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Abstract

In this paper , we prove that the single-error correcting (20 -1, 2® —1-n) Hamming code
and its extended single-error correcting/double-error detecting (2%, 2" —1-n) code can be decoded
by low-complexity single-layer perceptrons which use high-order polynomials as their
discriminant functions, and that multiple-error correcting codes can be decoded by two-layer
networks with high-order perceptrons in the first layer and linear perceptrons in the second layer.

I. Introduction

Previous works on the application of neural networks for decoding error-correcting codes
include Hopfield nets for decoding graph-theoretic codes [1], and Counter-propagation networks
(CPN) and backpropagation networks (BP) for Hamming codes [2]. The decoding of a graph-
theoretic code is formulated as a problem of searching for the global minimum of a
corresponding energy function. This formulation allows the Hopfield net to solve the decoding
problems as it solves the optimization problems [3]. However, decoding a received codeword
needs a recalculation of the weights of the network. Besides, Hopfield network does not
guarantee to find a global minimum solution. Although without the overhead of training costs,
using Hopfield nets for decoding is ineffective at the current stage [4]. The CPN and BP for (7,
4) Hamming code solve the decoding problem in a direct way; they both require the number of
hidden units equal to the number of legal codewords for reliable decoding.

Our approach to the decoding problem makes use of high-order perceptrons, which have
polynomials rather than conventional linear functions as their discriminants. The output function
of a high-order perceptron can be described as [5]

z=sgn( g(X)) 1)
where X = [xq, X9, ..., X5] € {1, -1}" is an input pattern, sgn is the sign function: sgn(a)=1 if
a>0, -1 if a<0, and undefined if a = 0, and g is a rth-order polynomial function, i.e.,

gX) = wif1(X) + wp £(X) + ... + wnINXD) + Wy 2
where each product term f;(X) is of the form:
xﬂxxl'lz XM
kl k?. ven kr (3)

0-7803-0559-0 /92 $3.00 © 1992 IEEE I11-24



ki, kp,..., ke € (1, ..., n} and ny, ny, ..., n € {1, 0}. The high-order perceptrons are able to
decode the entire class of single-error correcting (28 -1, 28 —1-n) Hamming code and single-
error correcting/double-error detecting (217, 2" —1-n) extended Hamming code. The complexity
of the one-layer network decoder is relatively low. As it will be shown, only n+1 weights for
each perceptron are needed for the Hamming code and n+2 for the extended one. It is also shown
that having a two-layer structure with high-order perceptrons in the first layer and linear
perceptrons in the second layer, decoding of multiple-error correcting codes is also possible.

The general idea of decoding an error-correcting code could be described as follows [6]. A
systematic binary (M, p) code, in which there are p information bits and n = (M—p) parity bits for
each codeword, can be described by a parity-check matrix H=[hij]n*M, hjj e {1,0}). Let A =[ay,
ag, ..., ap) be an information word. After A being encoded and transmitted, the receiving end
receives the codeword V = [vy, V2, ..., Vil- The codeword V is then multiplied (modulo 2) by
the parity check matrix H to result in a syndrome vector S = [sy, $p, ..., S,], where

M
S k§1 vihjx mod 2 @

The syndrome S provides the information to decode the codeword V: If § is a zero vector, then
there is no error, the parity bits v;, i = p+1, ..., M, are discarded and the information bits are
directly accessed, i.e., a; = vj, i = 1, ..., p. If a single error occurs, in which case S matches the
jth column vector of H, then the j¢h bit vj is dirty and has to be complemented. If more than one
errors occur in V, then S matches the sum (modulo 2) of the corresponding columns of H. In the
case that S is nonzero and matches no combinations of the columns of H, we say an erroneous
codeword is detected, but the incorrect positions in V can not be located.

II. Decoding of Single-error Correcting Codes

The class of (2" -1, 2" —1-n) Hamming code is a single-error correcting code with each
codeword having 27 —1-n information bits and n parity bits [7].The decoding rule for this code is
simply to compute S and see if S matches any of the column of H. If § is zero, then a;=(v; ® 0),
i =l; «s 20 —1-n, where @ denotes XOR operation. If S matches column j of H, then a; = (vj o
1) and a; = v;, i =1, ...,28—1-n, i=j. This rule can be expressed in a concise Boolean formula as

n
aj=V;j @ H (Sihij + —-Sr—-hij) .
i=1 .(5)

for j =1, ..., 2" —1-n. The expression enclosed by the parentheses is an equivalence test and the
AND operation over n elements is to see if S matches column j of H. With a direct transform
from the above expression to a polynomial, we have the following theorem.



Theorem 1: The (2" -1, 2" —1-n) Hamming code can be decoded by one-layer high-
order perceptrons with only n+1 product terms for each polynomial discriminant function.

Before proving the theorem, let us first define two notations. Suppose a is a Boolean
expression that results in a binary value and x and y are two expressions that result in a bipolar
value and a real number, respectively. The notation 'a <> x' denotes the relation between a and x
asa =1iff x =-1, a= 0 iff x = 1, while the notation 'a <=> y' denotesa=1iffy<Oanda=0
iff y > 0. The following four lemmas can be proved by considering all possible cases and are
thus given without proof.

Lemma I: If a <> x and b <= y, then a®b «=» xy.

Lemma2 If a; xl fori=1, ..,n, then

H 2; = 2 Xi+@-1)
i=1 i=1

H a; «> sgn( 2 x;+(-1))

i=1
Lemma 3. If a > x and h € {1, 0} is a binary value, then (ah + —a—h) <> (xh — x(1-h)).
Lemma 4: If a; <> x;and h; € (1,0} fori=1, ..., n, then
n n
2 ah; mod 2 «— H ;'
i=1 i=1
where the expression on the left hand side denotes the XOR operation on a;h;,i =1, ..., n
By assuming that the binary variable v; and the bipolar variable x; satisfy the relation v <>
x;, we now give the proof of the theorem.
Proof: Let M be the codeword length. To decode a Hamming code, we only have to find a
set of polynomial functions gj, j =1, ..., M-n, that satisfy a; <= g;, where 3; is defined in (5).
By applying Lemma 1 through Lemma 4, these polynomial functions g; satisfying the relation are
n
g =X { Z [(thy — 51 = hy)] + (n- 1)}
i=1 (6)
where
M e
= H X"
k=1

(7) Q.E.D.

Example 1: The simplest nontrivial Hamming code is a (7, 4) Hamming code, which can

be described by the following parity-check matrix
1101100
1011010
0111001

So the polynomial functions for the neural network decoder are
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g1(X) = x1(2 + X1X9X4Xs5 + X]X3X4Xg — X9X3X4X7) (8)
= 2X] + X9X4X5 + X3X4Xg — X1X0X3X4X7

g2(X) = Xp(2 + X]X9X4X5 — X1X3X4Xg + X9X3X4X7) )
= 2X7 + X|X4X5 — X]X9X3X4Xg + X3X4X7

23(X) = x3(2 — X1 XpX4X5 + X]X3X4Xg + X9X3X4X7) (10)
= 2X3 — X1X9X3X4X5 + X]X4Xg + X9X4X7

£4(X) = x4(2 + X XgX4X5 + X|X3X4Xg + XpX3X4X7) 11

= 2)(4 + X1X9X5 + X]X3Xg + XpX3X7
As (8) through (11) show, one can alternatively implement the decoder by using n =3 common
product terms and thus obtains a network of much lower complexity.

IIL Decoding of Single-error Correcting/Double-error Detecting Codes
The parity-check matrix H' for the single-error correcting/double-error detecting (2n, 20—
1-n) extended Hamming code can be derived by appending one more row and column to the
parity-check matrix H of the Hamming code as follows [7]
- [11]
1 1 dneyae (12)
where 1=11, ..., 1] is a row vector of 1 by n, 0 = [0, ..., 0]T a column vector of 21 -1 by 1.
Let S be the original syndrome vector and s, be a parity check over the whole messages, i.e.,
the sum of all v; (modulo 2). Then any single error will produce the right S and set sp, to 1;
while a double error causes a nonzero S but makes sy, =0.
Similar to (5), the Boolean functions for the information bits are
n
3j=v;® [Snun (sihjj + _‘si-'hij)]
i=1

j=1,...,20—1-n, and for the bit ajindicating a double error is

(13)

I
a0=—n+1 ), Si
i1 (14)

The polynomial discriminant functions corresponding to a; in (13) can be derived by applying
Lemma 1 through Lemma 4:
n

g = X; { 2 [(tih - t;(1 - hij+ tner + n}

i=1 (15)
where t; is defined similarly in (7), while the one for indicating a double error is
n n
g0 =tn+lI:z ti—(n— 1)] + 2 ti—(n—-1)—ta
i;—\’ 1 n i=1
=tn+l 2 t + 2 ti—Ntey — (@~ 1)
i=1 i=1 (16)
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by the following two lemmas:
Lemma 5: If a; <> x; fori =1, ..., n, then
n n
Z a; <= 2 xi—(n-1)
i=1 i=1
Lemma 6: If a <> x,b = y,and lyl > 0.5, then ab <= y(I-x) +x =—xy +y +x.

Theorem 2: The (21, 2" —1-n) extended Hamming code can be decoded by high-order
perceptrons with 2n+2 weights for one perceptron and n+2 for each of the remaining ones.

IV. Decoding of Multiple-error Correcting Codes

Decoding of a t-error correcting code needs to test whether the syndrome S matches any
combination of up to t columns of H or not. For the case of t = 2, the Boolean expression for
doing this can be written as "

n n
aj=v;® [H (sihj; + —si—hy) + 2 H (sihijx + —nsiﬁhijﬂ:l
i=1 k=1i=1 an

where A = hy; + hy mod 2. The first AND term is to see if S matches column j of H and the
second AND term tests if S matches the sum of column j and k of H, over all k.

From Lemma 2 through Lemma 5, we can transform the expression in the square bracket in
(17) into the following function

G;=sgn( Y, [(hs — (1 - hy)] + (@ - 1))
i=1

M n
+ Y, sgn( Y, [k - 501 - b)) + (- 1) -M
k=1 i=1
such that a; <= x;G; by Lemma 1, or alternatively a; <> x;sgn(G;).

The expression x;sgn(G;) can be implemented by a two-layer network with high-order
perceptrons in the first layer followed by a linear perceptron in the second layer. The outputs of
the first layer are summed and clamped with a threshold M by the linear perceptron. This output
is then polarized by the bipolar variable Xj to produce a correct result.

Decoding of up to t errors can be derived similarly, in which case more high-order
perceptrons are needed since the number of combinations of up to t columns of H increases as t
grows.

Theorem 3: A multiple-error correcting code can be decoded by a two-layer network
with high-order perceptrons in the first layer and linear perceptrons in the second layer.
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V. Conclusion

We have shown that the Hamming code and its extended one can be decoded by single-

layer high-order perceptrons with unexpectedly low network complexity, and illustrated how to
decode multiple-error correcting codes by two-layer networks. Since the neural network decoder
can operate in real domain as well, it is a kind of soft-decision decoder, which uses more
information passed from the demodulator and thus in general gives better performance than its
hard-decision counterpart.
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