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ABSTRACT 
In this paper, an efficient algorithm is developed to handle the 

difficulties in parsing noisy word lattices (sets of word hypotheses obtained 
in continuous speech recognition) which include problems such as word 
boundary overlapping, homonyms, lexical ambiguities, recognition 
uncertainty and errors, etc. An augmented chart is first proposed, and the 
new algorithm is then derived on this chart. This algorithm properly 
integrates the global structural synthesis capabilities of the unification 
grammar and the local relation estimation capabilities of the Markov 
language model. The parsing algorithm is island-driven and best-first. In 
this way, not only the features of the grammatical and statistical approaches 
can be combined, but the effects of the two different approaches are reflected 
in a single algorithm such that the overall selectivity can be appropriately 

1. INTRODUCTION 

optimized. 

In this paper, an efficient parsing algorithm integrating 
unification grammar and Markov language model is developed to 
handle the difficulties in parsing noisy word lattice (sets of word 
hypotheses obtained in continuous speech recognition) which 
include problems such as word boundary overlapping, 
homonyms, lexical ambiguities, recognition uncertainty and 
errors, etc. These are the problems encountered in parsing 
spoken natural language, usually not present in parsing typed 
natural language. It is therefore not possible to directly apply 
techniques for parsing typed natural language to spoken natural 
language [ 13. Several algorithms for parsing word lattices had 
been proposed [2,3] and shown to be very efficient in parsing 
less ambiguous natural languages such as English obtained in 
speech recognition. However, all of them are primarily strictly 
left-to-right, thus with relatively limited applications for cases in 
which other strategies such as island-driven [ 11 are more useful, 
for example, corrupted word lattice with extra, missing or 
erroneous phones in speech recognition [4]. 

Since the most important problem in all speech recognition 
systems is the inherent uncertainty associated with the 
acoustic-phonetic processing in such systems. Language 
processing for speech recognition should therefore be able to 
tolerate errors of recognition, and even to compensate for some 
errors occumng in the acoustic-phonetic phase. Conventionally 
there are two approaches of language modeling: grammatical and 
statistical. The features of these two approaches are basically 
complementary -- the statistical approaches predict very well 
locally, and can even tolerate some errors of recognition; while 
the grammatical approaches are better in checking the global 
structures, finding out the exact meaning or sentence structure, 
and can sometimes compensate for recognition errors. A unified 
approach integrating the grammatical and the statistical 
approaches is thus desired to combine the advantages of both 
approaches to improve the correct rate of recognition [5] .  In this 
paper, a new parsing algorithm is proposed to integrate 
unification grammar and Markov language model for continuous 
speech recognition applications. Unification-based grammars 
(UG's), e.g. LFG, GPSG, have some advantages in language 
processing, such as surface-based, informational, inductive. 

declarative, ..., etc. [6]. It is also easy to integrate syntactic 
information (e.g. categories, subcategorization) with semantic 
information (e.g. case roles, semantic markers) by UG's and 
such advantages had been applied to speech recognition [3]. 
Markov language model [7], on the other hand, has the 
advantages that the model parameters can be statistically trained, 
the results are easy to determine, and the acoustic recognition 
uncertainty can be included. Therefore two very promising 
approaches are integrated together in this new algorithm. 

The proposed algorithm is based on an augmented chart. 
Chart has been an efficient working structure widely used in 
many natural language processing systems [8] but it is basically 
designed to parse a sequence of fixed and known words instead 
of ambiguous word lattice. In this paper, the conventional chart 
is extended or augmented such that it is able to represent a word 
lattice; and the new word lattice parsing algorithm is then derived 
on this chart. This algorithm properly integrates the global 
structural synthesis capabilities of the unification grammar and 
the local relation estimation capabilities of the Markov language 
model. The parsing algorithm is island-driven and best-first, and 
the augmented chart representation can carefully consider the 
complicated problems in noisy word lattices. In this way, not 
only the features of the grammatical and statistical approaches 
can be combined, but the effects of the two different approaches 
are reflected and integrated in a single algorithm such that the 
overall selectivity can be appropriately optimized. 

In the following, Section 2 formally describe the problem, 
the unification grammar and the Markov model. Section 3 
introduce the concept of the augmented chart and the procedure 
to map an input word lattice to the augmented chart. The new 
augmented chart parsing algorithm integrating the two 
approaches is then presented in Section 4; while some 
preliminary experimental results and concluding remarks are 
fiially given in Section 5. 

2. THE PROBLEM DEFINITION AND LANGUAGE 
MODELING 

Some relevant definitions are first given below. 
Word Lattice: A word lattice W is a partially ordered set of 

word hypotheses, W = (wl ,  ..., Wm), where each word 
hypothesis wi, i=l ,  ..., m, is characterized by begin, the 
beginning point, end, the ending point, cat, the category, feu, 
the feature structure, phone, the associated phonemes, and 
name, the word name of the word hypothesis. These word 
hypotheses are sorted in the order of their ending points; that is, 
for every pair of word hypotheses wi and wj, i<j implies 
end(wi) <= end(wj). Also, two word hypotheses wi and wj are 
said to be connected if there is no other word hypothesis located 
exactly between the boundaries of the two word hypotheses, 
i.e., :f Wi I wj and there does not exist any other word 
hypothesis Wk such that Wi I Wk IWj, where Wi I Wj iff 
end(wi) <= begin(wj). A sentence hypothesis S = {wil, wi2, 
..., win) is then a sequence of connected word hypotheses from 
a starting word to an ending word selected frcm the given word 
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lattice, and a sentence hypothesis is grammatically valid only if it 
can be generated by a grammar. As an example, a sample word 
lattice constructed for demonstration purpose is shown on the 
top of Fig. 1, in which only the word sequence "Tad does this." 
is a grammarically valid sentence hypothesis. 

Unfication Gra mmar (UG) : The unification grammar 
used here is a PART-II-like formalism [6]. It is composed by a 
lexicon and a set of combinatory rules. Every word in the 
lexicon is represented as a kind of feature structures. 
Combinatory rules are employed to describe how strings are 
concatenated to form longer strings and how the associated 
feature structures are related. A UG is a four-tuple (Vn, Vt, s, 
R), where Vn is a set of phrase symbols, such as NP, VP, 
... etc.; Vt is a set of category symbols, such as N, V, Det, 
... etc.; s is the sentence symbol belonging to Vn; R is a set of 

combinatory rules, where each rule r is defined as r= ( a i  --> 

Bij, Eij), i=l, ..., k, j=1, ..., ni ,where a i  EV , B..E (Vn U Vt)* 
and Eij is a set of constraint equations describing relations 

among the elements of the associated feature structures of ai 
and Bij. Unification is then prescribed as the sole 
information-combining operation. This makes the formation 
completely declarative and its interpretation order-independent. 
The unification operation in our formalism is described by the 
constraint equations. In the following, some example rules of 
the UG are illustrated, where below each PS rule is some 
associated constraint equations. 

n 1J 

(11) s -->NP VP (r3) VP --> V, 
<VPSubj>= <Np, <m= <v> 
<s> = <vp> (r4) VP --> V NP, 

<NP> = a> <w>= <v> 
Markov Language Mode 1: A direct relation to 

compute the probablitiy P(S) for a sentence hypothesis S = (wl,  
~ 2 ,  ..., Wn) is 

(12) NP-->N <VObj>= <NP> 

n 

i= 1 
P(S) = P(wilWi-1, w~-~ , . . .wI )  

but practically such a relation will cause difficulties in 
implementation because even for a moderate vocabulary size the 
number of the probabilities P(wilwi-1 wi-2, ... w1) would be too 
large to estimate, store or retrieve. In this parsing algorithm we 
simplify the above relation by assuming a first-order Markov 
language model (bi-gram model), i.e., 

and the probabilities P(wilwi-1) are estimated using a large 
database of training corpus. These probabilities are estimated by 
simply counting the frequencies of occurrence for different 
words to appear in adjacent positions. 

We now formally define the problem addressed in this 
paper below. 

The Problem: Given a word lattice W = (wl ,  ... , ~ n ] ,  
a unification grammar G and a Markov langauage model M, the 
purpose of the parsing algorithm is to efficiently and accurately 
find out a sentence hypothesis S* that is grammatically valid 
with a satisfactory probability P(S*) based on W, G and M. 

Assume a sentence hypothesis is denoted by S = w 1 ,w2, 
w3 ..... wn. Let U denote the unknown input speech signal. In 
statistical point of view, a very natural decision rule for a speech 
recognition system to decide in favor of a sentence hypothesis 
S+ is 

P ( ~ i l ~ i - 1 , ~ i - 2 , ~ 1 )  = P(wilwi- 1) 

P(S+ I U) = Max P(S I U) 
S 

in other words, the sentence hypothesis S +  is chosen if it 
maximizes the probability P(S IU) for all possible sentence 
hypotheses S .  In this paper, in order to integrate the statistical 
and grammatical approaches, the decision rule is modified such 
that the purpose is to find a sentence hypothesis S* that is both 
grammatically valid and with a satisfactory probability P(S*IU), 
then the component words and the associated feature structure of 
S *  are the recognized result. Here we replace the highest 
probability by a satisfactory one because exhaustively parsing a 
word lattice is often computational inefficient. Using the Bayes 
formula, 

P(U I S) P(S) 

P(U) 
p(s \U) = - -------------_---__ 

For a given unkonwn speech signal U, P(U) is the same for all 
possible sentence hypotheses S. Therefore all the speech 
recognition system has to do is to find a sentence hypothesis S 
which is grammatically valid and P(UIS) P(S) is satisfactory. 
Since the first term P(UIS) can be obtained in the 
acoustic-phonetic processing phase using approaches such as 
hidden Markov models, in this paper we will focus on the 
evaluation of P(S) and the grammatical analysis of S .  

In the new parsing algorithm proposed in this paper, the 
grammatical analysis is based on UG and the probability 
estimation is based on the Markov language model. In parsing, 
each constituent created according to the description of UG will 
be assigned a probability based on the Markov language model, 
in which the probability for the component word string of the 
constituent is taken as the probability of the constituent. 
Therefore the constituent with the highest probability will be 
constructed first onto the augmented chart. The first sentence 
hypothesis constructed from a starting word to an ending word 
with a satisfactory probability is the recognized result. If the 
input lattice is seriously corrupted, there may be no 
grammatically valid sentence hypothesis existing in the word 
lattice. With this algorithm because all partial parsed results are 
all recorded in the augmented chart, thereby some compensatory 
strategies, such as to continue to find the word string S# that 
maximizes P(SIU) or an island (constituent) which covers the 
largest number of words, can be selected to give reasonable 
results. Since all of the operations are performed on the 
augmented chart, in the following sections, we will first describe 
the augmented chart and then the algorithm. 

3. THE AUGMENTED CHART 

The conventional chart parsing algorithm was designed to 
parse a sequence of words. Here the chart is augmented for 
parsing word lattices. The augmented chart is a directed uncyclic 
graph specified by a two-tuple <V, E>, where V is a sequence 
of vertices and E is a set of edges. Each vertex in V represents 
an end point of some word hypotheses in the input word lattice, 
while the edge set is divided into three disjoint p u p s :  inactive, 
active and jump edges. As were used in a conventional chart, an 
inactive edge is a data structure to represent a completed 
constituent. It is characterized by the following information: 
from, the vertex where the edge starts (the begin vertex), to , the 
vertex where the edge ends ( the end vertex), car, the associated 
category, P, the associated probability, sub-inactive, the list of 
the immediately spanned inactive edges that were included and 
name, the word name (for lexical edges only). An inactive edge 
is called a lexical edge if it has a lexical category, otherwise it is 
a phrasal edge. An active edge represents an incomplete 
constituent which needs some other complete constituents to 
compose a larger one. It is similarly characterized as above by 
from, to, P, sub-inactive, as well as rule, the referred grammar 
rule andpos, the position of the category in the rule it is looking 
for. A jump edge, however, is a functional edge which links two 
different edges to indicate their connection relation (described 
below) and guide the parser to search through all edges 



connected to each active edge during parsing: The partial 
ordering relation among the edges in the augmented chart can 
first be defined according to the order of the boundary vertices. 
Two edge Ei and Ej are then said to be connected (i.e. 
EConn(Ei, Ej) = true) only when the end vertex of one of them 
is the begin vertex of the other, or there exists a jump edge 
linking them together. For example, in the chart representation 
of the sample word lattice in Fig. 1 (on the bottom of the figure, 
the details will be explained in the following), EConn(E3, Eg) = 
true due to the existence of Jump3 linking E3 and Eg, but 
EConn(E 1, Eg) = false due to E3 and E4 existing in between. 
This jump edge and the new connection relation is the primary 
difference between the conventiooal chart and our augmented 
chart. 

--."-d- 

-1 (5. w. N.w.~-v rr3 ( ~ . 4 2 . v . d ~ . - )  

Fig.1 In this figure, on the top is a set of overlapped word hypotheses 
which are assumed to be produced by an acoustic signal processor in speech 
recognition. where each rectangular shape denotes the time segment of the 
acoustic signal for the word hypothesis and above it is the 6-tuple 
information, from left to right, i.e., begin,  end ,  cat, phone and name, 
respectively (fea has been left out for simplicity); on the middle are the sorted 
wbp's; and on the bottom is the resulting initial chart. 

Before parsing, any input word lattice has to be mapped to the 
augmented chart such a procedure is described below. At the 
beginning of the mapping procedure, we have to first consider a 
situation in which additional word hypotheses should be inserted 
into the input lattice to avoid any important word being missed in 
the sentence. A good example for such a situation is in Fig. 2 
where the time segment for the word hypothesis wi (the word 
"same") is from 10 to 20, and that for w, (the word "message") 
is from 14 to 30. Apparently for this situation four cases are all 
possible: wi is a correct word but wj is not, wj is correct but wi 
is not, both wi and wj are correct because they share a common 
phoneme (m) in the co-articulated continuous acoustic signal, or 
both wi and wj are not correct. A simple approach to be used 
here is that two additional word hypotheses wil (also "same", 
but from 10 to 17) and wjl (also "message", but from 17 to 30) 
are inserted into the word lattice W, such that all the above four 
possible cases will be properly considered during parsing and no 
any word will be missed. 

VI same Same 1 
~ 1 1 1  Same I - wil  I message I 

1 ', message ,.,, message I 

-0 : 4 0 -  

Fig.2. The situation in which additional word hypotheses are inserted 

After the above additional word hypotheses insertion, every 
boundary point (either beginning or ending) of any word 
hypothesis of W should then be mapped to a vertex in the chart. 

All these word boundary points (wbp's) have to be first sorted 
into an ordered sequence (indicated by a function Order(x), 
where x is any wbp); the definition of Order(x) is as follows. To 
any pair of wbp's x and y, if x and y are distinct then their order 
is based on order in time; if x and y are identical then the 
beginning wbp (denoted by b) is after the ending wbp (denoted 
by e ) .  For each wbp x, the corresponding vertex is then 
assigned depending on its preceding wbp y as described below. 
As was shown in Fig. 3, for totally four possible cases of x and 
y, i.e. bb (y is a beginning wbp and x is also a beginning wbp), 
be, eb, ee, only for the case be (y is a beginning wbp but x an 
ending wbp), two different vertices should be assigned to x and 
y to preserve the ordering relation between the corresponding 
word hypotheses of x and y. But in all the other three cases, x 
and y can be given the same vertex. Let the function Vertex(x) 
denotes this assignment. 

cuo(r) bb 

Fig. 3. Vertex assignment of the word boundary points 
Now, for each word hypothesis wi , an initial inactive edge 

can be constructed. The function Edge(wi) for a word 
hypothesis Wi is then exactly specified by the two vertices 
assigned to the two wbp's of wi , i.e. Edge(wi) = < 
Vertex(begin(wi)), Vertex(end(wi))>. Finally, for any pair of 
vertices V i  and Vj, if there isn't any complete initial inactive edge 
existing between them, a jump edge from vi to vj is constructed 
to link V i  and Vj. Using the above procedure, Fig. 1 also shows 
the mapping results of the sample word lattice. The sorted wbp's 
(specified by a time scale and whether it is a beginning or ending 
wbp) are on the middle of the figure, and the resulting initial 
chart is on the bottom. It can be shown that the above mapping 
procedure has the following nice properties: first, the ordering 
and connection relations among all word hypotheses in the word 
lattice can be completely preserved among the corresponding 
edges in the augmented chart; second, when the input word 
lattice can be reduced to a simple sequence of word hypotheses, 
the augmented chart representation can also be reduced to a 
conventional chart representation. 

4. THE AUGMENTED CHART PARSING 
ALGORITHM 

The fundamental principle of chart parsing is: Whenever an 
active edge A is connected to an inactive edge I which satisfies 
A's conditions for extensions, a new edge N covering both is 
built. Now, in the augmented chart parsing this principle is still 
held; except that the inactive edge I doesn't have to share the 
same vertex with the active edge A, instead it can be separated 
from the active edge A, as long as there exists a jump edge 
linking edges A and I. Meanwhile, the conditions to be met 
should include some additional information such as all 
associated unification operations being successful, etc. 
Moreover, for each constituent C, a probability P(C) = PWc) 1s 
assigned, where Wc is the component word hypothesis 
sequence of C and P(Wc) is obtained from the Markov language 
model. When an active constituent A and inactive constituent I 
form a new constituent N, the probability P(N) can be easily 



evaluated from probabilities P(A) and P(I), i.e. P(N) = 
P(A)*P(I)*{P(wilIwam)/P(wil)], where Wil is the first word 
hypothesis of I and Warn is the last word hypothesis of A if A is 
to the left of I. This is explained below. Let Wn, Wa, Wi be the 
component word hypothesis sequences of N, A, and I 
respectively. Without loss of generality, we assume A is to the 
left of I, thereby Wn = WaWi = Wal, ..., Wam,wil, ..., win. 
Then, P(Wn) = P(WaWi) 

This can be easily evaluated in each parsing step. Although P(C) 
is assigned to every constituent in the augmented chart, only the 
constituents with the highest probabilities P(C) will be 
constructed. The first sentence constituent constructed from the 
starting word to the ending word with a satisfactory probability 
is the recognized result. In fact the above concepts form a useful 
scheme that can be extended to develop different parsing 
algorithms on the augmented chart for different speech 
recognition applications. In this paper, a bottom-up and 
unidirectional island-driven (searching actions triggered by an 
island are always from left to right) parsing algorithm is 
illustrated. 

This algorithm consists of a main procedure: Parser, with five 
assistant procedures: Chart-Initialization, Expectation 
-Formation, Edge-Construction, Pop-Agenda and Push-Agenda; 
and two global data structures: chart and agenda. An abstract 
diagram depicted in Fig. 4 clearly indicates the relations among 
the five assitant procedures and the two global data structures. 

M expectation 
<a,i,p> 10 build 

onsrmctim (a,i,p) 

F’ush-Agenda(a,i) 

probability p 
bcd built 

c x p t i o n  c a b  
Expectation- 
Formation(i) 

Fig. 4 The relations among the five assistant procedures and the two 

Initially, a word lattice is given to the procedure Parser, and 
every word hypothesis of it is represented as a lexical inactive 
edge on the augmented chart by calling the assistant procedure 
Chart-Initialization. Then, for each of the lexical edges, the 
procedure Parser will continuously call the assistant procedure 
Expectation-Formation to establish all probable expectations. An 
expectation is a set of information <a, i, p> to denote the 
possible combination of the active edge Ea, the inactive edge Ei, 
as well as the probability p of the combination. Therefore the 
function of the assistant procedure Expectation-Formation is, for 
any given inactive edge Ei, if cat(Ei) is the first category symbol 
at the right hand side of some rules then to each of them create 
an active edge to denote a searching request; or if there exist 
some active edges and each of them, namely Ea, is left 
connected to and cat(Ea) = cat(%) then to each Ea formulates 
an expectation and call the assistant procedure Push-Agenda to 
insert the expectation to agenda. The agenda is an ordered list of 
expectations which are ready to be constructed onto the chart. 

global data smctures 

Also the assistant procedure Push-Agenda will evaluate the 
probability p for each given expectation by means of the 
previously described evaluation method, and the expectation <a, 
i, p in agenda with the highest probability p will be popped 
from agenda by calling the assistant procedure Pop-Agenda and 
passed to the assistant procedure Edge-Construction to build a 
new edge from the expectation onto the chart. If rule(Ea) is 
satisfied and the unification operations which rule@,) describes 
are all successful then an inactive edge is built; or if there are 
some other necessary categories in rule(Ea) then an extended 
active edge is built. When the first grammatical sentence 
constituent formed from a starting word hypothesis to an ending 
word hypothesis has been constructed with a satisfactory 
probability, the parsing process is completed. While if the 
agenda is empty and no any satisfactory sentence hypothesis is 
found, some compensatory routines can be used to process the 
corrupted lattice. 

5. PRELIMINARY EXPERIMENTAL RESULTS AND 
CONCLUDING REMARKS 

In order to see how the above concept works, a bottom-up 
parser based on the proposed parsing algorithm was developed 
and tested on a small word dictionary with about 1500 words, a 
Markov language model, and a simple set of unification 
grammar rules for Chinese language. A large set of Chinese 
word lattices obtained by an acoustic signal processor which 
recognizes Mandarin speech is used as the input to the parser. 
Due to large number of homonyms existing in Chinese language 
and uncertainty and errors in speech recognition, very high 
degree of lexical ambiguity exists in the input lattices. The 
preliminary results indicate that the augmented chart 
representation can carefully consider the complicated problems 
in noisy word lattices, and the joint effect of the global syntactic 
and semantic analysis capabilities of the unification grammar and 
the local relation estimation capabilities of the Markov language 
model can significantly reduce the interference of noisy word 
hypotheses. Significant improvements in computation 
complexity reduction and recognition accuracy were observed, 
although further experiments are still under progress. 
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