
A Software Framework for Java Message Service Based Internet
Messaging System

Hsiu-Hui Lee, and Chun-Hsiung Tseng
Graduate Jnstitute of Computer Science and Information Engineering

National Taiwan University
Taipei, Taiwan

hhlee@csie.ntu.edu.tw,r900 14@csie.ntu.edu.tw

Abstracr:Java Message Service is released by Sun
Microsystems as a standard way of message delivering and
receiving. The purpose of this project is to implement a
Java Message Service provider and provide a software
framework to make some improvement on it. According
to the specification of Java Message Service, Java Message
Service is restricted in a pre-configured environment where
each computer’s IP is hown in advanced and is completely
connected. In this project, we design architecture to allow
messaging in Internet. To integrate Java Message Service
into Internet environment, there. are several issues to
consider:

To resolve Java Message Service destination objects
without physical IP.

An efficient and stable method for message routing is
required.

Load balancing should be considered.
The capability to handle heavy messaging load on

Internet should be ensured.
Keywords: Java Message Service, Internet, server design

I. Introduction
Java Message Service [l] is a set of interfaces released by

Sun Microsystem as a hamework for enterprise messaging.
There is currently some Java Message Service
implementations (JMS providers) work fine in a simple
LAN environment, such as “Java Message Queue” [41 and
“Joram.” [SI Through Java Message Service, the message
sender and message receiver can both he a client. Also,
they do not have to know exactly where each other is, the
sender just sends messages to a “destination” and the
receiver just receives messages from the same
“destination.” There are two types of messages supported
by Java Message Service: one is ‘point-tepoint” message
and the other is “subscribelpublish” message. Before
sending or receiving messages, the sender or receiver will
first try to get a so called “COnnectiOnFactory” object, and
get “Connection” object which represents real underlying
connections from “ConnectionFactory” shown in figure 1.
Senders and receivers will find the “ConnectionFactory”
object with a pre-configured name, which is suggested to be
similar with the “destination” name by the specification.
However, according to the specification of Java Message
Service, senders and receivers should either connect to the
same Java Message Service provider or at least connect to
providers having pre-configured direct connections with

0-7803-7840-7/03/$17.00 02003 IEEE

each other. This will be a big restriction when senders and
receivers are put into an Internet. Still another problem is,
senders and receivers should find their destinations through
Java Naming and Directory Interface (JNDI) [4-51, which
will be also an obstacle when messaging across Internet.
Since JNDI will not only require a directly connected
provider but also require a carefully chosen JNDI name to
avoid misunderstanding and to help senders and receivers to
find the correct objects.

Figure 1 Traditional Java Message Service worktlow

Il. Design Goals
In this project, we try to refine the Java Message Service

specification to he suitable in the Internet environment.
We define “Internet environment” as a network
environment, which may across a huge amount of WANs
and LANs. In Internet environment, machines may have
floating IP and connections between machines may be
unstable. Therefore, to apply Java Message Service
directly in such environment is impossible. We have the
following design goals to achieve; design a method for
resolving destination objects with floating IP, design a
method for message routing in Internet, achieve
load-balancing in Internet and modify the Java Message
Service data structure to be applicable in a heavy messaging
load environment..
1 Resolving Destination Objects with Floating IP

A carefully designed look-up method is required if we
want to use Java Message Service in Internet. Since the
destination could be at any place and even with no physical
IP address, only through JNDI to search the destination is
not sufficient. In this project, we will design a remote
look-up method can look up destinations in anywhere of the
Internet. And this method should also take care of the
traffic load. We don’t want this cross-machine remote

-161-

lookup too expensive.
2 Remote Message Routing Method

We should design a method for remote message routing.
Generally speaking, current JMS implementations require
their message senderslreceivers on directly connected
machines, because we can only search for “destination” and
“ConnectionFactory” objects in a LAN environment, which
is unpractical when applying JMS to Internet. To riquire
direct connections in that environment is quite reasonable,
since it can benefit from the stability and speed of LAN
environment. Traditional JMS implementations thus
generally send and receive messages through direct
connection. If we apply Java Message Serv ice
architecture in Internet, we have to consider message
forwarding and routing, because direct connection between
every machine in Internet is not reasonable. Further more,
since Internet connection i s far unstable than LAN
connection, the method we designed here should take both
rou t ing speed a n d s tab i l i ty in to cons idera t ion .
3 Load Balancing in Internet

The deploying system for JMS destination should have
distribution ability. When considering messaging in
Internet, too many JMS destinations on the same provider
will make this Internet node a severe bottleneck. Also, if
we store messages on this machine for future routing, this
will drain this machine’s resource. This problem is not
addressed in traditional JMS implementations, since
“point-to-point” messages in a LAN environment is quite
efficient especially with direct connections; although
“subscriWpublisb” messages may require some queuing
and buffering, the reliability of such network environment
should greatly ease the problem. Internet environment is
not as stable, so the message forwarding method will
require enough buffering, this will make the problem even
worse. Thus, allow users to configure and deploy their
JMS destinations in distributed manner is in demand,
otherwise the JMS implementation in Internet environment
will be crippled.
4 Handle Heavy Messaging Load

When considering Internet environment, we may have
lots of JMS destinations, which are participating in
messaging process. Traditional JMS providers basically
use memory alone as their storage. Although they may
store their destination objects in corresponding JNDI server,
the messages associated with those destination objects are
directly put in memory and the real implementation of JNDI
server may vary. The above situation works fine since
they only work in a LAN environment where messages can
be delivered as smn as possible and there are not too many
destination objects. However, if we want to enhance Java
Message Service to an Internet-level messaging system, we
should consider more about the heavy load. In OUT project,
we will provide a software framework that is more suitable
in the Internet environment for JMS providers.

-

In. Architecture
In order to Java Message Service, a server adhering to the

specification is required. Traditional Java Message Service
specification requires only a single server as the messaging
broker. However, the architecture will not work in Internet
environment. For our design, there are three kinds of
servers required for applying Java Message Service in an
Internet environment. They are described below separately,
and figure 2 is to depict the whole system architecture and
the relationship of these servers. Furthermore, in order to
make our messaging system applicable in Internet and keep
the flexibility, we will introduce a software framework to
design each server in the 5Ib section.
1 MainServer

Senders and receivers (JMS clients) should have direct
connection to a local provider. However, we should
extend the ability of traditional providers to work in Internet.
We called this kind of provider a “MainServer.” While
sending or receiving messages, requests are f i s t sent to
MainServer, it will try to find the destination locally. ,If
not found, MainServer will forward the request to its
u p p e r - l e v e l - s e r v e r , wh ich a c t s as a ga teway .
2 Gateserver

On one
hand, a GateServer is a storage for the destinations shared
by multiple MainServers,on the other, GateServer is also act
as a router for routing requests and messages. More than
one Mainservers can connect a Gateserver, and a
Gateserver itself can connect to another Gateserver.
Further more, in order to achieve load balancing, a
GateServer can have several attachable-mini-GateServers,
which will be named as “MiniGateServers.” When
requests from MainSrrvers arrive, the GateServei will r y to
locate the destination locally first, if not found, it will try to
.find the destination at attached servers, if still in vain, it will
forward this request to its connecting Gateserver.
3 MiniGateServer

The main purpose of MiniGateServer is for load
balancing. Since Internet is not a stable network
environment, messages may not able to be properly sent at
some time and we have to store messages before they are
successfully transmitted. However, this will cause a lot of
overhead, and requires many system resources. With
MiniGateServer, we can easily configure it to take over
some destinations originally deployed on a GateServer.
This can reduce that Gateserver’s load. Another
contribution of MiniGateServer is to enable destinations on
servers in a dynamical or virtual IP environment be
accessible. A MiniGateServer can dynamically attach to a
Gateserver, thus, even if the IP of the MiniGaServer is
changed, clients through the attached GateServer can still
access it.

Gateservers have two roles in OUT architecture.

-162-

,.-L-..,
i *~MN i
L-%--d

Figure 2 Server Architcture
IV. Message Flow

A messaging system should handle thousands of
messaging efficiently and safely. According to the Java
Message,Service specification, messages are classified into
two catalogs: “Point-toPoint” messages or
“Suhscribflublish” messages; we will describe how they
are handled in our design below.
1 Point-to-Point Message

In Java Message Service, a point-to-point message is
called a “queue” message. This type of message will have
exactly a sender and a receiver.

In a virtualldynamic IP environment, the target
destination may be on a machine with no physical IP
address. Thus, the target destination cannot be located in
traditional JMS implementations. In our implementation,
we use “MiniGateServer” to hold these destinations, and
requests will be routed to these MiniGateServers through
GateServers. Suppose we have a queue destination on
GateServer G3, and our JMS client is connected to
MainServer M1, which is connected to Gateserver GI.
The Gateserver GI is connected to Gateserver G2 as its
outlet that in t u n connext to GateServer G3. This set-up
will be depicted in Figure 3. Now, suppose the N S client
is sending or receiving the queue message from the queue
destination. The request will first be forwarded to
Mainserver MI, and MI will find the requested target is not
a local destination, and then the request is forwarded to
Gateserver GI. GI will check the destination again, and
will still find the destination is not a local one. Then GI
will create a routing packet, set the time-to-live information,
and route tbe request to G2. After G2 received the packet,
it will check the time-to-live information to make sure this
packet is not out-dated. If the packet is still alive and the
target destination is still not local to G2, G2 will continue
routing the packet. If the packet is successfully routed to
G3, the target destination will be found. If the original
JMS client requests for sending message, then this message
will be stored in G3, and if the JMS client requests for
receiving messages, all messages for the target destination
will be return to M1 to make future receiving more
efficiently.

Er-+-
.,_+..̂ _._. ‘..

.,..a w n m r
/-----.~ .<J
(, ;E, ,j”
L-..---,

Figure3 The Point-to-Point message set-up
2 Subscribehblish message

In Java Message Service, subscribdpublish messages are
also called “topic” messages. Unlike queue message,
which is “client request for receiving”, the JMS provider
should automatically transmitting messages to subscriber
clients without clients’ request.

Traditional JMS implementations still have problems
when the target destination does not have physical IP
address, Furthermore, The nature of SubscriWPublish
message will also make implementing Java Message
Service in a virtualldynamic IP environment much more
difficult, since the subscribers may come from every place
with dynamic IP address. If we just record the subscribers’
current IP address and forward messages to all client
machines, and check the client’s existence at the same time,
this will produce incredible overhead. To overcome that
problem, we design a “multi-level forwarding method.”
We will describe this method below.

Suppose, tbe topic destination is at Gateserver G2, and a
GateServer G1 connect to G2, and a Mainserver M1
connect to GI. Several subscribers connected to M1
subscribe to the topic destination. The set-up will be
depicted in figure 4. When MI receives the request, i t will
register itself as a “proxy entry” in G1. G1 will first check
if the topic destination is a local one and after GI assure the
destination is a remote one, it will route the request to G2
and register GI itself as a ‘‘proxy entry” in G2. There may
be thousands of MainServers connected to G1 and they may
all subscribe to that topic destination. When G2 publish
messages, it will publish to those :’proxy entries” instead of
publishing to all subscribers. Of course, after messages
arriving the MainServers, Mainservers should still forward
messages to all subscribers. However, we assume
Mainservers is as close to clients as possible, thus this
“multi-level forwarding method” will decrease the numbers
of packets which transmitting messages along a long
Internet patb. Furthermore, our publishing thread will
automatically schedule the publishing interval. Thus if we
have only a few messages to publish, i t will increase the
publishing interval and try to collect as many messages as
possible in a publishing session. This will also increase
the performance.

-163-

1

Figure 4 The SubsrribdPubiish message set-up

V. Heavy Load Destination Storage
Up to now,.we have described the server architecture and

the message flow of our messaging system. In our design,
the server is able to handle messaging hierarchically, and
we have discussed load-halancing issues. However, for
each server, we have assumed that all destination objects
and messages are stored in memory until now. This may
not be the case when we consider a real Internet world. In
order to handle the heavy load elegantly, we may want to
store JMS destinations and their associating messages into
different location, different disks, and even different
database. And due to the unreliahility of Internet
connection, transferring messages may fail, and we may
want to ensure messaging of some JMS destinations more
strictly. That is, we want to have different mechanisms to
manage different JMS destinations and their associating
messages. Furthermore, uaditional JMS providers only
support TCP connection, hut we may need different
connection type for different group of JMS destinations,
such as UDP, HTTP, and SSL ... etc. Below we will
provide a software framework to achieve the goals.
1 JMS Server Framework ' '

Java Message Service is a standard established by Sun
Microsystems a s a messaging framework. However,
according to the specification, a Java Message Service
server is a prerequisite for using Java Message Service. Of
course, there are many commercial or non-commercial
products now, but if we want to use'Java Message Service
in a particular situation, for example, using it in an
embedded system or using it to facilitate internal messaging
between components in an application, we still need to
build our own Java Message Service server. In our project,
we have several levels of servers working together to form a
complete messaging system. To write a Java Message
Service server is a quite tedious work, moreover, different
servers may work on different host in different environment,
optimization for each case is quite difficult. Thus, we
have designed a flexible architecture for easier building
p r o c e s s o f J a v a M e s s a g e S e r v i c e s e r v e r .

2 Architecture

paas:
1. Server

A Server is the control center of the whole framework. It
will contain several pairs of ConnectServers and
Connectoperators and manage their lifecycle. A Server will
also maintain a DestinationStore as storage of Java Message
Service destinations.
2. Connectserver and Connectoperator

For flexibility, our Java Message Service Server Frame
work will not enforce a specific protocol for client
connection. Instead, we use
ConnectServerIConnectOperator pairs to fulfill connection
work. A Connectserver may choose any proper protocol for
client connection; for example, a Connectserver can be
designed as a HTTP server to interact with clients from
internet, and a ConnectServer can also act as a mail server
to receive clients' request as e-mail. However, a
ConnectServer should only handle connections, that is, it
should not directly process request from clients. A
ConnectServer will forward any client request to its
corresponding Connectoperator, thus, a Connectoperator
can be used by more than one Connectserver.
Connectoperators will have reference to DestinationStore
for Java Message Service operations.
3. DestinationStore and Destinationoperator

A DestinationStore is actually a hash table storing
destinatiodDestination0perator pairs. In our design, Java
Message Service destinations and its corresponding
messages can be stored at any storage. Thus, we can use
arrays, files, and even databases to store those messages.
For flexibility, different storage can he accessed through
different DestinationOperator, thus we can use storage with
higher speed for destinations with high loading and use
storage with grow-able size for destinations may have to
store huge amounts of messages in future.
4. Driverpool and Driver and DriverConnection

Clients for traditional Java Message Service Server
typically rely on JNDI only to search their target
destinations. However, since our frame can be applied on
various environment even embedded systems, developers
using our framework may want to use other methods for
searching. We have wrapped searching-object methods as
Driver; clients can get Driverconnection from DriverPool,
and use Driverconnection as a standard interface to search
objects. The underlying searching methods is hidden in
Driver, thus provide both flexibility and convenience.
5. System-independent JMS libraries
6. System-dependent JMS libraries

We have separated our implementation of JMS libraries
into two types: system-independent and system-dependent.
This is because some JMS objects, like Message object,
Destination object, are quite general, while others, like
Connection object may be totally different according to
different environment. By separating these two types of
JMS libraries, we can have better re-usability in our
implementation.

The architecture can be categorized into following

Figure 5 will depict the UML class diagram of our 9,1999, Sun Micro System.
software framework [2] The JNDI Tutorial by Rosanna Lee.

The SLAPD and SLURPD Administrator's Guide,30
April, 1996,University of Michigan.

[3]

[4] JORAM Tutorial,bttp://www.objectweb.org/joram
[5] htto://wwws.sun.mm/softwardDevelooer-orcducts/

iplanet/ima. btml

Figure 5 : JMS server framework UMLclass diagram

VI. Testing
The following i s the testing data. First of all, we test

the performance for messaging on a single machine. And
then, we test messaging through Internet with a 512K
ADSL network to see the dfference. The testing scenario
is to send 50 TextMessage, 50 ObjectMessage, and 50
BytesMessage (the message format is according to Java
Message Service specification) through a Queue. We run
the test five times for both single machine case and Internet
case. We measure the elapsed time in milliseconds and
illustrate the result in figure 6.

1 2 3 4 5 I
Figure 6: Testing data

VII. Conclusion and Future Work
We have designed a "maximized'' JMS provider, and it

can be used in an Internet environment. We have
considered the performance and stability in Internet, and
have developed some methodology to meet Internet
constraint. Problems like virtud-IP, dynamic-IP, and load
balancing are also handled in our provider. In the future,
we still have many features to consider: increasing
transmitting speed with compression method, more efficient
broadcasting method, etc.

References
[I] Java Message Service version 1.0.2 specification,

November

-165-

