HAVi Java APIs consists of the following packages:
 org.havi.constants
 org.havi.types
 org.havi.system
 org.havi.fcm.*
 org.havi.iec61883
 org.havi.ui
 org.havi.ui.event

In addition, the following packages can be used in a portable HAVi application:
 java.lang
 java.util
 java.util.zip
 a subset of java.io
 java.net.URL and java.net.MalformedURLException
 a subset of java.awt

2.5.2 The SoftwareElement Class

The ‘SoftwareElement’ class is a class in HAVi Java APIs. In this report,
“Software element” refers to the concept of HAVi object. Italic “SoftwareElement”
refers to “an instance of SoftwareElement class”.

For non-system software elements, like applications or DCMs, they create software
elements representing themselves by constructing SoftwareElement objects. A new
SEID will be created in the constructor. Applications use SoftwareElement objects
to send HAVi messages to other software elements and use service of system
components. In concept, a HAVi application is a software element; In Java
implementation, a HAVi application owns a SoftwareElement object. A HAVi Java
application example is shown in Example 2-5.

As for system software elements, their design is implementation dependent. They may
implement in Java and use the SoftwareElement class the way as an application

18

does, or they may implement in any way as long as they provide the services
conforming to the HAVi specification.

The following is the definition for the SoftwareElement class.

Example 2-3: The SoftwareElement class

public class SoftwareElement {

 public SoftwareElement(HaviListener hl);

 public SoftwareElement();

 public final void close();

 public final boolean msgIsTrusted(SEID seid);

 public final SEID msgGetSystemSeid(SEID seid, int softwareElementType);

 public final void msgWatchOn(SEID destSeid);

 public final void msgWatchOff(SEID destSeid);

 public final void msgSendSimple(byte protocol,

 SEID[] destSeidList,

 HaviByteArrayOutputStream buffer);

 public final void msgSendReliable(byte protocol,

 SEID destSeid,

 HaviByteArrayOutputStream buffer);

 public final void msgSendRequest(SEID destSeid,

 OperationCode opCode,

 HaviByteArrayOutputStream buffer,

 IntHolder transactionId);

 public final void msgSendResponse(SEID destSeid,

 OperationCode opCode,

 int transferMode,

 Status returnCode,

 HaviByteArrayOutputStream buffer,

 int transactionId);

 public final void msgSendRequestSync(SEID destSeid,

 OperationCode opCode,

 int timeout,

 HaviByteArrayOutputStream bufferIn,

 HaviByteArrayInputStream bufferOut,

 StatusHolder returnCode);

19

 public final SEID getSeid();

 public final void addHaviListener(HaviListener hl);

 public final void addHaviListener(HaviListener hl, SEID targetSeid);

 public final void removeHaviListener(HaviListener hl);

}

public SoftwareElement (HaviListener hl);

The hl parameter in the constructor is an instance of a class that extends
HaviListener. A HaviListener object is installed for a software element either
via the SoftwareElement constructor or via the addHaviListener() method. HAVi
listeners determine how a software element handles incoming messages. Received
messages are delivered to all HaviListener objects installed for the associated
SoftwareElement object.

public final void addHaviListener(HaviListener hl);

This method adds a HaviListener object to the list of listeners maintained by this
SoftwareElement object. When a message arrives for this SoftwareElement, the
SoftwareElement will call each of the listener's receiveMsg() method, in no
particular order.

public final void msgSendRequestSync(...);

public final void msgSendRequest(...);

public final void msgSendResponse(...);

A software element can use these three methods to send HAVi messages to other
software elements.

2.5.3 The HaviListener Class

An object should extend HaviListener class and implement the abstract
receiveMsg() method if it hopes to listen to incoming messages and responses to a
specific SoftwareElement.

The HAVi Java APIs define HaviListener as:

20

public abstract class HaviListner {

 public abstract boolean receiveMsg(

 Boolean haveReplied,

 byte protocolType,

 SEID sourceId,

 SEID destId,

 Status state,

 HaviByteArrayInputStream payload);

}

receiveMsg() returns true only if it receives an request that it can handle. The
haveReplied parameter shows whether any other listener has replied to the
incoming message. The protocolType parameter indicates whether the message
uses the HAVi RMI (Remote Method Invocation) protocol or some private
(application-specific) protocol. The state parameter shows error condition. sourceId
indicates the SEID of the sender and destId indicates the SEID of the receiver.
payload is the message payload from which request parameters can be retrieved.

2.5.4 The HaviClient Class

The HaviClient class is extended by all classes that allow an application to access
the services of system components. For instance, RegistryClient extends
HaviClient and provides access to Registry services (see Example 2-4). The first
parameter in the constructor RegistryClient() is a SoftwareElement object
that will be a client of Registry services; this is typically a software element created
by an application. The second parameter identifies the GUID of the device.

In most cases, software elements use the system components in the same device rather
than remote ones. ‘RegistryLocalClient’, the local client class of the Registry,
provides the service of the local Registry running on the same device with the client

Example 2-4: The HaviClient class and the RegistryClient class

public abstract class HaviClient {

 HaviClient(SoftwareElement se, SEID destSeid);

}

public class RegistryClient extends HaviClient {

21

 RegistryClient(SoftwareElement se, GUID destGUID);

 // other Registry APIs

 void getElement(IntHolder transactionId, SimpleQuery query);

 ...

}

public class RegistryLocalClient extends RegistryClient {

 RegistryLocalClient(SoftwareElement se);

}

2.5.5 An Example

In Example 2-5, a software element will be created to represent this application,
which offers a “Hello World” Service.

In line 16, a software element is initiated in the constructor and ”this”, a
HaviListener, is passed as a parameter. In lines 31, receiveMsg() handles incoming
messages to the software element. The HAVi message payload contains three fields:
operation code, control flag, and transaction identifier. These fields are retrieved in
lines 42-44. Operation code specifies the service being requested. Control flags
indicate whether the incoming HAVi message is a request or response. Transaction
identifier is an integer allowing the destination software element to match response
with requests. In lines 49, it does a switch on the operation code of the requested
service. If it is a “Hello World Service” request, a “Hello World” string will be printed
and a response will be sent via the msgSendResponse() API of the software
element (mySe).

Example 2-5: A Simple HAVi Java application

1: package lab441.havi.demo.thesis;

2: import ntu.havi.constants.*;

3: import ntu.havi.system.*;

4: import ntu.havi.types.*;

5: ####

6: public class SimpleApplication extends HaviListener {

22

7: ####private SoftwareElement mySe = null;

8: ####// operation code for “Hello World Service”

9: ####private final byte HelloWorldId = (byte)0x80;

10: ####private OperationCode opCode = null;

11: ####private byte controlFlags = 0;

12: ####private int transactionId = 0;

13: ####private Status returnCode = null;

14: ####

15: ####public SimpleApplication() throws Exception {

16: ########mySe = new SoftwareElement(this);

17: ########// register this application

18: ########RegistryLocalClient registry = new

19: #################################### RegistryLocalClient(mySe);

20: ########Attribute[] att = new Attribute[0];

21: ########HaviByteArrayOutputStream hbaos = new

22: ################HaviByteArrayOutputStream();

23: ########hbaos.reset();

24: ########hbaos.writeHaviString("Hello World");

25: ########att[0] = new Attribute(

26: ################ConstAttributeName.ATT_DEVICE_MANUF, hbaos);

27: ########registry.registerElementSync(3000, mySe.getSeid(),

28: #################################### att);

29: ####}

30: ####

31: ####public boolean receiveMsg(

32: ############boolean haveReplied,

33: ############byte protocolType,

34: ############SEID sourceId,

35: ############SEID destId,

36: ############Status state,

37: ############HaviByteArrayInputStream payload) {

38: ########if(haveReplied)

39: ############return false; // another listener has replied

40: #######// retrieve operation code from the HAVi message header

41: ########try {

42: ############opCode = new OperationCode(payload);

43: ############controlFlags = payload.readByte();

44: ############transactionId = payload.readInt();

23

45: ############if((controlFlags & 0x01) == 1) {

46: ################// incoming message is a response, not a resquest

47: ################return false; // ignore

48: ############}

49: ############switch(opCode.getOperationId()) {

50: ################case HelloWorldId:

51: ####################System.out.println("Hello World");

52: ####################returnCode = new Status(opCode.getApiCode(),

53: ############################ConstGeneralErrorCode.SUCCESS);

54: ####################mySe.msgSendResponse(sourceId, //?

55: ############################opCode,

56: ############################ConstTransferMode.SIMPLE,

57: ############################returnCode,

58: ############################null,

59: ############################transactionId);

60: ################return true;

61: ############default: return false; // unknown operation id

62: ############}

63: ########} catch(Exception e) {

64: ############e.printStackTrace();

65: ########}

66: ####} // end of receiveMsg()

67: } // end of class MyHAViApplication

24

Chapter 3

Design Methodology of

Software Element

3.1 Pre-assumption

of Messaging System
It is critical that software elements carefully use the service of Messaging System and
Messaging System efficiently dispatches messages to software elements. The design
of software element is strongly related to that of Messaging System (MS), especially
how MS dispatch messages and invoke callback functions.

According to HAVi specification, while a software element is performing its callback
function, it does not block other software elements or the underlying Messaging
System. Besides, during the time that the callback function blocks, the software
element may not be able to process other incoming messages

3.2 Design Issues
The basis of a HAVi network is that requests are sent from software element to
software element, actions are taken, and corresponding responses are returned. How a
software element handles these requests, actions, and responses is largely up to the
developers. The design of software elements strongly affects the efficiency of HAVi
system.

We encountered some design issues about software elements while we designed and
implemented our HAVi stack. We concluded them into four issues.

25

 Software Messaging Messaging Software
 Element A System 1 System 2 Element B

 msgSendRequest(B) Invocation
 msg_reliable(B)
 Callback(req) Invocation

 Callback(req) Return
 msg_reliable_ack(A)
 msgSendRequest(B) Return: OK

3.2.1 Blocking Time

When a software element sends an asynchronous request, it will block until the
acknowledgement returns or a timeout occurs. The software element that receives a
callback invocation has to immediately return from the callback. However, the
callback function may take long to complete, and such a design may result in poor
performance. For example, when a Registry gets a query, the Registry has to forward
the query to every other Registry in the network and collects the responses. It may
take much time, and the software element that sends the query may be blocked for a
long time.

Figure 3-1: Blocking time

3.2.2 Multiple Requests

When a software element receives a message, it will trigger various actions. If the
actions are implemented in a way that blocks the software element that receives new
messages, no new message will be processed until the previous action completes. In
the case that a software element receives multiple requests at the same time, many of
them may end with timeouts. For example, when a Registry gets a query, it has to
forward a query to every other Registry in the network. Suppose that a Registry gets
several queries at the same time and it handle the queries one by one. While the first
query is being processed, all other queries will be queued. It is inefficient and may
cause many timeouts.

Blocking
Time

26

Figure 3-2: A Registry forwards the query to every other Registry

3.2.3 Synchronization

Suppose that a software element is implemented in a way that it handles one request
at a time. If a callback function includes a request to another software element, a
deadlock may occur. For example, when two Registries simultaneously query each
other, but cannot receive the responses, a deadlock may occur because they cannot
complete their actions until the queries from other Registries are answered.

For example, in the case that a Registry is implemented in such a way that it uses
synchronous request within its callback function to forward GetElement() requests to
other registries. When two applications on two different devices, A1 and A2, happen
to query their Registries, R1 and R2, at approximately the same time, a deadlock may
occur. R1 is busy handling the request of A1 and waits for the response to the
GetElement() forwarded to R2. During this period, R1 cannot process incoming
messages. Furthermore, R2 is busy handling the request of A2 and waits for the
response to the GetElement() forwarded to R1. Also, during this period, R2 cannot
process incoming messages. This deadlock situation will result in timeouts of the
synchronous call in both R1 and R2.

IEEE 1394

Messaging
System

Messaging
System

Messaging
System

Device A Device B Device C

Registry

SE

Registry Registry

SE
SE

SE
query

query query

query

SE

27

Figure 3-3: Two Registries simultaneously query each other

Suppose that a software element can handle multiple requests at the same time. The
software element is handling two requests simultaneously. If the two requests may
change the same data in the software element, the data should be protected by
synchronization mechanism. For example, a Registry is processing two requests,
RegisterElement() and UnregiserElement(), at the same time. Since RegisterElement()
will add an entry to the Registry database and UnregisterElemen() will delete an entry,
an error may occur if there is no synchronization mechanism.

There is a more complicated situation. When a software element receives a new
request, it should stop the former requests and process only the new request. For
instance, a network reset event is typically generated when the network topology
changes or a device is activated or deactivated. Whenever a DCM Manager receives a
network reset event, it should start the leader selection protocol, which may take a
long time to complete. If the DCM Manager receives another network reset event, the
leader selection protocol should be restarted, that is, the new callback thread should
notify the thread executing protocol to stop.

3.2.4 Multicasting

Multicasting is a delivery of information to multiple destinations simultaneously. In
this report, multicasting refers to sending HAVi messages to multiple software
elements simultaneously.

IEEE 1394

Messaging
System

Messaging
System

Device A Device B

Registry

SE

Registry

SE
queryquery

28

A software element may have to send messages to more than one software elements
and wait for responses. The number of destination software elements could be large.
For example, GetElement() method of Registry is used to get a list of software
element identifiers that satisfy the query given through the parameter. When a
Registry receives a query from a local software element, the Registry has to forward
the query to all other Registries in the network and collect the responses. In the Figure
3-4, it shows that a Registry receives a request from a software element, and then
forwards the query to all other Registries in the network.

Figure 3-4: A Registry forwards the query to all other Registries

It is common for a software element to send messages to various software elements at
the same time. It seems easy, but if we study this problem in depth, every solution
brings more problems.

IEEE 1394

Messaging
System

Messaging
System

Messaging
System

Device A Device B Device C

Registry

SE

Registry Registry

SE
SE

SE
query

query query

29

Table 3-1: Situation when a software element sends multiple HAVi messages
Software Element API Description

DMinitilization
DMInquiry
DMCommand

Query other DCM Managers

DCM Manager

DMInitialInquiry Notify other DCM Managers

Event Manager(EM)
PostEvent
ForwardEvent

Forward event to other EMs

Registry
GetElement
MultipleGetElement

Query other Registries

StreamManager GetGlobalConnectionMap Query other StreamManagers
Reserve Reserve a number of FCMs.
ScheduleAction Bandwidth checking protocolResourceManager
GetScheduledConnections Get a list of connections

Any application

The simplest solution is that the software element sends the synchronous messages in
turn. At first, the SE synchronously sends the message to the first target, and the
software element will block until it receives the response. Then, it sends the message
to next destination SE. After the software element send the messages to all destination
SEs, it finishes. Apparently, this method takes too much time and it is inefficient.

Another solution is to use additional threads. The software element creates several
worker threads to send synchronous requests. The term “worker threads” here refers
to the threads created to help the original thread to do some jobs. Every worker thread
sends a message to a destination software element. However, this may not work
because if the SE waits the response in the callback function, the SE may not be able
to process other incoming messages. Also, a small number of threads are acceptable
for simple situations, but multiple threads may be costly, and it may be difficult to
predict the maximum number of threads needed. How the worker threads
communicate with each other is another problem.

The third solution is to send requests asynchronously. The software element sends
asynchronous messages to different destination software elements in turn. The SE
does not block while sending. Instead, the callback function will be invoked
automatically. Note that the software element shall not wait responses in the callback
function since it may not handle other messages. When making an asynchronous

30

request, a software element must store the transaction ID and possible other
information about the original request in a sort of table. Normally the entries are
removed every time a matching response is received. In the case that a matching
response is not received, the corresponding request information will not be
automatically removed from the table, causing a potential memory leak. Worse yet, if
the SE never receives the response, it may not be able to complete its action, causing
parts of the HAVi system to freeze. There are many reasons that may cause responses
not to be received. One reason may be that the destination software element, or
destination device, is removed during a request. In these cases a timeout will occur,
completing the request.

To avoid these problems, software elements that implement asynchronous requests
should also implement a timeout mechanism. The timeout mechanism would ensure
that actions are completed, and that request data does not build up in tables.
Unfortunately, the timeout may not occur until after a long delay, resulting in very
long response times.

Overall, software element architecture should satisfy the requirements in the above
issues and has an efficient and simple design.

3.3 Design for Blocking Time
A calling software element sending asynchronous message is blocked until the
callback function of the target software element returns. To avoid blocking, the
callback function should create a thread to handle the message and then return as soon
as possible.

Example 3-1: Creating a thread to handle messages in the callback function

1: class Application extends HaviListener {

2: ####MessageHandler msgHandler = null;

3: ####public boolean receiveMsg(boolean haveReplied,

4: ############################byte protocolType,

5: ############################SEID sourceId,

6: ############################SEID destId,

7: ############################Status state,

31

8: ############################HaviByteArrayInputStream payload) {

9: #######// create another thread to handle the message

10: ########// pass the parameters to the message handler

11: ########msgHandler = new MessageHandler(haveReplied,

12: ######## ##########protocolType, sourceId, destId, state, payload);

13: ########msgHandler.start(); // start the thread

14: ########return true; // the callback thread can return quickly

15: ####}

16: }

17: class MessageHandler extends Thread {

18: ####void run() {

19: ########// handle the message

20: ####}

21: }

In order to reduce the blocking time more, a software element should activate a watch
on the target before sending a request. Messaging System provides an msgWatchOn()
API for a software element to be notified if the target is removed. Another option
would be to register for GoneDevices and GoneSoftwareElement events. When being
notified the target disappears, a software element can respond more quickly.

3.4 Design for Multiple Requests
In order to handle multiple requests at a time, multiple threads are necessary.
Adopting the solution in 3.3 , software elements can handle multiple requests at the
same time. However, initiating a new thread every time is time-consuming. If request
for the software element are time-critical, the software elements could implement
thread pooling to reduce response time.

Example 3-2: A software element with three threads

1: class Application extends HaviListener {

2: ####// this software element has three threads

3: ####Worker[] workers = new Worker[3];

4: ####public boolean receiveMsg(...) {

32

5: #### ###if (any of the three threads is available) {

6: ############// resume the available thread to handle the message

7: ########}

8: ########else { // new another thread to do the job

9: #### #### ##msgHandler = new Worker(...);

10: ############msgHandler.start();

11: ########}

12: ########return true;

13: ####}

14: }

15: class Worker extends Thread {

16: ####...

17: }

18:

This software element owns three threads. In line 5, if any of the three threads is
available, just resume it to process the message. Or else another thread is created to
handle the message because the callback function should return as soon as possible
(line 9).

3.5 Design for Synchronization
Adopting two solutions above, software elements can process multiple requests at the
same time. The deadlock condition mentioned in 3.2.3 is unlikely to happen since the
callback function always returns in a short time. However, different worker threads
may manipulate variables of a software element simultaneously, which may introduce
errors. To avoid this, we can use Java synchronized data structure such as Vector and
Hashtable [16], or use Java build-in synchronization mechanism (synchronized
method modifier and synchronized statement block).

There is another issue: while a worker thread is processing a request, a new incoming
request may have to interrupt it. Java built-in language synchronization can be used in
this situation. When a Thread object’s interrupt() method is invoked, a
InterruptedException will be thrown. If a worker thread can be carefully
implemented, it can be interrupted just by invoking its interrupt() method.

33

Example 3-3: An example of interrupting a thread

class Application extends HaviListener {

 MessageHandler wt;

 public boolean receiveMsg(...) {

 if(under necessary condition) {

 wt.interrupt(); // interrupt the previous thread

 }

 return true;

 }

}

class MessageHandler extends Thread {

 void run() {

 try {

 // process the incoming message

 if(Thread.interrupted()) // check if interrupted

 throw new InterruptedException();

 // continue to process the message

 } catch(InterruptedException e) {

 return;

 }

 }

}

3.6 Design for Multicasting
In this section, a model is proposed to send messages to multiple software elements
efficiently. This model may be implemented in synchronous or asynchronous
messaging. Besides, an API, msgSendMultipleRequest(), is added to the
SoftwareElement class for developers.

34

3.6.1 Synchronous Multicasting

In the synchronous message mode, a caller will block until a response is received.
Since sending synchronous messages in turn is not efficient, the only way is to use
additional worker threads to send synchronous requests.

In the beginning, the callback thread creates another thread to handle the message so
that the callback thread can return immediately. Then, the message handler thread
creates worker threads to send messages: one thread for one target software element.
While the worker threads are sending synchronous messages, the message handler
thread checks if all responses are returned unless a timeout condition occur.

Example 3-4: The design in synchronous multicasting

public class Application extends HaviListener {

 public void multicasting(...) {

 for(int i = 0; i < num_of_target; i++) {

 new WorkerThread(ith request, ...).start();

 }

 while(not timeout && not all acknowledgement received) {

 sleep(1000);

 }

 }

 class Worker extends Thread {

 void run() {

 // send the request

 mySe.msgSendRequestSync(...);

 }

 }

}

However, multiple threads could carry lots of resource overhead. The number of
destination software elements is unpredictable; it could be just one or a large number

35

like 50. Each thread requires memory resources and processor resources. Besides,
there is also work involved in starting a thread. Thread pooling can be considered.

3.6.2 Asynchronous Multicasting

In this design, only one thread is required. At first, the message handler thread sends
asynchronous messages to all targets in turn. New entries, including the transaction ID
and other information about the request, are stored in a table. The thread waits all the
responses return until a timeout occurs. Even if no responses return (e.g. a network
failure), the thread can continue the work, avoiding the problem that the part of the
software elements freezes. When the thread is waiting, the callback function may
receive responses and store them in the table. The thread stops waiting if all the
responses return or a timeout occurs, and then the entries in the table are removed, so
there will be no memory leak.

Example 3-5: Using only one thread to send messages to all target
software elements

class Application extends HaviListener {

 Hashtable table;

 public receiveMsg(...) {

 // store the responses in the table

 }

 void multicasting(...) {

 for(int i = 0; i < num_of_target; i++) {

 mySe.msgSendRequest(...);

 }

 while(not timeout && not all responses have received) {

 // keep waiting

 }

 }

}

36

3.6.3 Comparison

In network programming, I/O can be classified as synchronous I/O or asynchronous
I/O. “msgSendRequestSync()” acts as synchronous network I/O; the caller blocks
until the response returns. “msgSendRequest()” acts as asynchronous network I/O;
the caller does not block and wait for the response. In network programming,
asynchronous network I/O is generally more efficient than synchronous network I/O.
However, for the multicasting issue in HAVi, we think the synchronous design is
better for two reasons.

First, the synchronous design in 3.6.1 is faster than the asynchronous design in 3.6.2 .
In asynchronous mode, the caller has to wait until the acknowledgement returns,
which may take some time. Since the caller sends asynchronous messages in turn, the
delay could accumulate to a long time. In synchronous mode, every thread is
responsible for one target and they are waiting concurrently. As long as the thread
pooling is used to eliminate the thread initialization time, the synchronous design is
faster than the asynchronous design.

Second, the synchronous design is straightforward and easier to implement. The most
convenient way for application developers is to implement the multicasting in a single
method. In the asynchronous design, the responses will be returned in the callback
function, so the multicasting cannot be completed in a single method. And the
developers have to implement a request/response table in the application to pass the
responses between the threads. This makes the implementation more complicated. As
for the synchronous design, all the implementation can be put in a single method. The
threads can be provided by the HAVi system. All the application developers have to
do is invoke the method.

3.6.4 A New API: msgSendMultipleRequest()

Since many software elements need to send messages to multiple targets, the design
should be implemented in a single method of the SoftwareElement class. The function
prototype is similar to msgSendRequestSync(), making it easier to use.

Example 3-6: The function prototype of the msgSendMultipleRequest() API

37

public class SoftwareElement {

public void msgSendMultipleRequest(

 SEID[] destSeid,

 OperationCode[] opCode,

 int timeout,

 HaviByteArrayOutputStream[] bufferIn,

 HaviByteArrayInputStream[] bufferOut,

 StatusHolder[] returnCode);

}

38

Chapter 4

Implementation

4.1 Environment

4.1.1 HAVi stack

We implemented a HAVi stack. For platform independence, an abstraction layer was
implemented to deal with Linux specific libraries and Java Native Interface [17]. The
abstraction layer was written in C and Java. The rest, the system components and the
applications, were all written in Java. Thus, our HAVi stack could be easily ported to
other platform with a new abstraction layer. Since all system components were written
in Java, this HAVi stack is aimed at FAV devices because IAV have no Java runtime
environment.

Figure 4-1: Our HAVi stack

CMM 1394

HAVi Java API

Application
Application

Messaging System

DCM Event
ManagerRegistry

DCM
Manager

Libraw1394

Linux Kernel

Abstraction Layer

Implemented
 in Java

Implemented
 in C

39

We implemented all system components except Stream Manager and Resource
Manager. The following is the description of our HAVi stack. The abstraction Layer is
platform dependent, providing IEEE 1394 service for MS and CMM, using
Libraw1394 [18], a Linux C library, to access IEEE 1394 bus. Our CMM, MS,
Registry, and Event Manager were mostly implemented as the HAVi specification
defines. As for DCM Manager, only the DCM installation service was implemented.
We implemented a DCM for the DV and implemented an application to control the
DV.

4.1.2 Demonstration

Two personal computers and a DV (Digital Video Camcorder) were used to build a
HAVi home network. One computer was simulated as a HAVi set-top box (FAV); the
other simulated a HAVi TV. The DV represented a LAV. The computers were running
on Linux and equipped with IEEE 1394 FireWire cards.

Figure 4-2: A HAVi network composed of two computers and a DV

Our HAVi stack was installed in both computers. The demonstration worked as the
following. When the DV was plugged into the network, the set-top box detected it and
downloaded the DCM for the DV. Then, the HAVi TV could control the DV via the
DCM. The images were transferred isochronously from the DV and showed on the
HAVi TV.

IEEE 1394

HAVi TV

Application DCM

HAVi
Messages

proprietary
protocol

controlled
device

controller

Set Top Box Digital Video Camcorder
FAV (PC) FAV (PC) LAV

Internet

40

The DV acted as a LAV device, so no DCM was embedded in it. We assumed the
set-top box and the DV were from the same device maker. When the DV was plugged
into the network, the set-top box would receive a NEW_DEVICE event, recognize the
device, and download the DCM from the Internet. The DCM Manager installed the
DCM and then the DCM registered itself in the Registry. The set-top box
communicated with the DV via Libavc1394 [19], a Linux C library for the AV/C
(Audio/Video Control) Digital Interface Command Set [20]. The application in the
HAVi TV queried the Registry for DV and obtained the SEID of the DCM. Users
could control the DV via the UI of the application. Functions included play, stop,
forward, and reverse.

4.1.3 Messaging System

The Messaging System was implemented in Thread-Per-Message with thread pooling.
The pool had five threads, meaning five callback functions could be invoked at once.
We did not choose Thread-Per-SoftwareElement because it may create too many
threads. And the threads may just wait there and do nothing if no requests received.

4.2 Implementation of

msgSendMultipleRequest()
The implementation of msgSendMultipleRequest() method is shown in Example
4-1. msgSendMultipleRequest() is used to send HAVi messages to multiple
software elements, and this method can be added to SoftwareElement class. A
Worker class is used to send to a message.

Example 4-1: Implementation of msgSendMultipleRequest()

1: public class SoftwareElement extends HaviListener {

2: ####public void msgSendMultipleRequest(

3: ############SEID[] destSeid,

4: ############OperationCode[] opCode,

5: ############int timeout,

41

6: ############HaviByteArrayOutputStream[] bufferIn,

7: ############HaviByteArrayInputStream[] bufferOut,

8: ############StatusHolder[] returnCode) {

9: ########int n = destSeid.length;

10: ########for(int i = 0; i < n; i++) {

11: ############new Worker(mySe, destSeid[i], opCode[i], timeout,

12: ############bufferIn[i], bufferOut[i], returnCode[i]).start();

13: ########}

14: ########long startTime = System.currentTimeMillis();

15: ########boolean allReceivedFlag = false;

16: ########while((!allReceivedFlag) &&

17: ############ ((System.currentTimeMillis()-startTime) < timeout)) {

18: ############allReceivedFlag = true;

19: ############// to determine if having received all responses

20: ############for(int i = 0; i < n; i++) {

21: ################if(returnCode[i].getValue() == null) {

22: ####################allReceivedFlag = false;

23: ####################break;

24: ################}

25: ############} // for

26: ############if(!allReceivedFlag) {

27: ################try {

28: ####################Thread.currentThread().sleep(1000);

29: ################} catch(InterruptedException e) {

30: ####################e.printStackTrace();

31: ################}

32: ############}

33: ########}

34: ####} // end of method

35: ####class Worker extends Thread {

36: ########private SoftwareElement mySe;

37: ########private SEID destSeid;

38: ########private OperationCode opCode;

39: ########private int timeout;

40: ########private HaviByteArrayOutputStream bufferIn;

41: ########private HaviByteArrayInputStream bufferOut;

42: ########private StatusHolder returnCode;

43: ########Worker(SoftwareElement mySe,

42

44: ############ SEID destSeid,

45: ############ OperationCode opCode,

46: ############ int timeout,

47: ############ HaviByteArrayOutputStream bufferIn,

48: ############ HaviByteArrayInputStream bufferOut,

49: ############ StatusHolder returnCode) {

50: ############this.mySe = mySe;

51: ############this.destSeid = destSeid;

52: ############this.opCode = opCode;

53: ############this.timeout = timeout;

54: ############this.bufferIn = bufferIn;

55: ############this.bufferOut = bufferOut;

56: ############this.returnCode = returnCode;

57: ########}

58: ########public void run() {

59: ############try {

60: ################mySe.msgSendRequestSync(destSeid, opCode, timeout,

61: ##bufferIn, bufferOut, returnCode);

62: ############} catch(Exception e) {

63: ################e.printStackTrace();

64: ############}

65: ########}

66: ####}

67: }

The parameters (lines 3-8) are similar to those in msgSendRequestSync() except
they are arrays. Worker threads are created or obtained to send the messages (line 11).
The while loop (lines 16-17) checks if a timeout occurs or all responses have been
received. If not, the current thread sleeps for 1000ms (line 28). The Worker class
(line 35) is used to send a message using msgSendRequestSync() (line 60).

4.3 An Example: A HAVi Application
The Application class, shown in Example 4-2, implements the software element
architecture proposed in Chapter 3. The application has two services: to print a string
“Hello World” in the console or to perform addition. If the application receives a

43

request, a worker thread is obtained to handle the request and the callback function
can return quickly. The worker thread will handle the request and send the response.

This application has the following advantages. First, the callback function always
returns quickly, so the caller software element does not block. Second, the application
can handle multiple requests simultaneously. Third, there is no deadlock. Fourth, the
interrupt() method in the ThreadPool class can interrupt all worker threads gracefully.
That is, the request being processed can be cancelled.

Example 4-2: Application.java--an application that
implements the design methodology

1: import java.util.*;

2: import ntu.havi.constants.*;

3: import ntu.havi.system.*;

4: import ntu.havi.types.*;

5: ####

6: interface ConstApplication {

7: ####final short apiCode = (short)0x8000;

8: ####final byte HelloWorldId = (byte)0x80; // print "Hello World"

9: ####final byte AdditionId = (byte)0x81; // perform addition

10: }

11: ####

12: public class Application extends HaviListener {

13: ####private SoftwareElement mySe;

14: ####private ThreadPool pool;

15: ####

16: ####public Application () throws Exception {

17: ########mySe = new SoftwareElement(this);

18: ########// create a thread pool with three threads

19: ########pool = new ThreadPool(3);

20: ########// register this application

21: ########RegistryLocalClient registry = new

22: #################################### RegistryLocalClient(mySe);

23: ########Attribute[] att = new Attribute[0];

24: ########HaviByteArrayOutputStream hbaos = new

25: ################HaviByteArrayOutputStream();

44

26: ########hbaos.reset();

27: ########hbaos.writeHaviString("Hello World");

28: ########att[0] = new Attribute(

29: ################ConstAttributeName.ATT_DEVICE_MANUF, hbaos);

30: ########registry.registerElementSync(3000, mySe.getSeid(), att);

31: ####}

32: ####public void receiveMsg(byte protocolType,

33: ######################## SEID sourceId,

34: ######################## SEID destId,

35: ######################## Status state,

36: ######################## HaviByteArrayInputStream payload) {

37: ########boolean haveReplied = false; //

38: ########OperationCode opCode;

39: ########byte controlFlags;

40: ########int transactionId;

41: ########if(haveReplied) {

42: ############return false;

43: ########}

44: ########if(state.getErrorCode() != ConstGeneralErrorCode.SUCCESS) {

45: ############// Messaging System problem, ignore

46: ############return false;

47: ########}

48: ########if(protocolType != ConstProtocolType.HAVI_RMI) {

49: ############// incoming message is not a HAVi RMI service

50: ############return false;

51: ########}

52: ########try {

53: ############opCode = new OperationCode(payload);

54: ############controlFlags = payload.readByte();

55: ############transactionId = payload.readInt();

56: ############if((controlFlags & 0x01) == 1) {

57: ################// incoming message is a response, ignore

58: ################return false;

59: ############}

60: ############if(opCode.getApiCode() != ConstApplication.apiCode) {

61: ################// unknown API

62: ################return false;

45

63: ############}

64: ############switch(opCode.getOperationId()) {

65: ################case ConstApplication.HelloWorldId:

66: ################case ConstApplication.AdditionId:

67: ####################// obtain a worker thread to handle the message

68: ####################// pass the parameters to the message handler

69: ####################Worker worker = pool.getWorker();

70: ####################worker.start(sourceId, payload, opCode,

71: ############################ transactionId);

72: ####################return true;

73: ################default: return false; // unknow operation id

74: ############}

75: ########} catch(Exception e) {

76: ############e.printStackTrace();

77: ########}

78: ########return true; // the callback thread can return quickly

79: ####}

80: ####

81: ####class ThreadPool {

82: ########private Vector idleWorkers;

83: ########private Vector busyWorkers;

84: ########ThreadPool(int numWorkers) {

85: ############idleWorkers = new Vector();

86: ############busyWorkers = new Vector();

87: ############for(int i = 0; i < numWorkers; i++) {

88: ################idleWorkers.add(new Worker(idleWorkers, busyWorkers,

89: ################true));

90: ############}

91: ########}

92: ########Worker getWorker() {

93: ############synchronized(idleWorkers) {

94: ################if(idleWorkers.size() > 0) {

95: ####################Worker w = (Worker)idleWorkers.remove(0);

96: ####################busyWorkers.add(w);

97: ####################return w;

98: ################}

99: ############}

100: ############Worker w = new Worker(null, busyWorkers, false);

46

101: ############busyWorkers.add(w);

102: ############return w;

103: ########}

104: ########void interrupt() {

105: ############synchronized(busyWorkers) {

106: ################for(int i = 0; i < busyWorkers.size(); i++)

107: ####################((Worker)busyWorkers.get(i)).interrupt();

108: ############}

109: ########}

110: ####} // class ThreadPool

111: ####

112: ####class Worker {

113: ########private Vector idleWorkers;

114: ########private Vector busyWorkers;

115: ########private Thread internalThread;

116: ########private volatile boolean noStopRequested;

117: ####

118: ########private SEID sourceId;

119: ########private HaviByteArrayInputStream payload;

120: ########private OperationCode opCode;

121: ########private int transactionId;

122: ####

123: ########Worker(Vector idleWorkers, Vector busyWorkers,

124: ############ boolean noStopRequested) {

125: ############this.idleWorkers = idleWorkers;

126: ############this.busyWorkers = busyWorkers;

127: ############this.noStopRequested = noStopRequested;

128: ############Runnable r = new Runnable() {

129: ################public void run() {

130: ####################try {

131: ########################this.run();

132: ####################} catch(Exception e) {

133: ########################e.printStackTrace();

134: ####################}

135: ################}

136: ############};

137: ############internalThread = new Thread(r);

138: ############internalThread.start();

47

139: ########}

140: ########void start(SEID sourceId,

141: ################ HaviByteArrayInputStream payload,

142: ################ OperationCode opCode,

143: ################ int transactionId) {

144: ############this.sourceId = sourceId;

145: ############this.payload = payload;

146: ############this.opCode = opCode;

147: ############this.transactionId = transactionId;

148: ############this.notify();

149: ########}

150: ########private void run() {

151: ############do {

152: ################try {

153: ####################if(idleWorkers != null)

154: ########################idleWorkers.add(this);

155: ####################wait();

156: ####################handleRequest();

157: ################} catch (InterruptedException e) {

158: ####################e.printStackTrace();

159: ################} finally {

160: ####################busyWorkers.remove(this);

161: ################}

162: ############} while(noStopRequested);

163: ########}

164: ########// interrupt the thread

165: ########void interrupt() {

166: ############internalThread.interrupt();

167: ########}

168: ########// interrupt the thread and request it to stop

169: ########void stop() {

170: ############noStopRequested = false;

171: ############internalThread.interrupt();

172: ########}

173: ########private void handleRequest() {

174: ############try {

175: ################if(opCode.getOperationId() ==

176: ################ ConstApplication.HelloWorldId) {

48

177:

178: ####################System.out.println("Hello World");

179: ####################HaviByteArrayOutputStream buffer =

180: ############################new HaviByteArrayOutputStream();

181: ####################Status returnCode = new Status(opCode.getApiCode(),

182: ####################################ConstGeneralErrorCode.SUCCESS);

183: ####################// send the response

184: ####################mySe.msgSendResponse(sourceId, opCode,

185: ############################ConstTransferMode.SIMPLE, returnCode,

186: ############################buffer, transactionId);

187: ################ return true;

188: ################}#else if(opCode.getOperationId() ==

189: ################ ConstApplication.AdditionId) {

190: ####################// read two integers from the payload

191: ####################int a = payload.readInt();

192: ####################int b = payload.readInt();

193: ####################HaviByteArrayOutputStream buffer =

194: ############################new HaviByteArrayOutputStream();

195: ####################// perform the addition and

196: ####################// store the result in the buffer

197: ####################buffer.writeInt(a+b);

198: ####################Status returnCode = new Status(opCode.getApiCode(),

199: ####################################ConstGeneralErrorCode.SUCCESS);

200: ####################// send the response

201: ####################mySe.msgSendResponse(sourceId, opCode,

202: ############################ConstTransferMode.RELIABLE, returnCode,

203: ############################buffer, transactionId);

204: ################}

205: ############} catch(InterruptedException e) {

206: ################Thread.currentThread().interrupt();

207: ############} catch(Exception e) {

208: ################e.printStackTrace();

209: ############}

210: ########}

211: ####} // class Worker

212: } // class Application

49

This program has an ConstApplication interface, an Application class, a ThreadPool
class, and a Worker class.

Interface ConstApplication defines the API code for the appilcation and the
operation codes for two different services (lines 6-10).

In the constructor of Application class, a SoftwareElement object is created to
represent this application (line 17); A thread pool with three threads is created (line
19); And the application is registered in Registry (lines 21-30). The request is handled
in msgReceive(). At first, the message is checked if it is a request for the
application (lines 41-63). Then, a worker thread will be obtained (line 69) and started
(line 70).

The ThreadPool class has two member variables (lines 82-83), idleWorkers and
busyWorkers. IdleWorkers is a Vector containing idle worker theads;
BusyWorkers is a Vector containing busy worker threads, the threads handling
requests. In the constructor, worker threads are created and put into the pool (line 88).
The getWorker() method first checks if there is a idle worker thread in idleWorkers
(line 94). If yes, the idle thread is returned. If not, a new worker thread is created and
returned (lines 94-102). Note that the additional worker threads will not added into the
pool. The number of worker threads in the pool is fixed. The interrupt() method
is used to interrupt all the busy worker threads. The previous requests will be
cancelled and the threads will be back in the wait state.

As for the Worker class, the boolean variable noStopRequested (line 116) stands
for whether there is a stop request. In the constructor, a thread is created and started
(lines 137-138). This thread will execute the run() method (line 129) immediately.
Then, the worker thread executes in a while loop in the run() method all its life time
(lines 151-162). Mostly the worker thread is in a wait state (line 155). If the worker
thread is notified by start() (line 148), it returns from wait() and executes
handlRequest() method. Before a worker enters wait state, it adds itself into the
idleWorkers and makes itself available (line 154); after a worker thread finishes
handling a request, it remove itself from the busyWorkers (line 160). In the
handleRequest(), two integers read from the payload are added and written into
the buffer. Then, the result is sent back by msgSendResponse().

50

Chapter 5

Conclusion and Future Work

5.1 Conclusion
In this report, four design issues about software elements are discussed and the
solutions are provided. The first design issue is blocking time. Every software element
should adopt the design in 3.3 so that the HAVi network can be efficient. The second
is multiple requests. The software elements that may receive lots requests at the same
time should adopt the design in 3.4 . The third is synchronization. All software
elements should adopt the design in 3.5 to avoid deadlock. The fourth design issue is
multicasting. The software elements need to multicast can use the design in 3.6

The main contribution of this report is to serve as a design guide for developers. We
encountered those design issues while we designed and implemented our HAVi stack.
We believe that the design methodology can help developers design and implement
software elements that are efficient and flexible.

Besides, the design in 3.6 could be useful especially for those systems providing
asynchronous messaging via callback functions. A HAVi network is a message-based
distributed system. In other distributed system, there may also be a need to send
messages to multiple destinations.

How Messaging System dispatches messages affects the design of software elements.
In order to guarantee the portability of DCM and HAVi application, we suggested that
the next version of HAVi specification should indicate that whether the callback
function of a software element would be invoked concurrently. We also suggested that
the callback function of a software element should not be invoked by Messaging
System concurrently. Thus, software elements can process the messages in sequences.
If software elements want to handle the requests concurrently, worker threads have to
be created and the software elements should deal with the synchronization problems.

51

5.2 Future Work
Although our programs have been tested in a simulated HAVi network composed by
three computers, they have not tested with real HAVi-compliant devices. In the future,
our HAVi stack and applications should be tested in a real HAVi home network. There
may be more devices; the network topology may be more complicated; the distance
among them may be longer. Then, the actual performance of our implementation can
be measured.

52

References
[1] Frederic Feit et al, The Home Network Revisited: Which LAN Technologies Will

Bring the Network Home?, http://www.itpapers.com, November, 1999.

[2] Nick Pidgeon, How Ethernet Works,
http://computer.howstuffworks.com/ethernet.htm.

[3] IEEE Std 1394-1995, Standard for a High Performance Serial Bus.

[4] The Home Phoneline Networking Alliance, http://www.homepna.org/.

[5] The HomePlug Powerline Alliance, http://www.homeplug.org/.

[6] IEEE P802.11, The Working Group for Wireless LANs,
http://grouper.ieee.org/groups/802/11/.

[7] The Official Bluetooth® Wireless Info Site, http://www.bluetooth.com/.

[8] The HAVi Specification Version 1.1, http://www.havi.org/.

[9] The Jini Community, http://www.jini.org/.

[10] The UPnPTM Forum, http://upnp.org/.

[11] The Source for Java Technology, http://java.sun.com/.

[12] Java Remote Method Invocation,
http://java.sun.com/products/jdk/rmi/index.html.

[13] The HAVi Organization, http://www.havi.org/.

[14] Object Management Group, IDL to Java Language Mapping, v1.2,
http://www.omg.org, August, 2000.

[15] HAVi Java API 1.1, http://www.havi.org/, May, 2001.

[16] Hyde, Paul. Java Thread Programming. St., Indianapolis, Indiana:Sams
Publishing, 200

[17] Sun Microsystems, Inc, Archive: Java Platform 1.1 API and Documentation,
http://java.sun.com/products/jdk/1.1/docs/api/packages.html.

[18] Sun Microsystems, Inc, Java Native Interface Guides,
http://java.sun.com/j2se/1.4.1/docs/guide/jni/.

53

[19] Andreas Bombe, Technical Documents of libraw1394,
http://www.linux1394.org/doc/libraw1394/book1.html. 2001

[20] Project: GNU/Linux 1394 AV/C Library,
http://sourceforge.net/projects/libavc1394.

[21] 1394 Trade Association, “AV/C Digital Interface Command Set General
Specification, Version 2.0.1”, http://www.1394TA.org/, 1998

54

Publication
Conference Paper:

Kuo-Wei Hsu, Chuen-Liang Chen, Wu-Cheng Li, and Ting-Ying Yu, “A Message
Delivery Mechanism for HAVi Network”, Internet and Multimedia Systems and
Applications (IMSA), 2003

