
IEEE Region 10 Conference, Tencon 92
11th - 13th November, 1991
Melbourne. Australia

ARDEN ----- ARchitecture Development ENvironment

Feipei Lai, Fangwui Tsaur, Rung-Ji Shang
Dept. of Computer Science

and Information Engineering
& Dept. of Electrical Engineering

National Taiwan University
Taipei, Taiwan, R.0.C

Email : Flai@cad.ee.ntu.edu.tw

Abstract
Software supports, such as compiler and simulation

tools, are increasingly crucial for architecture
development. A flexible system called Arden is being
developed to help evolve efficient architecture. Arden
combines a retargetable compiler with a back-end
simulation tool which provides quantitative information
for making a good decision in architecture designs. User-
oriented specification for the code generator has
simplified the machine descriptions and uses only 31
rules in describing DLX architecture. An experimental
bottom-up matching algorithm which reduces the pattern
matching to a numerical computation problem and
improves the space complexity is also presented here.

1. Introduction
Quantitative approach in architecture has been

successful for providing decisive information during
architecture designs. A flexible compiler and adaptive
simulation tools are the prerequisite for such an
approach. There are some retargetable compilers [l . 2,3,
41 which have attempted to improve the speed of
gencrated code-generator and the quality of output code in
order to compete with a hand-crafted code generator for
specific machines. But, to be a retargetable compiler,
there should be another critical component that is the
specification facilitation of machine-dependent ingredient.
The major goals of Arden are to reduce the complexity
of describing architecture characteristics, to eliminate the
gap between the compiler and the architecture designer,
and to integrate the compiler with the simulator into a
flexible environment.

Some of the developed code generator generators
have their defects at targeting to one specific machine.
For example:

1) Relargetable compiler GNU cc [11 I is being
updated and redistributed periodically. However, our
experience with GNU shows that it is hard to write the
instruction descriptions with peephole optimization for a
specific instruction set. On the other hand, GNU cc
adopts intermediate paitern orienied instead of instruction
oriented instruction descriptions such that users must

check all the patterns in the description file while one
instruction is added to or deleted from the instruction set.
2) Twig[11 and BEG[4] used dynamic programming to
guarantee that the code generator will output instructions
with minimum cost for each subject tree pattern. They
associated cost variation with each instruction pattern
instead of defining peephole optimization pattern in
instruction descriptions. But, the writers of instruction
description must take care of the completeness of
description by themselves. The code generator in Arden
uses dynamic programming technology to get optimal
code as Twig did and adds semantic-equivalent translation
scheme to pattern matching phase for facilitating
instructions description. The semantic-equivalent
uanslator wanslates an unmatched pattern into the pattern
defined in instruction descriptions.

Pattern matching usually dominates the speed of
recargetable code generator (about 80 percent of the time
in twig-generated code generator is devoted to the pattern
matching [I]). Section 4 gives the details of pattern
matching algorithm.

Frontend generator & optimizer

4 Intermediate code .
Code Generator Gekrrtor
Peepbola Optbpllratkm

t
I Reorvnnidr & Postwocessor 1 I

k Ok
Fig. 1 Architecture Development Envlronment

Figure 1 presents a rough overview of Arden and
the details of critical components which are shadowed in

0-7803-0849-2/92 $3.00 0 1992 IEEE
I81

Figure 1 will be discussed separately. The following
section will give an overview of the prototype compiler
system in Arden and the description language of
instruction set will be shown in section 3. The final
section describes a retargetable instruction simulator to
evaluate the performance of our designed architecture.

2. Prototype Compiler of Arden
An experimental code generator generator is being

developed and incorporated into GNU cc. This code
generator uses simple specification language to facilitate
general users constructing a compiler easily. Arden joins
this retargetable code generator with GNU RTL generator
as the prototype compiler system. Two major parts are
involved:
1) GNU RTL Generator:

The work of this phase is translating the source
language into an intermediate representation language
(RTL), a parenthesized prefix expression form. Global
optimizations are also achieved in this phase.
2) Retargetable Code Generator:

The current code generator in Arden accomplishes
instruction selection by searching through instruction
descriptions based on dynamic programming algorithm to
get the best instructions with minimum cost. In the
meantime, peephole optimization is done in part if
combinational patterns are specified in the instruction
descriptions. Part of peephole optimization will be
delayed to post processor while tree patterns in
instruction descriptions can not specify the characteristics
of Ihe targeted architecture.

In summary, the prototype compiler system of
Arden modifies the machine dependent component in
GNU cc and includes a post processor which is
responsible for pipeline organization, special peephole
optimization and instruction scheduling. It is a
preliminary stage for Arden system to construct such a
prototype compiler and to gather useful experience.

3. Instruction Description Language
Generally speaking, the processor description

contains instruction descriptions and layout
characteristics such as register usage, stack and memory
management. Here we lay emphasis on instruction
descriptions.

The chief goal of instruction description language in
Arden is to make it easy to specify instruction set. The
specification of instruction descriptions is a set of
pattern-action rules. The syntax of an instruction rule in
Arden is

%define-insn
@ Macro expression @
{Template I
@ Condition expression @
@ Cost @
(Action] %

where the entry between two @ is optional.
1) Macro expression defines the macro strings which

will be expanded in other entries like template, condition
or action. Macro expression facilitates users to define a

subset of instructions which have similar template, cost
and action specification in one define-insn rule,

2)Template is a parenthesized prefix expression
representing a tree pattern.

3) Condition expression is aset of constraints
applied to operands in template. The pattern matcher will
make condition check after template is matched.

4) Cost is an optional simple assignment
statement. When omitted. the pattern matcher in Arden
assumes the default value. The default value is one, but
can be redefined in another file named "machine.h".

5) Action is a C source code which returns the
output object code for this rule. The output code is
included by pattern matcher once this rule has been
selected as part of the minimal cost instruction subset for
the subject tree.

Macro expression has the following form:
VAR term = { string [,string [... I 1]

[&term = { suing [,string I ...]]]
[* term = { string [.string [... 1]]]

1) Term, a constant variable, represents a vector 0 1
suing which is a set of cases applied in template,
condition and action.

2) "&", a one-to-one connection operator,
synchronizcs two vectors of string while they arc
applied in template, condition and action.

3) "*", means a projection relation which expands
two vectors of string to one combinational vector
by row major.

When

Example 1
We can define four instructions ADD, ADDI, SUB

and SUB1 instructions of DLX insuuction subset in one
rule by specifying macro expression as follows:

%define-insn
@ VAR operutor = ["plus","minus"]

* mode = ["r","l"]
&opcode = ["add" ,"addi", "sub", "subi"]

@
I (SI 0 r) = operuior : SI (SI 1 r)

(SI 2 mode) I
1 opcode %0,%1,%2 I
%

With the macro expression, the number of rules in
insuuction descriptions will be smaller.

The specification language has been used in
describing DLX architecture. Expcrimenlal results show
that it uses only 31 rules to describe DLX instruction set
which was described originally in GNU by 144 rules, not
including peephole optimization rules. There are
significant reductions in the number of rules and the
complexity to describe one architecture.

4. Improved Bottom-Up Matching
Algorithm

The kernel of code generator generator is pattern
matching routine. Arden adopts a modified bottom-up
matching algorithm using numerical computation in the

182

pattern matching of code generator generator. Before
going through the pattern matching algorithm, we list
the definitions of some terms which are used in
complexity analysis and defined in [81.
parno : the number of different patterns involved
parsize : the size of the pauern forest
subsize : the size of the subject tree
sym : the number of symbols in alphabet Z
rank : the highest rank (arity) of any symbol in

march : the number of matches which are found
alphabet X

For the remainder of this section. complexity will be
expressed in terms of the above defined terms. We
assume the arity of all symbols is q-ary.

Bottom-Up Matching Algorithm The basic idea of
bottom-up matching algorithm is to find, at each node in
the subject tree, all patterns and all parts of patlerns
which match at this node[8]. The overhead of bottom-up
matching algorithm comes from qat the size of match
set could be as large as O(2Pa1S'2e) and table size is
O(setraflk * sym). For calculating the match sets in
step 1 and tables in step 2, the preprocessing time is
O(ser('Mk+l) * sym * patsize). The complexity can be
reduced if the pattern forest is simple. However, not
every pattern forest matching problem can fit such
constraints.

Top-Down Matching Algorithm Top-down
matching algorithm regards each path from root to leaf in
pattern tree as a string. The main loads of top-down
matching method result from
1) constructing the pattern matching automaton, and
2) maintaining bit suings operation or counter at each
node. The preprocessing space is O(parsize*) and the
matching time is O(subsire +march) [8]. But, to find all
possible match sets in a subject tree, the top-down
algorithm must involve a for-loop at each node to check
all possible matches, starting at the node, for each
pattern. Therefore, the physical complexity will be
O(subsize * parno + match).

ISottom-Up Matching Algorithm with Number
Operations The idea for this algorithm originated
from the observation that pattern matching problems will
be simplified as long as a pattern tree could be reduced to
a number. Then pattern matching will become a number
comparison problem if each node of the subject tree is
also represented by a number and traversed associated
with number computation. We give each terminal and
operator in intermediate language an identity number.
Then the pattern trees will be translated into trees with
identity numbers and calculated by an identical function
from bottom to top. Finally, each pattern tree is labeled
with its own computed value at root node. The pattern
trees possibly match with the subtree in subject tree if
the computed value rooted at this subtree is same as the
computed values of pattern trees. The pattern matcher
confirms the match by brute-force searching between the
subtree and possible matched pattern trees. Our

experiment with a random-generating pattern forest
shows that different pattern trees with the same computed
values are few if the parno is not larger than lo3.
Example 2

Consider the following three binary pattern trees,
1. reg c- + 2. reg e- +

I \
reg reg

cost= 1

3 . reg <- rnem
I

I \
reg reg

and the subject ~ e e
reg <- +

+

I
mem
I

I \
+

reg reg

I \
mem reg
I

cost = 3

cost = 2

Then we define the mapping function F as
F (op, left, right) = (op * left + right) mod prime
where the op, left, and right mean operator, left subtree,
and right subtree, respectively. The prime is a prime
number. To be more precise, we give the operators and
terminals identity numbers as

and prime is assigned to 41 arbitrarily. The null subtree
is given as 1. It is straightforward to translate pattern
trees to numerical trees. The first step is to calculate the
value of each pattern tree using F from bottom to top.
We obtain the results for three pattern trees as follows:

1)18 2) 23 3) 13
after applying the function F. Now, traverse the subject
tree in postorder and apply the function F at the same
time. 8

reg : 2, mem : 4 , + : 5

Definition 4.1:
Two pauern trees are overlapping if one of them is a

subuee of another and a pattern forest is overlapping if
there are any two patterns in it that are overlapping.

To pattern matching algorithm in code generator
generator, the crisis is not finding subtrees which can be
matched but getting all possible overlapping match sets.
The reader will find that the overlapping factor for pattern
forest is critical to matching time complexity in later
discussion.

The primitive task of preprocessing routine is to
traverse each pattern tree and record the height of it. The
next task is to traverse again and to apply function
calculation at all paitern trces in height sequence, from
the pattern tree with shorter height to longer one. In the
meantime, the routine must check the overlapping at
each node of current pattern tree by looking at the
previous computed pattern trees. When overlapping

183

occurs, the number at this node will be replaced by the
identity number of the replacement terminal which
associated the overlapped pattern tree. Overlapping
relation is also recorded at once. In example 2, pattern #3
contains an overlapping subtree at node “+” and the
number will be replaced by 3. This means the computed
value of “reg” which is the replacement node of pattern
#I . It is the reason why the result number of pattern #3
is 13 (4 a 3 + 1). We illustrate the details of
preprocessing phase in the following routines.

1. pre-process (Forest) [
2. for each pattern tree ti in Forest
3. height [i] e- visit-height (ti)
4. sort Forest in height sequence
5 . for each pauern tree ti in Forest
6. result [i] e- visit-number (ti)
7. I
8. int visit-height (tree) 1
9. if tree is null
IO. return 0
11. return (1 + max (visit-height (tree.left),
12. visit-height(tree.right)))
13. I
14. int visit-number (tree) (
15. if tree is null
16. return nullid
17. result = F (op, visit-number (tree.left),
18. visit-number (tree.right))
19. for all computed pattern tj
20. if result=result~] and uue matching(
21. record the match at tj
22. return tj.replace.id
23. I
24. return result
25. I

The context of traversing subject tree routine is the same
as visit-number() except for the part of match handling.
For finding all possible matching covers for the subject
tree, i t must consider both replacement and non-
replacement at matched node. When replacement is made,
the match subtree will be rewritten into the left-hand side
of matched pattern tree, for instance, the rewriting tree of
pattern # I in example 2 is “reg”. If non-replacement is
considered, record the match and go on the traversal. But,
replacement is necessary when the matched pautern does
not cover other pattern. As Twig[l] did, if multiple tree
patterns match at one node, cost will determine which
one is selected. The possible match cover trees of
example 2 are shown in Figure 2. Between the two cover
trees, the second cover tree meats the match at “mem”

Top-down

Modied

:able 1. Space and
Constraints

none

none

non-overlapping
pauem forest

node as non-replacement and match at root in final. It is
clear that first match set will be selected.

Total cost = 4
match set = (1.2) match set = 13.1 1

Fig. 2 Two possible cover trees for Example 2

In the worst case scenario, the preprocessing time is
O(pauize a pamo) and matching time is O(subsize a

parno * 2march). However, the complexity will reduce to
O(subsize * putno) if there is no overlapping in pattern
trees. In RISC based architecture, it is scare that one
instruction can cover another one. It means the matching
time for RISC base architecture set is O(subsire a
pamo). The benefits of this algorithm result from

1) litlle space required,
2) no constraint on pattern forest,
3) simple computation and easy to implement,
4) guarantee of minimum cost cover is selected

without string automaton. Table 1 lists the comparison
of three matching algorithms.

5. Retargetable Instruction Simulator
In Arden, an instruction level machine simulator is

developed to evaluate the performance of archilecture and
to gather run-time information for analysis when
designing a new architecture or compiler technology. A
designer can simulate the system before it is built and
use h e results to improve the design.

Time is the measure of computer performance. User
CPU time (not including the lime waiting for 1/0 or
running system call) for a program can be expressed as

CPU time = (CPU clock cycles) a (clock cycle
time)

CPU clock cycles = CPI (clock cycles per
instruction) a (Instruction count)

Because clock cycle time is dependent on hardware
technology and circuit design and it can be simulatcd by
other CAD tools, we use only CPU clock cycles to
represent the computer performance in Arden. In addition

Where

184

to CPI and instruction count, the simulator can gather
some execution-time results like instruction level
parallelism, time and frequency distribution of
instructions, memory reference location, register usage,
and branch results to improve the design. The target
machines of our simulator are limited on RISC machines
and include multi-issue processors called superscalar.
When developing a retargetable simulator, we need to
define a method to describe a new architecture. There are
two major requirements, the first is that it must be as
simple as possible when describing a general design. If
description is harder than writing a new simulator, the
relargetable simulator will fail. The second is that the
description can't limit the creation of new architecture. If
new designs can not be described in advance, the
reurgetable simulator will be useless. But these two
requirements sometimes conflict. We decided to employ
object oriented technology to solve this problem. Object
oriented programming can transmute the software design
into choosing bricks, just as hardware design is now a
matter of selecting integrated circuits. This new concept
has advantages to modify and to reuse. Our work happens
to be simulating the behavior of a hardware system and
we can use this concept straightforwardly. A general
design is described by combining the basic components,
and a special design can be described by adding some
special components or modifying the old ones.

The simulator is divided into four parts, namely,
target machine, result handler, command interpreter and
user interface. The target machine is the kernel of our
simulator. It simulates the execution of a computer. The
development of the target machine simulator includes
three jobs, defining the structure of the target machine
and implementation of basic functions, defining a
description language, and writing a precompiler to
translate the description language to programming
language.

The components of the target machine are:
1)System call handler: system calls like getc or open

are hard to be performed in an instruction level simulator.
They are handled here and the results will be returned to
the target machine.

2)Memory module: includes memory management to
maintain the structure of computer memory and performs
basic functions including memory read, memory write,
load file. dump memory.

3)Registers module: maintains the structure of
register file and performs basic functions including read
register, set register

4)ALU module: simulates the behavior of arithmetic
and logic unit and performs basic functions like addition.
shifi. and.

5)IFPC module: maintains the program counter,
simulates instruction fetch and handles the branch or
procedure call instructions.

6)Decoder module: starts sequential actions according
the instruction format description and instruction
bchavior description.

A machine description was defined by three parts.
Machine configuration description defines some processor

parameters like the number of registers, memory ports,
functions units, instructions fetched per cycle and data
width. Insauction format description defines the tokens
of instructions and the fields of each instruction. It
performs lexical analysis to scan an insvuction and to
decode it. Instruction behavior description describes the
behavior and the operation latency (the delay cycles
before the result is valid) of an instruction. The
architecture designer can simulate a processor and does
not have to worry about the hardware design in this way.

6. Conclusion
This paper presents an architecture developing

system environment and a modified algorithm to find the
optimal match pattern set for one subject tree with
reduced space complexity considerably.

Reference
1. Aho, A. V., and M. Ganapathi, and S. W. K.

Tjiang, "Code Generation Using Tree Matching and
Dynamic Programming," ACM Trans. Program
Lung. Syst., Oct.1989, pp. 517-561.

2. Aigran, P., Graham, S., Herry. R., Mckusick, M.,
and Pelegri-L1opart.E. "Experience with a Graham-
Glanville Stype Code Generator," Proceeding of the
A C M SIGPLAN Symposium on Compiler
Construction. ACM SIGPLAN Notices 19. 6 , June

3. Cattell, R. G. G.. "Automatic derivation of code
generators from machine descriptions," ACM Trans.
Program Lang. Syst, vol. 2 , No. 2 , Apr. 1980, pp.

4. Emmelmann H. S., F. W. Landwehr, "BEG- A
generator for Efficient Back Ends," Proceeding of
ACM Conference on Language Design und
Implementation, June 1989. pp. 227-237.

5. Fraser, C. W, "A Language for Writing Code
Generators," Proceedings of ACM SIGPLAN
Conference on Programming Language Design and
Implemeniation. June, 1989.. pp. 238-245.

6. Giegerich, R, "On the Suucture of Verifiable Code
Generator Specifications," Proceedings of the ACM
SIGPLAN Conference on Programming Language
Design and Implementation. June, 1990. pp. 1-8.

7. Giron-Sierra, J . M., and Gomez-Pulido, J. A.,
"Doing Object-Oriented Simulations: Advantage,
New Development Tools," The 24th Annual
Simulation Symposium, 1991.

8. Hoffman, C. W., and O'Donnell, M. J, "Pattern
Matching in Trees," J . ACM 29, I , 1982, 68-95.

9. Hostetler, L. B., and Mirtch, B., "DLXsim- A
Simulator for DLX," 7ech. Report, Oct., 1990.

10. Lipsett, R., Schaefer, C., and Ussery, C.,"VHDL:
Hardware Descritpion and Design," Kluwer Academic
Publishers, 1989.

11. Stallman, R. M., "Using and Porting GNU CC,"
Free Software Foundation, Inc, 1991.

1984, pp. 13-24.

173-190.

185

