
Two-stage circular-convolution4 ike 
algorithm/architecture for the discrete cosine 
transform 
W.-J. Duh 
J.-L. WU 

Indexing terms: Signal processing, Algorithms, Transforms 

Abstract: Because of the great improvements in 
computer engineering, digital signal processing 
has been getting more and more important in 
recent years. Since discrete transformations play a 
significant role in digital signal processing, they 
have found many applications in various fields. 
The discrete cosine transform (DCT) is well 
known for its usefulness in the fields of image pro- 
cessing and data compression. With recent 
advances in the ISDN, limited communication 
bandwidth has become a new bottleneck, a pos- 
sible solution to which may be an efficient encod- 
ing algorithm/architecture. The paper presents a 
two-stage algorithm and its corresponding archi- 
tectures for efficient computation of a power-of- 
two length DCT. In this approach, the transform 
matrix of the DCT is decomposed into the 
product of two matrices, the preprocessing and 
the postprocessing ones. The elements in the pre- 
processing stage consist of 1, - 1, and 0 only; the 
postprocessing stage is of block diagonal form in 
which each block performs a circular-convolution- 
like (CCL) operation. Thus, both stages can be 
implemented efficiently either by software or hard- 
ware. Details of the matrix decomposition are 
described and several corresponding architectures 
are also presented. 

1 Introduction 

Since its introduction the discrete cosine transform 
(DCT) [l] has found a number of applications in image 
processing [2] and in speech processing [3]. It has also 
been shown that the DCT has a performance very close 
to the statistically optimal Karhunen-Ldve transform 
(KLT) for a large number of signal classes [4, 51. There- 
fore, many fast algorithms for computing the DCT have 
been derived. A comprehensive review of various fast 
DCT algorithms was given in Reference 6 and a few 
novel recursive DCT algorithms were presented in Refer- 
ences 7 and 8. Since they are mostly used in various 
signal-processing applications, DCT processors with real- 
time computation capabilities are urgently required. 
DCT architectures have been proposed to meet this 
requirement, such as the distributed arithmetics DCT of 
Sun er al. [SI, the concurrent DCT [lo] and the 
constant-rotation DCT of the authors [I  13. 
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In this paper, a two-stage algorithm/architecture for 
computing a power-of-two length DCT is proposed. The 
preprocessing stage consists of values 1, - 1, and 0. The 
postprocessing stage is of block diagonal form with 
maximum block size N/2. Each block is of circular- 
convolution-like (CCL) form. The difference between the 
circular-convolution and the CCL lies in the sign of the 
elements. The postprocessing stage is totally parallel 
among blocks and can be realised by using the modified 
contemporary circular-convolution architecture [ 12, 131 
within each block. Thus, both the pre- and postprocess- 
ing stages can be implemented efficiently. The system 
block diagram of the proposed algorithm/architecture is 
shown in Fig. 1. 

input 
dato 

Fig. 1 System block diagram oftwo-stage C C L  D C T  

2 Two-stage matrix decomposition 

The N-point DCT is defined as follows: 

output 
coefficients 

at 

where N is the transform length, n, k E (0, I ,  . . ., N - l}, 
and 

i f n = O  

(1, otherwise 

The corresponding inverse transformation is 
N- I 

x(k) = 1 c(n)y(n) cos 
" = O  

(3) 

For the purpose of simplicity, the transformation is rep- 
resented in matrix-vector form. The DCT transform 
matrix, with length N, is denoted as C,. An input 
column vector X = [xo, xlr . . . , xN- 11' is transformed to 
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the output vector, denoted by Y, as 

where D, = ( 2 / N )  diag (c(O), c(l), .. ., c(N - 1)). 

in this paper is focussed on the transform matrix C,. 

2.1 Index partitions 
Consider the E T  with power-of-two length only, that is 
N = 2", where m is a positive integer. Some definitions 
and lemmas for the index partition are given below. 

Definition I: Z, stands for the set of integers (0, 1, . . . , 
2" - l}, where m is a positive integer. 

Lemma I: The integer set Z ,  is the disjoint union of the 
subsets Ai:  

wherej E Z,,-,- , and i E (0, 1, . . . , m - l}, and A, = {0}, 
i.e. 

Y = D,C,X (4) 

For the purpose. of simplicity, the algorithm discussed 

Ai = {2'(2j + 1)) 

Z" = IJ A i  
m 

i = O  

and Ai n A j  = 4, for i # j .  

Proof: See Appendix 8.1. 

For example, when m = 4, the set Z4 can be decomposed 
into A ,  = (1, 3, 5 ,  7, 9, 11, 13, 15}, A ,  = ( 2 ,  6 ,  10, 14}, 
A, = {4, 12}, A, = (8) and A, = (0). 

Definition 2: Let g(x)  = 2x + 1, where x E Z,- , and g is 
a mapping from Z, ~ , to A, .  

Since the transform kernels of DCT are cosine functions, 
they possess the same symmetric properties, such as 
cos ( n / 2  - 0) = -cos (n/2 + 0) for 0 E CO, n / 2 ] .  Using the 
symmetric property, a functionf(g(k), n) can be defined to 
explore the symmetry of the transform matrix. 

Definition 3: 
( 5 )  

where k, n, and f(k, n) E (0, 1, ..., N - 1, N}. The func- 
tion abs (.) denotes absolute value and the operation 
mod,, is similar to that of modulo 2N except that the 
valid range is in { - N  + 1,. . ., - 1,0, 1,. . ., N}. 

f (k, n) = abs (kn mod,,) 

The definition of f(g(k), n) is to formalise the index 
mapping of the DCT. We ignore the sign of the cosine 
functions in the transform kernels: only the absolute 

values are considered. Hence, the argument k, n of func- 
tionf(g(k), n) denote the input and output indices, respec- 
tively, and the corresponding value is the angle to be 
computed in the transform. As indicated in definition 3, 
only the absolute values are involved. Thus, the sign 
signals are treated as additional control signals for the 
convolvers and are described in detail in the next Section. 
With the aid of the index mapping function defined in 
definition 3, we proceed to partition the index space to 
achieve higher order parallelism. 

Lemma 2: For all n E A i  and k E A , ,  the values of 
f(k, n) E A i .  
Proof: See Appendix 8.2. 

Lemma 2 explores the parallelism implied in the trans- 
form kernels of the DCT. That is, to compute any output 
value fin), only those angles in Ai are required where 
n E A i .  Since lemma 1 forms an index partition of the 
index set Z, into m + 1 subsets with maximum size N / 2 ,  
the transform matrix C, can be decomposed into m + 1 
independent submatrices which can be computed totally 
in parallel. 

2.2 Transform matrix decomposition 
For simplicity, let e, = QCN where Q is a proper permu- 
tation matrix for output indices. In the following, sub- 
scripts are used to denote the corresponding ranks of the 
matrices. The matrix e, can be factorised as follows 
[14]: 

e, = [ ' " / 2  'N/2 'kO] 

RN/2 -RN/2 'k/Z 

where Iki2 denotes the opposite diagonal identity matrix. 
It is clear that the submatrix can be factorised recur- 
sively. The submatrix is left unfactorised as the 
maximum block of the postprocessing stage. After 
(log, N) - 1 iterations, the matrix is decomposed into 
two stages. The preprocessing stage consists of data 
reversing and butterfly operations only, however the 
postprocessing stage is of block diagonal form. In eqn. 6, 
the second matrix on the right-hand side performs the 1 butterfly omrations often seen in FFT algorithms, and 
the third matrix will reverse the lower half data. 

for example, e,, becomes 
For simplicity, we denote cos (8n/32) as C,. Therefore, 

- 
CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO 
c, -c, -c, c, c, -c, -e, e, C8 -e, -e, c, c, -c, -c, c, 
c4 c,, -c12 -c4 -c12 -c4 c4 c,, c4 c12 -c,z -c4 -c12 -c4 c4 c12 

c12 -c4 c4 - c l 2  -c4 c12 -cl2 c4 c12 -c4 c4 -c,z -c4 c12 -c12 c4 
c2 c6 - c 1 4  - c 1 0  - c 2  c 2  c6 cl, c l ,  -c14 - c 1 0  -c6  - c Z  

'6 -'I4 -'IO '10 ' 2  '14 '6 -'I4 -'IO '10 '2 '14 -'6 

cl, -cl0 c6 -c2 cZ - c 6  - c 1 4  -c10 c6 c2 - c6  cl, -c14  

'10 -c2 c6 - c 6  -c14  - c 1 0  -c2 - c 6  - c 1 4  c2 -c10 

c, e, c, c, c, e,, e,, e,, -e,, -c,, -e,, -e, -c, -c, -c, -e, 
e, c, c,, -cl, -e, c, e, c,, -c,, -c, -c, c, c,, -e,, -c, -c, 
e, -e, c,, -e, -cl) c, -e,, c, -c, c,, -e, e,, e,  -e,, e, -c, 
c, c,, -e7 c3 c,, -c, c, c,, -ell -e, c, -c,, -e, c7 -cl, -cs 
c,, c,, e,, c, e, c, c, e,  -e, -e, -e, -c, -c, -e,, -c,, -cl, 

c, e,  -c, -ell c,, c, e, -c, -e, -e,, e,, e, -e, -e, -c,, 
-e,, c, -cl, -e, e,, -e, e, -c, c, -c,, c, e,, -c3 c,, -e, 

c, -c, e,, c, -c, e,, c, -c, -e1, e, -e3 -cl, c, -c, -e1,- 
(7 
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Now, if the permutation matrix Q is chosen to be 

- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  

~ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  

From eqn. 6, a recursive algorithm for computing the 
preprocessing stage can be derived easily. Fig. 2 shows 
the signal flow graph of the resultant fast algorithm of 
the preprocessing stage of a 16-point example, Fig. 

then the preprocessing stage of a 16-point DCT can be 
factorised as 

From lemma 2, it is clear that the input indices g(k)  E 
the Output indices E and the 

rotation angIe f (d4  n) E A , .  Thus, according to the defi- 
nition of f ( g ( k ) ,  n), a binary operator can be defined as 

(9) 
The corresponding postprocessing matrix is of block 
diagonal form as shown below: 

- c o o o  0 0 0 0 0 0 
o c , o  0 0  0 0 0 0  
o o c ,  c,,o 0 0 0 0 
0 0 c,, -c, 0 0 0 0 0 
0 0 0 0 c, c, c,, c,, 0 
0 0 0 0 c, -c1, -c2 -c,, 0 
0 0 0 0 c,, -c, c,, c, 0 
0 0 0 0 c,, -c1, c, -c, 0 
0 0 0  0 0 0 0 0 c, 
0 0 0  0 0 0 0 0 c3 
0 0 0  0 0 0 0 o . c , -  
0 0 0  0 0 0 0 0 c5 
0 0 0  0 0 0 0 0 c,, 
0 0 0  0 0 0 0 0 c,, 
0 0 0  0 0 0 0 0 c 7 -  

- 0 0 0  0 0 0 0 0 c,, 

is, with appropriate input/output permutations, each 
block in the postprocessing stage can be computed uti- 
lising the circular-convolution hardwares [12, 131. 

Since Ai corresponds to a block in the postprocessing 
stage of size 1 A i  1, only A , ,  the largest block, will be dis- 
cussed here. Following the same strategy, other blocks 
can be constructed without difficulty. 

z (15) z.(q3) ;(?I) z(9) z(7) 2(5)z(3) z (1 z( lL)  2 (10) z(6)z(Z) z (IZ)z(L) z(8) z(0) 

Fig. 2 Preprocessing stage ofl6-point two-stage C C L  DCT 

0 0  0 0 0 0 0  
0 0  0 0 0 0 0  
0 0  0 0 0 0 0  
0 0  0 0 0 0 0  
0 0  0 0 0 0 0  
0 0  0 0 0 0 0  
0 0  0 0 0 0 0  
0 0  0 0 0 0 0  
c3 c5 c7 c9 cl, cl, c15 

c9 cl, - cl, - c5 cl c7 ‘1.3 

- c 5  c13  -cl - cl, c3 -cl, c7 

CIS -c, c3 c13 -c9 Cl Cll  
cl, cl ,  ‘9 ‘7 ‘5 ‘3 ‘1 

c7 ‘1 - ‘5 - ‘11 ‘15 ‘9 ‘3 

-cll c3 - cl, -cl c13 - c S  c9 

cl -c9 cl, c3  -c7 cl, c 5 .  

2.3 Circular-convolution-like pOStProcessing stage Definition 4 :  BN is a binary operator defined over the set 
One way to achieve fast computations is to decompose 
further the submatrices in expr. 10 [8, 141. In this paper, 
we present another approach from the view point of 
architecture rather than the number of operations. That 
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A , ,  The definition of B~ is 

where mod,, is defined in definition 3. 
(11) @ N n  = abs (kn 
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After defining the operator @ N ,  the relationship between 
input and output indices has been explored. The follow- 
ing lemma illustrates the so-called circular-convolution- 
like (CCL) properties. 

CCL block whose length is the size Of the block. Note 
that in definition 4 only the absolute values of the cosine 
functions are formalised, hence sign factors are excluded 

&point CCL 
matrix 

since the DCT kernels are used in the matrix and the 
input signals in the column vector, then summing 
column-wise will lead to the semisystolic array imple- 

4-point 
matrix 

Fig. 3 Postprocessing s t q p  416-point  C C L  DC7 

Lemma 3: G ,  = {Ao;  
generator of the group. 

Proof: See Appendix 8.3. 

From lemma 3, the generator 3 can generate the sequence 
of the cyclic group as shown in Table 1 [l5, 161. It is 
clear that the circular-correlation matrix is of the same 
form as given in Table 1 .  It is well known that time- 
reversion of circular-correlation becomes circular- 
convolution. Therefore, if the output indices are 
permuted according to the sequence generated by 3 and 
input indices are permuted as time reversal of the new 
output orders, each block in the postprocessing stage is a 

Table 1 : Operation table of a cylic group 

B e a b c  

is a cyclic group, and 3 is a 

e e a b c  
a a b c e  
b b c e a  
c c e a b  

e denotes identity and a denotes generator 

diagonal matrix with maximum block size N/2. Each 
block is of CCL form. The reason why we call it CCL is 
that the matrix is of circular-convolution form except for 
some sign changes. The CCL form can be formulated as 
follows : 

N - 1  

An) = 1 sg (k, n)x((n - k) mod N)h(k) (12) 
k = O  

where An) denotes the output, and x(.) and h ( . )  denote 
the two input sequences for convolving. The function 
sg(.) controls the type of convolution. When sg (.) = 1, 
eqn. 12 represents a circular convolution, otherwise, if 
sg (k, n) = sign (n - k), eqn. 12 becomes a skew circular 
convolution, where 

1, if x > 0 
- 1 ,  i f x < O  

sign (x) = 

The function sg (.) for CCL is defined in eqn. 14. It can 
be treated as the control signals of the CCL architecture 
[12, 131. Note that the magnitudes of the postprocessing 
functions are defined by the operator ON and the corre- 
sponding signs are defined by sg (.). 

(14) sg (k, n) = sign (g(k)n + h’ mod,,) 

As the transform kernels of the DCT are defined on the 
4N equal divisions of the unit circle, the function sg (.) is 
defined according to the fundamental properties of the 
cosine function. The first and the fourth quadrants are 
positive, the others are negative. 

4 

Since the postprocessing stage is composed of rn + 1 
CCL submatrices, some simple architectures, such as 
semisystolic [12] and systolic arrays, and transversal 
filters [13] can be used to calculate the results. The 
relationship among various hardware structures and the 
corresponding matrix representations will be discussed in 
detail in this Section. 

4.1 Semisystolic arrays for the CCL matrix 
The operation of the maximal CCL block of the 16-point 
DCT can be expressed as a matrix vector product as 

Realisation considerations for the CCL matrix 

I follows: 

3 

From the preceding section, it is clear that in the pro- 
posed two-stage DCT, the postprocessing stage is a block 

Additional controls of the convolver clock pulse. Since the circular conv&tion operation is 
commutative, interchanging the roles of input signals and 
DCT kernels will still result in the desired DCT coeffi- 
cients. 
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In practical usage, the transform kernels are fixed and 
input signals are changed with time. Therefore, specific 
multipliers can be used to reduce the complexities of the 
implementation. Table look-up and power-of-two 

o u t p u t  

approximation [ 131 are good alternatives. 
c3 GI c5 c, b c7 Cl, Cl 

c - - - - - - -  

0 
0 0 0 0 0 0 0 0 y ~ 1 )  

ctrl-1 drl-n ctrl-7 ctrl-I3 ctrl-I5 ctrl-5 drl-9 ctrl-3 
-(1Vz(l 

Fig. 4 Semisystolic structure for realising the C C L  matrix 

Therefore the 1-D systolic array for computing CCL can 
be easily derived as shown in Fig, 5 ,  From Fig, 5 ,  it is 

promote the utilisation, one can interleave two input 
obvious that the hardware is only 50%. To 

Input signal broadcasung is used 

4.3 Transversal filter structures for the CCL matrix 

wise instead of column-wise leads to the transversal filter 
From the ‘CL matrix shown in eqn. ‘’7 ‘Ow- 

4 2  Systolic arrays for CCL matrix 
Eqn. 15 can be reformulated as 

- c 1  0 0 0 
Cll  Cl 0 0 
c7 -cll -c, 0 
cl, c7  -ell cl  

c l ,  cl ,  c7 c l ,  

‘5 ‘15 ‘13 -‘7 

‘9 -‘5 -‘lS ‘13 

c, c9 -c, Cl, 
0 c3 c9 c5 

0 0 c3 -c9 

0 0 0 c3 

0 0 0 0 
0 0 0 0 
0 0 0 0 
- 0 0 0 0 

U 

Fig. 5 
rirrulafion 

Systolic array for computing the C C L  matrix using input signal 

0 
0 
0 
0 
Cl 
c, 1 

c7 

cl ,  

cl 5 

CS 
c9 

c3 

0 
0 
0 

0 0 0 -  
0 0 0 
0 0 0 
0 0 0 
0 0 0 
Cl 0 0 

-cll -c, 0 
c7 - c 1 1  Cl 
c 1 3  c7 ‘11 

c l ,  ‘13 -‘7 

- c 5  - c 1 5  Cl, 
c9 -c5 c,, 
c3 c9 cs 
0 c, -c9 
0 0 c3. 

Cl 0 0 0 0 0 0 
c3 Cl 0 0 0 0 0 
c9 c3 -c, 0 0 0 0 
c, -c9 c, c, 0 0 0 
‘15 ‘5 “3 ‘3 ‘1 0 
‘13 ‘15 - c 5  ‘9 ‘3 c l  

‘7 c l ,  - c 1 5  - c 5  c9 c3 - c l  

c l ,  -c7 cl ,  c l ,  cS - c 9  ‘ 3  

0 ‘11 c7 c l ,  ‘15 c5 c9 

0 -‘ll ‘7 ‘13 c 1 5  - c S  

0 0 -cll c7 c l ,  - c l S  

0 0 0 0 c l ,  - c7  c 1 3  

0 0 0 0 0 C l l  c7 

0 0 0 0 0 0 - c 1 1  

0 0 0 0 0 0 0 
IEE PROCEEDINGS, Vol 137, Pt F ,  N o  6,  DECEMBER 1990 
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twice the number of clock periods. The semisystolic array 
suffers from signal broadcasting and the shortcoming of 
the transversal filter is the requirement for global summa- 
tion. It is clear that for low-speed applications the systo- 
lic array is a good choice, yet for high-speed usages the 
semisystolic array and transversal filter structures are 
more attractive. 

0 Z(l1) 0 Z(7) 0 Z(13)O z(15)O z(5) 0 z(3) 0 z(3) 

out 

1 1 
0 ~(11) 0 y(7)  0 ~ ( 1 3 )  0 ~ ( 1 5 )  

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0- 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  

-0 0 0 0 0 0 0 0 0 1 0  0 0 0 0 0- 

U 
Fig. 6 

Jicient circulation 
Systolic arrayfor computing the C C L  matrix using output coef 

y(3) y ( l  ) 

Fig. 7 
circulation 

Table 2 :  Comparison between semisyatolic array, systolic 
arrav and transversal filter 

Transversalfilterfor computing C C L  matrix using input signal 

Semisystolic Systolic Transversal 
filter 

operation mode =rial-in serial-in parallel-in 

no. of clocks N 2 N - 1  N 
no. of adders N N N - 1  
disadvantage broadcasting low-speed global 

parallel-out serial-out serial-out 

additional summation 
latches 

5 16-point DCT example 

From the discussions above, a two-stage decomposition 
of the DCT transform matrix has been derived com- 
pletely. The preprocessing stage consists of data permu- 
tations and butterfly operations; the postprocessing stage 
comprises several CCL blocks which can be realised by 
modified convolvers in parallel. To clarify the operation 
of the algorithm, a specific 16-point DCT example will 
now be given. 

5.1 Two -stage decomposition 
The 16-point DCT transform matrix C,, can be factor- 
ised into preprocessing, input permutation, postprocess- 
ing and output permutation stages as 

- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  

~ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  

(2 

IEE PROCEEDINGS, Vol. 137, Pt .  F ,  No. 6, DECEMBER 1990 470 



Table 3: Operation table of the 4-point CCL block showing Each block in the postprocessing stage is a circular- 
convolution-like (CCL) operation. circular-convolution form 

€ 3 1 5 7 3  The algorithm/architecture derived in this paper is 
1 1 5 7 3  confined to the power-of-two length DCT. The upper 
3 3 1 5 7  limit of the transform length is dependent upon current 
7 7 3 1 5  VLSI technology. Since the implementation of the post- 
5 5 7 3 1  processing stage is similar to that of a transversal filter, 

the upper limit on the transform length is about twice the 
uppe; bound on existing FIR filter skes. 

additions/subtractions. The postprocessing stage can be 
implemented by using existing convolvers/correlators 
[12, 131. Since the coefficients of the CCL matrix are 
fixed, table lookup and mixed power-of-two approx- 
imation are Flexibility is one of the 
advantages of this proposed algorithm/architecture, that 

the maximum block of the 2N-point DCT and one addi- 

From eqn. 18, it is obvious that the computation of The preprocessing stage can be implemented by simple the 16-point DCT can be divided into four stages as 
shown in Fig. 1. Hence? the for 
computing the DCT becomes: 

(a) compute the simp1e preprocessing stage ‘ p e .  The 
fast computational algorithm is illustrated in Fig. 2 and 
described in eqn. 9. 

eqn. 21 

CCL hardwares described in the Drevious Section. The 

(b) permute the as given in 

(cl compute the postprocessing stage, say ‘PS~.‘, using 

Of ‘P~P based On is, if an N-point DCT is available, one needs only to add 

tional reversingbutterfly stage to form a 2N-point DCT, 

block diagram of the stage is shown’ in Fig. 3 
(d) reorder the output coefficients based on Q ,  which 

is given in expr. 8. 

In the 16-point DCT example, there are 8-point, 4-point, 
2-point and two 1-point blocks. Each block corresponds 
to one of the subsets described in lemma 1. It can be 
easily verified that the 4-point block of the 16-point DCT 
is the same as that of the 8-point DCT. Therefore, each 
CCL block can be constructed using the same strategy. 
Since 3 is used to generate the output order of the 
8-point CCL block, that is (3’, 3l, 3’, 33, 34, 3’, 36, 
37 )umdpr~ ,a r  the result is (1, 3, 9, 5, 15, 13, 7, 11). In other 
words, the relative output order within the block can be 
renumbered using g-’ (3‘ under @16) and becomes (0, 1, 
4, 2, 7, 6, 3, 5) in this example; the corresponding input 
order is (1, 11, 7, 13, 15, 5, 9, 3), the time-reversal of (1, 3, 
9, 5, 15, 13, 7, 11). Thus, the relative input order within 
the 8-point block is (0, 5, 3,6, 7,2,4, l}, the time-reversal 
of (0, 1,4,2, 7, 6, 3, 5). The block diagram of the example 
is illustrated in Fig. 8. 
absolute relative relotive absolute 
order for order for order for order for 
permutotion permutation CCL lnput CCL Input 

Fig. 8 

6 Conclusions 

Input orderingfor ( 0 , 5 , 3 , 6 ,  7 , 2 , 4 ,  I }  
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8 Appendix 

8.1 Proof of lemma 1 
we complete the proof of L~~~~ 1 by using ~ ~ l ~ ~ * ~  4 
function, 

A novel, fast, parallel algorithm/architecture for comput- 
ing the DCT has been proposed. The derivation of the 
fast algorithm is based on the decomposition of the DCT 
transform matrix into pre- and postprocessing stages. 
The preprocessing stage consists of + 1, - 1, and 0 and it 

(including (log, N) - 1 half data-reversing stages and d‘N 

log, N stages for butterflies). The postprocessing stage is 
a block-diagonal matrix with maximum block size N/2. 
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Theorem 1 

can be factorised into (2 log, N) - 1 successive stages 1 &d) = N (22) 

where N is a positive integer and AN denotes ‘d divides 
N’. 

47 1 



The index set of an N-point transformation is (0, 1, 2, . . . , 
N - 1). If the transform length is power-of-two, denoted 
as 2", the index set can be partitioned into m + 1 subsets, 
corresponding to 4(d), where d E {2', 2l, 2', .. ., 2"}, 
respectively. 

8.2 Proof of lemma 2 
Since n E A i  and k E A , ,  it is obvious that gcd (n, N) = ? 
for i E (0, 1, . . . , m - 1). Therefore, gcd ( f ( k ,  n), N) = 2', 
that is, the valuef(k, n) is still in the set Ai. 

8.3 Proof of lemma 3 
First, we prove that G, = { A o ;  @,} is a group. The 
binary operator 8, is similar to modulo multiplication. 
If the number is first normalised to the set, say { - N + 1, 
- N + 2, . . . , - 1, 0, 1, . . . , N - 1, N} mod 2N, then the 
operation of @, is the absolute value of corresponding 
modulo multiplications. Since 'modulo multiplication 
group' is a group, it is obvious that the four properties of 
a group structure are satisfied in G,. 

Next, we prove that 3 is a generator of group G, and 

3,1Z = 1 (under 8,) 
3N/4 = N - 1 (under @,) (23) 

Eqn. 23 means that 3 is a generator of order N/2. The 
reason for using N - 1 in the second equation is that 
(N - 1)BAN - 1) = 1. The proof of eqn. 23 is as 
follows: 

(a) From Euler's function, we have 

34"2N' = l(mod 2N) 

3, l(mod 2N) 

(b) Since N = 2", we have 

3"' - l(mod 2N) 

= l(under 8,) 
Therefore, the first of eqns. 23 is verified. 

m > 4 the proof is as follows: 
(c) If N = 2", for m < 4 the proof is trivial and for 

3 ~ 4  = (2 + 1 y 4  

= y (y)2* 
k = O  

+2"-1+(22"-3-2m-1)+0 

+ f(24m-7 - 12 23"-6 + 22 
22-4 - 12 2-2) + o 

+ ... + qmod 2""') 

1 - 4 x 2"-'(mod 2"'") 

= 1 - 2"(mod 2"+') 

= N - l(under @,) (24) 
Thus, G, is a cyclic group and 3 is a generator. 
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