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Abstract: In this work, we develop a diagnostic system for the
recirculating system of an on lined nuclear power station based on
the neural network. In learning phase, signals of sensors which
monitor the mechanical operation of the recirculating system are
preprocessed mainly by spectrum analysis to produce sets of
spatio-temporal patterns. The neural network serves the kernel of
the diagnostic system of which the main function is to
self-organize a feature map of these spatio-temporal patterns. Each
spatio-temporal pattern here is a high dimensional vector
composed of 128 elements, and, after self-organization, a reduced
two dimensional feature map is established as composite
diagnostic panel, called CDP. In the detecting phase, all
monitoring signals are fed into the CDP. Geometrical behaviors of
the CDP in detecting phase including representing cluster and
traveling sequence of temporal signal of each sensor put our
diagnoses into practice.

Introduction

The self-organization principles [1] are widely applied neural
network principles. The neural phonetic typewriter [2] which
successfully recognizes phonetic units from a continuous speech
signal is a typical application. The spatial ordered maps in the
self-organization are usually used to be internal representations of
the input signals. The ordered relations in high dimensional inputs
are reduced to express in a low dimensional map. We use the
dimensionality-reducing mappings to practice the emergent

spatio-temporal relations among the signals produced by sensors
which monitor the mechanical behaviors of two pumps of the
recirculating system of an on-lined nuclear power station.

Three dimensional position ,velocity, and acceleration are the
main circulating information which sensors monitor. Diagnoses
for the recirculating system are based on these information. The
signals produced by sensors carry these information. But the
signal in time domain are so native that operator in the control
room of an on-lined nuclear power station is not able to judge the
security of the operation by watching on the signals. Amounts of
processes have to be applied to native signals to obtain more
visible information based on which the operator can do some
judge for the security.
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By combining the technology of power spectral analysis in
the field of digital signal process and the principle of artificial
neural network, we develop a new diagnostic method for the
recirculating system. The method contains three phases : spectrum
analysis, CDP establishment, and CDP detection. Our basic idea is
to put the native signals of sensors into visibility. Computer
simulations show that the idea is a suitable approach to the
requirement of visibility.

In this paper, we briefly review the self-organization
principles in section 2 and then give details of the diagnostic
design and computer simulatons in section 3. At last several
conclusions are given.

1f-organizing n 1 network

Orderness of self organization is a structural phenomenon
found in the fields of biology, society, and chemistry. Recently,
the neural network with capability of self-organization play an
important role in the development of neural computing. The
self-organizing neural network proposed by Kohonen can form
the localized responses by lateral feedback and the simplified
virsion creates a vector quantizer.

In the self-organizing neural network, neurons with common
input are arranged as a two dimensional array. Winner-take-all is
the main principle of the self-organization. When feeding an input

pattern, each neuron sums the weighted inputs and the largest
responder is selected as the representative. And then, the neurons
within the neighborhood of the representative adjust its weight
vector toward the input vector. After enough input vectors have
been presented, the weights will be organized such that
topologically close nodes are sensitive to inputs that are physically
similar. Output nodes will thus be ordered in a natural manner.
The algorithm that forms feature maps requires a neighborhood to
be defined around each node as shown in figure 1. The
neighborhood slowly decreases in size with time as shown.

Above statements can be combined to following simple
algorithm. For a randomly selected input vector X(t) at time t do

a. Selecting the representative c:

HX() - M) I = MIN { 1 X(1) - Mj(©) 1| ) 1

Where M;(t) denotes the weight vector of neuron i .
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b.Updating weights:

Mj(t+ 1) = Mj(0) + a(t) (X(0) - Mj(t))  for i € Nc(t)

Mj(t+1)=Mj() for all other indices i @)

Where the learning rate o(t) and the neighborhood set Nc(t)
are empirical functions of time.

Di ic P

The diagnostic process includes three block functions:
spectrum analysis, CDP establishment , and CDP detection. The
time domained signals of the sensors-are translated into frequency
domained power spectrum by using modern spectral estimation
[3], which use precise objective functions or models of the
underlying random process to achieve higher resolution, smoother
estimates, and lower variance. In order to establish the CDP, we
adopt the monitoring signals in the period from the starting-up to
stable operation of the diagnosed system and then process these
signals to form a set of input patterns for the self-organizing neural
network. The mechanical operation in above period is called
reference operation which is distinguished from the object
operauon 1n the stage of CDP detection.

For the monitoring signals of each sensor, the preprocess
include following function:

1.Recording the monitoring signals of the referenceoperation

at about 400 seconds on a VHS tape.

2.Using analog to digital converter to upload signals to

amicrocomputer.

3. Forming 20 segments with equal size.

4.Analyzing each segment of data by spectrum

estimation,computed every 2 ms using a 512 ponit of
hamming window.

5.Compressing and normalizing the first page of the

powerspectrum of each segment into a 128 point of input
vector.

Figure 2 is the 3-D power speciral diagram of one segment
of one sensor. After preprocessing, each sensor creates 20 input
Vectors.

Based on the reference operation, we attempt to establish a
CDP witu, ability to detect the variation , or abnormality of the
object operation. In our idea, the CDP really searves a typical
classifier in the level of sensor or segment. For the classification
of sensors, after self-organization, the established CDP is
expected to form closed geometric areas, one for each sensor.
When feeding one input pattern created by a particular sensor, the
largest responder in the CDP ought to lie within the scope
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corresponded to the sensor. If not so, the object operation maybe
abnormal. The following illustrative simulation employs 32x32
neurons to capture the spatial features of 80 patterns created by
four sensors of one pump. By using the existing algorithm
described in section2 , 80 pauerns are embeded into the weight
matrix of the neural array to establish a composite diagnostic

panel. The empirical function N¢(t) and o(t) are both

nonincriminating functions. a(t) denotes the learning rate which is
set to a larger value in the phase of initial formation of the correct
order of the map and to a small value in the phase of final
convergence of the map into asymptotic form. A good
self-organization thoroughly partition the CDP into areas with
number of the employed sensors. Figure 3 is the result of the
established CDP on which four areas are formed and each
corresponds to one particular sensor. Each point represents a
neuron in the figure. After self-organization,if a neuron is the
representative of any pattern belonged to one sensor, we label the
neuron with the number of the sensor. In this example, no two
neurons are labeled with two different numbers.

The other crucial characteristic of the CDP is the traveling
sequence of each sensor. The twenty training patterns of every
employed sensors orderly fed into the CDP, the winners
corresponding to each pattern form a fixed path, called traveling
sequence. Figure 4-7 show the traveling sequence of the reference
operation of the four sensors and in the figures English letters
denotes the time order. We find there is no letter ‘a' in figure 5,
because pattern 1 and pattern 2 of sensor 1 have the same
representative. In the stage of CDP detection, the traveling
sequence of each sensor of the object operation is expected to
match the captured traveling sequence of the same sensor in the
reference operation. In figure 8, the neurons are labeled with the
number of the patterns to which they learned to give the best
reponses. Figure 9 shows the same information as figure 8, but
the CDP only trained by the patterns created by sensor 1. The one
sensor's CDP give more reliable diagnoses by property of
traveling sequence in the CDP detection,

nclusion

The self-organizing neural network has been applied to the
prototype of a diagnostic system for the recirculating system of an
on-lined nuclear power station. The on-lined signals are adopted
as typical operation based on which the composite diagnostic panei
are established by using the winner-take-all principle. Some
characteristics of the trained composite diagnostic panel are crucial
to the diagnoses. Computer simulations show some useful
geometric properties of the composite diagnostic panel in detecting



phase. However more experiences combined with expert
knowledge of nuclear power system are needed to develop the

prototype with improvements. u
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Figure 7. The traveling sequence of the reference operation of

Figure 4. The traveling sequence of the reference operation of sensor 4 with order 2 < b < C.

sensor | with ordera<b <ec.
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sensor 3 with ordera<b <c.
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Figure 9.The one sensor’s CDP-is trained by the patterns created
by sensor 1. The neurons are labeled with the number of
the patterns which they learned to give best responses.
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