A Grouping Heuristic Algorithm For Gate Matrix Layout

Jongping Liu and Feipei Lai

Department of Computer Science
National Taiwan University
Taipei, Taiwan, R. O. C.
Tel: (02)-3630231-ext 3230

ABSTRACT

For the gate matrix layout problem, we are to minimize the
area of the layout and the total wire length. This paper proposes
an idea of grouping poly-gates as a pseudo gate to simplify the
problem and reduce the execution time. A good result has been
generated very quickly via the grouping insertion.

1. INTRODUCTION

The style of the gate matrix is introduced by Lopez and Law
in 1980. It improves on coarse grid symbolic layout by providing
a regular layout style where a matrix of intersecting transistor
diffusion rows and polysilicon columns are employed. The inter-
section of a row and a column is a potential transistor site, and the
metal connects the neighboring transistors in the layout. The gate
matrix has a very simple and regular structure [1]. Several papers
discussing the gate matrix layout optimization have been published
in recent years [2-8].

First of all, we describe the key points of the gate matrix
problem. The primary goal is to minimize the area of the layout
with the constraint that the number of the poly-gate is fixed, there-
fore, to minimize the number of the tracks is the most important
goal in this problem. The secondary goal is to minimize the total
wire length. The problem was known to be NP-complete, fast
heuristic methods are suitable for this purpose.

When the previous algorithms executed a move or an inter-
change, the gate sequence can be updated only by one gate. In
some cases, they are time-consuming and may not produce a better
permutation. Figure 1 (a) and (b) illustrate the situation provided
that the initial gate sequence is (A, B, C, D, E, F, G, H). The
Min—Cut heuristic splits the set of gates into two subsets (A, B, C,
D) and (E, F, G, H), if it wants to move any gate of the two sub-
sets into the other, the cost can not be reduced anyway [2]. The
Simulated Annealing method interchanges the positions of the two
gates, but the method will spend a lot of time interchanging ran-
domly [3,9]. Because of lacking the sense of grouping, it is
difficult for the sequence of the gates to be updated by a single

gate move. Therefore, it is hard to modify the layout by single
gate moves or gate interchanges. However, we can easily get a

better gate sequence by using grouping insertion.

Except grouping, we permute the sequence by insertion of the
pseudo gates instead of moves or interchanges. The position of
insertion is determined as follows:

(1) For each possible position, calculate the gain of the inserted
gate on the density of the gates and the length of the nets.

(2) Choose the position with the minimum effect on the density.
(3) Compare the length of the nets if necessary.

256

This paper uses net-list representation as input, so logic
specification or circuit schematic is transformed into net-list form.
D—net (dynamic net-list) was proposed to delay net binding until
the permutation of gate is completed [2].

Consider the circuit schematic shown in figure 2(a). In fixed
net-list representation, the elements of the net-list are always fixed,
namely, the bindings of the nets are unique. However, only one
transistor is needed to connect the extemal node in case of the seri-
ally connected transistors, i.e., only the boundary transistor is used
for binding. It is difficult to determine which transistor should be
put on the boundary before the final permutation, the decision must
be delayed until the order of gates has been determined. As shown
in figure 2(b), transistor a, b, ¢ are serially connected. If the net
N2 is in fixed format, then only gate @ can be connected with the
external gate. Since the gate a has already such a heavy load that
the layout needs 4 tracks. If we adopt the D—net and substitute
gate ¢ for gate @ in N2, the tracks number will be decreased by 1.
The Figure (2) demonstrates that the flexibility of the D-—net is
better than that of the fixed net-list.

2. GROUPING HEURISTIC

2.1. Fundamental of Graph Theory

The gate matrix layout can be treated as an undirected graph.
A set S, S ¢ V, of vertices is a disconnecting vertex set of the
undirected graph G=V,E) iff the graph
H=V-S,E-[(i, j)| i, jeS,and (i, j)eE]) contains at least
two components. For example, consider the graph of Figure 3(a),
the removal of the vertices 2 and 6 together with the edges (1, 6),
(1, 2) (2, 3), and (6, 5) leaves behind the graph of Figure 3(b).
The graph has two connected components, so {2, 6} is a discon-
necting vertex set of the graph of Figure 3(a). Yet the disconnect-
ing vertex set is not the only one, {1, 4}, and {2, 4} are also the
disconnecting vertex sets. If G has a disconnecting vertex set,
then its connectivity is the cardinality of its smallest disconnecting
vertex set. The connectivity of this example is 2 for their cardinal-

ity are at least two. . . .
There is an elegant algorithm to find the articulation points of

the connected graph [10]. This algorithm involves the use of the
depth first spanning tree. Depth first search (DFS) is an altenate
to breadth first search. We randomly select a vertex v as the root,
starting at the vertex v. Initially, the vertex v is marked as reached.
The algorithm of DFS is shown as follows.

Step 1:
All the unreached vertices {w;, wy,
are selected to push into the stack.
Step 2:
All the new vertices in the stack are marked as reached. Pop
a vertex w from the stack.

..., W,)} adjacent from v

Step 3:
Assign w to v, repeat the above steps until all of the vertices
are reached.

Figure 4(a) shows a graph together with one of its DFS span-
ning trees. This spanning tree is shown in dark edges. In Figure
4(b), this spanning tree has been redrawn as a tree structure, for
which the solid lines are tree edges and the broken ones are back
edges. The known algorithm can find all the articulation points in
the graph [10], but it can only be applied to the graph of 1-con-
nectivity. When the gate matrix layout is transformed into an
undirected graph, a net which contains n» gates will be mapped to
C(3) edges, such that the connectivity of the transformed graph is
too large to find articulation points. In the ordinary cases, the
algorithm is changed slightly in searching articulation points, the
heuristic rule assumes that the gates of higher degree are articula-
tion points. The problem of gate matrix can be mapped easily to
the problem of graph which transforms the vertices of graph into a
straight line and minimizes the number of overlapped edges.

{v1, Vo ..., v, } is a disconnecting vertex set, any vertex v; in
the set is called an articulation point. Assuming that the discon-
necting vertex set is known by the above algorithm or the heuristic
rule, the groups are inserted among the articulation points accord-
ing to the cost function values. The cost function is a function of
the length of passing edges and the density of the vertices, the den-
sity of the vertex is defined as the number of edges intersecting the
vertex. The details will be discussed in the next section. We illus-
trate an example using the graph shown in figure 4.

The set of {2, 3} is a disconnecting vertex set of the graph.
After deleting the articulation points, the graph will be split into
the following subgraphs: {1, 4}, {5, 6} and {7, 8, 9}. Now we
define a subgraph generated from the splitting operation as a group.
The groups {5, 6} and {7, 8, 9} are connected with the vertex 2
and 3, respectively. The group {5, 6} will be placed beside vertex
2 and the group (7, 8, 9} will be placed beside vertex 3. The

group {1, 4} is inserted between vertices 2 and 3 because the
group can only be connected with them. Therefore, the initial

sequence is as follows: {7, 8, 9} {3} {1, 4} {2} {5, 6). If the
result is dissatisfactory, then we can permute the groups and articu-
lation points again. Finally, we can determine the order of the ver-
tices within the group according to their external connectivity (the
external connectivity of a vertex is the number of edges incident on
the articulation points). The final sequence is shown in figure 4(c).

The order of the sequence is induced as follows: A graph is
divided into independent groups by removing the articulation
points. Then We build the sequence by inserting the groups into
the articulation points. The groups can be divided by removing its
articulation points recursively. When group connects with only
two articulation points, we insert the group between these two arti-
culation points directly. When group connects with more than two
articulation points, we will evaluate the cost function to determine
the proper position of insertion. After the initial sequence is gen-
erated, we release the groups or articulation points of the higher
density and insert again until a better layout is obtained.

2.2. Problem of the Gate Matrix

The problem of graph discussed is similar to that of gate
matrix, the poly-gates and net_lists are mapped to the set of ver-
tices and edges. We choose the gates with which more nets are
connected as special gates, the layout may be split into indepen-
dent groups by deleting those special gates, the independent
groups can be treated as pseudo gates. The program permutes the
special gates and pseudo gates by evaluating the cost function, and

257

recursively executes until all the size of pseudo gates are less than
5. Consider a gate matrix M (G, N), where G is the set of gates,
N is the set of nets. Let D(G’, N') be the disconnecting set,
where G’ is the set of special gates, N’ is the set of nets which
contain the gates of G'. There are n independent group M;
(pseudo gates) by partitioning M (G, N), G; is the set of the gates
which are contained within the N; except G’.

M(@G-G',N-N')= SM;(G;, N))

i=1

i=n
G =G +G

i=1
G, N\ Gj =, where i #j
N; \\N; =0, where i #]

An example is shown in Figure 5. According to the above
heuristic method, we use {3, 8, 11, 13} as the disconnecting set to
disconnect the net list. The net list will be split into 8 independent
groups (pseudo gates): {1 2}, {4 10 12}, {5 6 7}, {9}, {14 15},
{16 17}, {18 21}, {19 20}. After the first permutation, the gate
sequence is shown in figure 5(a). Although the number of tracks is
reduced to the minimal bound, the length of the nets is still not
optimal. We can release and insert pseudo gates repeatedly until a
better layout has been generated. Finally, we can determine the
order of the elements within the pseudo gates according to the
external connectivity of the elements with the special gates. The
final result is shown in figure 5(b).

It is clear that the number of special gates and pseudo gates
are less than the number of real gates. If every pseudo gate con-
tain more than one gate, then the size of problem and execution
time will decrease apparently. The grouping idea is well compati-
ble with the hierarchical structure of circuits. Each group
corresponds to the building block of the circuit, and each block can
be divided recursively into several subgroups.

2.3. Cost Function

After the initial sequence has been built, now the sequence
consists of special gates and pseudo gates. From now on, a gate
may represent a special gate or pseudo gate. The minimum value
of the cost function decides where the gate should be placed. The
primary goal of the gate matrix layout is to minimize the number
of track, and it can be characterized by the gate density. The
minimization of the total wire length is the secondary goal, so the
formula of the cost function is

cost(j) = Zd? + wire_length (j),

where d; is the density of gate i, { is the number of nets
passing through gate i, and wire_length(j) is the amount of
change of nets length when the gate is inserted in the region of
gate j (the left-hand area of gate j). To smooth out the density in
the layout, the cost function is set to be quadratic for the gate den-
sity and linear for the estimated length of the nets.

The position of the insertion is the region between two gates,
and the region i represents the left-hand area of gate . First, we
explain the meaning of the variables of cost function. Assuming
that gate G is placed in each boundary of the sequence in tumn.
N, (i) and N,(i) represent the number of nets. The nets connect
with gate G from right and left direction respectively, and travers-
ing the region of gate i. N (i) is the number of nets which have

already passed through the region of gate i. Using the tollowing
equations, we can retain the values of those updated variables for
the next step evaluation, and do not have to analyze the overall
layout again. Therefore, the insertion operation can save the execu-
tion time tremendously. Assuming that gate G is inserted between
left_gate and right_gate.
If the gate i is located in the right-hand side of gate G,
then
d; =d; + N, (i)
N@)=N@)+N, (@)
else
d; '=d; + N (i)
N (@) =N(@) + N,(left_gate);
wire_length(i) == N;(i) — N, (@),
dg := number of nets connected with gate G + N(right_gate);
N(G) = N,(left_gate) + N (right_gate);

Figure 6 is an example of the cost function evaluation. In
Figure 6(a), the gate G is located in the leftmost of the gate
sequence,

N(G)=0; NJ(A)=4, N (B)=3; N(C)=2; NND)=Ni(E)= 1.
In Figure 6(b), the gate G is located in the rightmost of the gate
sequence,

N,(A)=0;N,(B)=2; N,(C)=3; N,(D)=N,(E)=N,(G) =4.
Through the observation, N,(i) is a descending function from left
to right and N, (i) is an ascending function from left to right.

3. ALGORITHM

step O:
Define the connected layout M; = (G;, N;), G; is the set of
poly-gates, N; is the set of nets. The original layout is
defined as M,

step 1:
Assuming that M; is the input connected layout, The cardinal-
ity of G; is n. We set n/5 as the upper bound of the number
of special gates. The set of special gates is defined as
D; = (G';, N’;), G’; is the special gates, N'; is the nets which

contain any element of G';. M; = M, - D
= (Gl - G’,’, N,‘ - N'l)

step 2:
If M’; is still connected, then M; « M’; and goto step 1.

step 3:
Assuming that M’; has & components, which are indexed as
My, My, .., My

For j =110k do
Link the gates of G’; which are connected with M;;.
Insert M;; into the position of the sequence with the least
cost.

IfIM;; | >4, then M;,; « M,;, and goto step 1.

i
step 4:
For all i, j do
If | M;; | < 4, then according to the connectivity of the
neighbors in the gate sequence, permute the elements in
Gy
{An initial gate sequence has been generated.}
step 5:
We release % gates of higher density from the sequence, and
insert them again into the sequence according to the cost func-
tion values repeatedly. Since the positions of gates have been

determined, then we can choose the boundary transistor of the
D—nets such that the length of nets is the shortest. Finally,

258

we adopt the left first binding method [11) to do the routing.

Repeat step 5 until the track number drops below some given
value or the execution time exceeds a preset time limit.

4. RESULT & CONCLUSION

Two examples results are shown in figure 7 and 8, respec-
tively. The first example which contains 40 nets, 42 gates, and 59
transistors required 15 tracks. The second example which contains
131 nets, 71 gates, and 306 transistors required 30 tracks. The
algorithm has been implemented in C and currently runs on an
IBM PC/AT. The execution time of our algorithm depends on the
structure of circuit and number of the gates. Generally, a circuit
with a hierarchical structure will gain an advantage over the
flattened circuit while grouping operations. For these two exam-
ples, the execution time was 20 seconds and 120 seconds, respec-
tively.

This paper presents the concept of grouping and replaces
moves or interchanges with an insertion operation. The grouping
method can reduce the size of the gate problem and produce a
better abstract layout. While doing insertion operation, only the
relative nets need to be routed again. The current status can be
updated slightly for use in the next time, so the execution time can
be shortened dramatically.

5. ACKNOWLEDGEMENT

The authors wish to thank Prof. O. Wing of Columbia
University for kindly providing gate matrix layout examples.

REFERENCE

[1] Neil Weste and Kamran Eshraghian, "Principles of CMOS
VLSI Design A system perspective” Addison-Wesley publish-
ing company.

K. Hwang, W. K. Fuchs, and S. M. Kang, "An efficient
approach to gate matrix layout,” Proc. 1986 IEEE Int. Conf.
CAD Santo Clara, CA, Nov. pp.312-315, 1986.

H. W. Leong, "A new algorithm for gate matrix layout,”
Proc. 1986 IEEE Int. Conf. CAD Santo Clara. CA. Nov
pp.316-319, 1986.

O. Wing, "Internal graph based gate matrix layout,” Proc.
1983 IEEE Int. Conf. CAD Santo Clara, CA, Sept. 1983.

S. Huang and O. Wing, "Improved gate matrix layout,” Proc.
1986 IEEE Int. Conf. CAD Santo Clara, CA, Nov. pp.320-
323, 1986.

A. D. Lopes and H-F S. Law, "A dense gate matrix layout
method for MOS VLSL" IEEE Trans. Electron Devices, Vol.
Ed-27, pp.1671-1675, Aug. 1980.

O. Wing, S. Huang, and R. Wang, "Gate matrix layout,"
IEEE Trans. on CAD, Vol. CAD4, pp 220-231, July 1985.

J. T. Li, "Algorithms for gate matrix layout,” Proc. 1983
IEEE Int. Symp. Circuits and Systems, Newport Bench, CA,
pp.-1013-1016, 1983.

M. P. Vecchi, and S. Kirkpatrick, "Global wiring by simu-
lated annealing,” IEEE Trans. on Computer-Aided Design,
Vol. CAD-2, pp.215-222, 1983.

Sartaj Sahni, "Concepts in discrete mathematics"

A. Hashimoto and J. Stevens, "Wire routing by optimizing
channel assignment within large apertures,” Proc. 8th Design
Automation Workshop, IEEE, pp.155-169, 1971.

[51

(6]

(71

(8]

[10
(11]

A B C D E F G H
* *
* * * S p——— %

* 4 *

(a) The initial gate sequence.
G H B [} C D E F
* —% * *

* * * e —— k

(b) The layout is produced easily by

grouping 6 and H as a pseudo gate.

®
®

© O,

(b)

Figure 3. The graph and the subgraphs

Figure 1. A grouping example in the abstract layout

—a
=
f—n

(a) Circuit schematic

h e d a b [
* + *
e *
*

*

*

e

(b) Fixed net-list.

g h e d a b c
* *
—k

*

*

*

— %

(¢) Dynamic net-list

I

e

f

f

*

Figure 2. Circuit schematic and Net-list representation.

(a)

that result from the deletion of
vertices 2 and 6.

A @/
N
=N
©

/

(a)

®

N1=(a, b, c)
N2=(a,) /
N3=(a, d, e) @
N4=(a, g, h) / \@
N1=(a, b, ¢) i AN
N2=(N1, f) ® | B ®
N3=(B, d, e) .“:'-
N4=(a, g, h) (9) ©)
? 8 9 3 4 1 5 6
. A,)
* * * * * * * .
— e)
* * * ¥
(c)
Figure 4. A graph and its DFS spanning tree.

259

{14 15) {16 17} 11 {18 21} 13 {19 20}

3 {12} {4 12 12} E {9} {5 6 7 N1=(a, B, C)

] Gmomay
o m i L % K=ot fmm——— f’ N N2=(C, 6)
X . YT N3=(B, E, G)
(a) N4=(f,-G)

(a) Net-list.
2118201913~l7151514113121‘221995?5? G 8 B p 0 £
Bt Wl Ymeommmmmcceeee t-=8 Yomtomt ==t

femmmmoe U Moo Beelp Heepemmmcoean Y Yoty P] * %
—— P -% B
M ’ L o ——1p * —_—— *
(€)] L .
Figure 5. A simple example that can be solved by " .
grouping insertion easily. NE O 4 . 2 . .
(b)
] B C D E G
* + .
* — *
* ———
* *
Nr: O 2 3 4 4 4
(c)

Figure 6. The effect that gate G is
located in the boundaries.
41 2 05 61210 6192018212729 25260

' 3

Gmegomgonl

Figure 7. A gate matrix layout (itt) with 42 gates, 40 nets,

86240375
it S SO g

A 1132115203222 41

'
) ————g Yoeyoeneaman .
' [,
Jomaneg ———p Gemprroemamememeneeranennes "
: .- Jonqentt
A\ d 1]]
Vowoovp $omge ol Nomosbemcmccmccjonposiect
-y P
§oremrmeemnree =gemg
Seroamnney
L oad 4

59 transistors requires 15 tracks.

71631 923191018 52 6533 26 3 28 35 27 36 29 30 37 32 31 38 49 43 40 7 54 60 39 59 58 42 4) 61 65 55 47 46 62 56 53 45 §4 51 44 63 50 42 57 70 69 55
- - s —s a--s

Figure 8. A gate matrix layout with 71 gates, 131 nets

306 transistors requires 30 tracks.

260

