
行政院國家科學委員會專題研究計畫 成果報告

以代理機制為基礎之交換機制網路多廣播排程演算法

計畫類別：個別型計畫

計畫編號：NSC92-2213-E-002-060-

執行期間：92年08月01日至93年07月31日

執行單位：國立臺灣大學資訊工程學系暨研究所

計畫主持人：劉邦鋒

計畫參與人員：吳貞貞, 林藝芳

報告類型：精簡報告

處理方式：本計畫可公開查詢

中 華 民 國 93年12月20日

Efficient Agent-based Multicast on Wormhole Switch-based Irregular
Networks
Pangfeng Liu, Jan-Jan Wu and Yi-Feng Lin, "Efficient agent-based multicast on wormhole
switch-based irregular networks," the 17th International Parallel and Distributed Processing
Symposium, (IPDPS), 2003.

Abstract
This paper describes an agent-based approach for scheduling multiple multicasts on wormhole
switch-based networks. Multicast/broadcast is an important communication pattern, with
applications in collective communication operations such as barrier synchronization and global
combining. Our approach assigns an agent to each subtree of switches such that the agents can
exchange information efficiently and independently. The entire multicast problem is then
recursively solved with each agent sending message o those switches that it is responsible for. In
this way, communication is localized by the assignment of agents to subtrees. This idea can be
easily generalized to multiple multicasts since the order of message passing among agents can be
interleaved for different multicasts. We conduct experiments to demonstrate the efficiency of our
approach by comparing the results with SPCCO, a highly efficient multicast algorithm. We found
that SPCCO suffers link contention when the number of simultaneous multiple multicast becomes
large. On the other hand, our agent-based approach achieves better performance in large cases.
摘要

本論文提出一以代理人機制在蟲洞通訊網路中處理多重一對多傳輸的演算法. 多重一對多

傳輸是一種非常重要的通訊模式, 其應用範圍包括同步及全域資訊整合. 我們所提出的機

制對美一通訊子樹指定一代理人, 並由代理人以遞迴方式負責將資訊作有效的轉送. 如此

通訊將被侷限在子樹中已達成有效通訊之目的. 我們實作此演算法並與文獻中之SPCCO作

比較. 實驗結果顯示SPCCO在多重一對多傳輸的數目增大時會出現嚴重網路連線壅塞, 而

我們的代理人演算法則仍能發揮較佳的效能.

Keyword: multiple multicasts, wormhole switch-based networks, up-down routing

1 Introduction
Multicast/broadcast is commonly used in many scientific, industrial, and commercial applications
[1]. Distributed memory parallel systems require efficient implementations of multicast and
broadcast operations in order to support various applications. In recent years, with the speed of
microprocessors increasing and cost decreasing and the availability of high bandwidth, low
latency switches (such as Fast Ethernet switches, Myrinet switches, ATM switches, Servernet
switches) at a reasonable cost, it is popular to interconnect workstations/PCs together with
commodity switches. This makes clusters of workstations/PCs an appealing vehicle for
cost-effective parallel computing. To reduce communication latency and buffer requirement,
wormhole switching technique [4, 15] is often used in these switches. Systems with wormhole
routing provide a very small buffer space at each hop and divide a message into small flits that
travel through the network in a pipeline fashion. The main drawback of wormhole switching is
that blocked messages hold up the links, prohibiting other messages from using the occupied
links and buffers. In a multicast, the source node sends the same data to an arbitrary number of

destination nodes. When multiple multicast operations occur at the same time, it is very likely
that some messages may travel through the same link at the same time and thus content with each
other, if they are not scheduled properly. Minimizing contention in collective communication has
been extensively studied for systems with regular network topologies, such as mesh, torus and
hypercubes [3, 5, 6, 10, 9, 11, 16]. Switch-based networks, on the other hand, typically have
irregular topologies to allow the construction of scalable systems with incremental expansion
capability. These irregular topologies lack many of the attractive mathematical properties of the
regular topologies. This makes routing on such systems quite complicated. In the past few years,
several deadlock-free routing algorithms have been proposed in the literature for irregular
networks [2, 7, 12, 17]. These routing algorithms are quite complex and thus make
implementation of contention-free multicast operations very difficult. The goal of this paper is to
develop efficient (multiple) multicast algorithms for irregular wormhole switch-based networks.
In [8], Fan and King proposed a unicast-based implementation of single multicast operation based
on Eulerian trail routing. In this paper, we consider the widely used, commercially available
deadlock-free routing strategycalled “up-down” routing.Kesavan and Panda proposed a series of
single and multiple multicast algorithms [13]. The basic idea is to order the destination processors
into a sequence, then apply a binomial tree-based multicast [14] on these destinations. The chain
concatenation ordering (CCO) algorithm first constructs as many partial order chains (POC) as
possible from the network. A partial order chain is a sequence of destinations such that we can
apply a binomial multicast on it without any contention. The CCO algorithm then concatenates
these POCs into sequence where a binomial multicast is performed [13]. The sequence consists of
fragments of processor sequences in which messages within the same fragment can be sent
independently, therefore congestion is reduced. Based on the CCO algorithm, the source
partitioned CCO (called SPCCO) performs multiple multicasts simultaneously. Each multicast
produces its own sequence (consisting of POCs), and each resulting sequence is shifted until the
source appears at the beginning of the sequence. By shifting these sequences, the communication
is“interleaved” according to the source, and communicationhot-spots are avoided. Both CCO
and SPCCO use the idea of POC to reduce contention. Within a single POC different messages
do not interfere with one another as long as they are from different sections within a POC.
However, this POC structure may not always be preserved since the later binomial multicast is
not aware of it. Our agent-based algorithm deals with this issue by localization and interleaving.
For a single multicast, our algorithm uses a recursive construct to localize communication. We
then generalize it to multiple multicasts by interleaving the communication tasks among different
subnetworks.

Our agent-based approach starts with a recursive multicast algorithm. An agent for a multicast is
chosen for each subtree of the up-down routing tree. An agent is responsible for relaying the
multicast messages to all the destinations in that subtree. This task is divided into subtasks for
each subtree, where they are performed recursively. We generalize this algorithm to multiple
multicasts by choosing a primary agent for each multicast. The primary agents are chosen from
the subtrees of the root of the routing tree, and are properly interleaved so that the tasks are
distributed evenly. The primary agents for different multicasts exchange messages and then use
the multicast algorithm to propagate messages. Depending on how primary agents are chosen and

how the information are exchanged among the primary agents, our agent-based multiple multicast
algorithm has four variations and have be described in detail in IPDPS paper.
2 Model
The connectivity of switches in the network can be represented by a graph G = (V;E), where the
set of nodes V represents switches, and the set of edges E represents the bidirectional connection
channels among switches. The graph G can be highly irregular. In addition, each processor is
connected to a unique switch.
2.1 Routing Mechanism

We now describe the up-down routing [7] used in our multiple multicast algorithm. The up-down
routing mechanism first uses a breadth-first search to build a spanning tree T for the switch
connection graph G = (V;E). Since T is a spanning tree of G, E is partitioned into two subsets–T
and E _ T. Those edges in T are referred to as tree edges and those in E _ T as cross edges [13].
Since the tree is built with a BFS, the cross edges can only connect switches whose levels in the T
differ by at most 1. A tree edge going up the tree, or a cross edge going from a processor with a
higher processor id to a processor with a lower one, are referred to as up links. The
communication channels going the other direction are down links. In up-down routing a message
must travel all the up links before it travels any down links. Due to the acyclic nature of how the
directions of links are defined, the up-down routing is deadlock-free.

3 Agent-Based Algorithms
We first introduce the algorithm for single multicast, and then generalize the idea to multiple
multicasts. Note that our algorithms assume the up-down routing mechanism. The algorithms
specify how to perform a single/multiple multicast by determining the source and destination of
all the intermediate communications, but the actual route from source to destination is determined
by the up-down routing.
3.1 Single Multicast

For a given irregular network, we first construct a routing tree as in up-down routing [7]. The
routing tree has all the switches as the tree nodes, and the inter-switch communication channels
as the tree edges. Every tree node is the root of a unique subtree in this routing tree, and for ease
of notation we will not distinguish a tree node (a switch in the network) from the subtree where it
is the root. For a given multicast message m and a switch v we will define two functions–an
agent function A(m; v) that returns a processor within the subtree rooted at v and will be
responsible for relaying multicast message m, and a cost function C(m; v) that estimates the total
cost of sending m to all of its specified destinations within the subtree rooted at v. We define
these agent and cost functions recursively. Let D(m; v) be the set of destination processors of
message m that are connected to switch v. First we consider the case where v is a leaf in the
routing tree, then A(m; v) is defined to be an arbitrary destination processor in D(m; v), and the
cost function C(m; v) is log ∣D(m; v) ∣. If ∣D(m; v) ∣ is 0, that is, m does not have any

destination attached to switch v, we define A(m; v) to be an empty set and C(m; v) = 0. We now
consider the agent and the cost function for an internal node v in the routing tree. The agent
function for v is defined as follows: If ∣D(m; v) ∣> 0, we pick an arbitrary destination of m in

D(m; v) to be A(m; v). Otherwise we consider all the children of v that m must be sent to, and set
A(m; v) to be the agent from these subtrees that has the highest cost. Formally, let S(m; v) be the
set of children of v that have destinations of m in their subtrees, then A(m; v) = w such that w 2

S(v) and C(m;w) _ w0 for all w0 2 S(v) . Note that from this definition the agent of a switch is
not necessarily connected to the switch itself.
The cost function for an internal node is defined as follows: For the purpose of recursion we
assume that the agent of v knows the message m. If ∣D(m; v)∣is 0, the agents of tree nodes

from S(v) will first perform a multicast among themselves using a binomial multicast [14], then
as soon as an agent a from S(m; v) finishes receiving m, it recursively performs a multicast to all
the destinations in the subtree where it is defined as the agent. The total communication cost is
then defined as C(m; v). When∣D(m; v)∣>0, the situation is more complicated since the agent

of v can send m to other destinations in D(m; v), or to the agents of S(m; v). We apply a
procedure ForwardInSwitch that determines the order for those in D(m; v) and S(m; v) to receive
messages. After the schedule is fixed we compute the total cost C(m; v) for v.
When∣D(m; v)∣> 0, v does have some destination processors for message m and one of them

is the agent of v. When the agent sends messages to those destinations in D(m; v), the messages
will not interfere with each other. Also when the agent of v sends messages to those agents in
S(m; v), no contention is possible if no cross edges are involved. In addition, the message passing
from one category will not contend with those in the other category. When ∣D(m; v)∣= 0, we

use a single multicast to send the messages among all the agents of S(m; v), with one of them
now being assigned as the agent of v. We conclude that these messages will not contend with
each other unless cross edges are involved, since the agents of different subtrees in S(m; v) will
not be in the same subtree. After guaranteeing low congestion, the algorithm ForwardInSwitch,
which optimizes the schedule of the message-passing among agents, computes the total cost.
3.3 Multiple Multicasts

The primary agent sends its message m to a destination d in D(m; r) if any, and to the agents of
S(m; v). 3. Each agent a of S(m; r) sends messages to its destinations by calling RAM, and a
sends m to D(m; r) with a binomial multicast. We consider several alternatives in the first two
steps of our multiple multicast algorithms. First we consider two alternatives in choosing the
primary agent. It is now clear that if different multicasts select different primary agents,
we can “interleave” the traffic in the second step and achieve good performance. On the other
hand, we do not want to place the primary agents away from the original multicast source very
often, which may cause large traffic through the root of the routing tree. As a result there is
a tradeoff between good locality and interleaving. In our implementation we experimented two
methods–we either choose the primary agent that is in the same subtree as the multicast source,
or any agent of switches in S(m; v) at random. These two approaches will be denoted as
SameTree and Random respectively. Secondly, we consider alternatives in implementing the
second step of our multiple multicast algorithms. After the primary agent is chosen, it has to send
the message to a processor in D(m; r) and all the agents of switch in S(m; r). This can be
implemented in two different methods–the primary agent can send m to all the others with a
binomial multicast, or it can work together with all the other primary agents to propagate
information. In the second approach, we arrange the chosen processor in D(m; v) and all the
primary agents as a ring. Each processor in the ring is responsible for relaying the information to
the right side neighbor in the ring. Initially every primary agent places its message into this
“circular track” and the message willbe relayed to all the primary agents. We refer to these two
approaches as Binomial and Cyclic respectively. Combined with the alternatives we have four

multiple multicast algorithms as follows–SameTree-Binomial, SameTree-Cyclic,
Random-Binomial and Random-Cyclic.

References
[1] In Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, Mar.
1994.
[2] N. J. Boden, D. Cohen, R. F. Felderman, A. E. Kulawik, C. L. Seitz, J. Seizovic, and W. Su.
Myrinet - a gigabit per second local area network. IEEE Micro, pages 29–36, Feb. 1995.
[3] W. Dally. Deadlock-free message routing in multiprocessor interconnection networks. IEEE
Trans. Comput., C-36(5):547–553, May 1987.
[4] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor interconnection
networks. IEEE Transactions on Computers, C-36(5):547–553, May 1987.
[5] J. Duato. On the design of deadlock-free adaptive routing algorithms for multicomputers. In
Proceedings of Parallel Architectures and Languages Europe 91, June 1991.
[6] J. Duato. A necessary and sufficient condition for deadlockfree adaptive routing in wormhole
networks. In Proceedings of the 1994 International Conference on Parallel Proceeding,
August 1994.
[7] M. D. S. et. al. Autonet: A high-speed, self-configuring local area network using
point-to-point links. Technical Repor SRC research report 59, DEC, April 1990.
[8] K.-P. Fan and C.-T. King. Efficient multicast on wormhole switch-based irregular networks
of workstations and processor clusters. In Proceedings of the Internationl Conference
on High Performance Computing Systems, 1997.
[9] P. T. Gaughan and S. Yalamanchili. Adaptive routing protocols for hypercube
interconnection networks. IEEE Computer,26(5):12–23, May 1993.
[10] C. Glass and L. Ni. The turn model for adaptive routing. J. ACM, 41:847–902, Sept. 1994.
[11] G. Gravano, G. D. Pifarre, P. E. Berman, and J. L. C. Sanz. Adaptive deadlock- and
livelock-free routing with all minima paths in torus networks. IEEE Trans. Parallel and
Distributed Systems, 5(12):1233–1251, Dec. 1994.
[12] R. Horst. Servernet deadlock avoidance and fractahedral topologies. In Proceedings of the
International Parallel Processing Symposium, pages 274–280, April 1996.
[13] R. Kesavan and D. K. Panda. Efficient multicast on irregular switch-based cut-through
networks with up-down routing In IEEE Trans. Parallel and Distributed Systems, volume 12,
August 2001.
[14] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
hypercubes. Morgan Kaufmann.
[15] L. Ni and P. McKinley. A survey of wormhole routing techniques in direct networks. IEEE
Computer, 26(2):62–76, February 1993.
[16] A.-H. E. P.K. McKinley, H. Xu and L. Ni. Unicastbased multicast communication in
wormhole-routed networks IEEE Transactions on Parallel and Distributed Systems,
5(12):1252–1265, December 1994.
[17] W. Qiao and L. Ni. Adaptive routing in irregular networks using cut-through switches. In
Proceedings of the 1996 International Conference on Parallel Proceeding, pages I:52–
60, August 1996.

