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Abstract 
Software supports, such as compiler and simulation 

tools, are increasingly crucial for architecture 
development. A flexible system called Arden is being 
developed to help evolve efficient architecture. Arden 
combines a retargetable compiler with a back-end 
simulation tool which provides quantitative information 
for making a good decision in architecture designs. User- 
oriented specification for the code generator has 
simplified the machine descriptions and uses only 31 
rules in describing DLX architecture. An experimental 
bottom-up matching algorithm which reduces the pattern 
matching to a numerical computation problem and 
improves the space complexity is also presented here. 

1. Introduction 
Quantitative approach in architecture has been 

successful for providing decisive information during 
architecture designs. A flexible compiler and adaptive 
simulation tools are the prerequisite for such an 
approach. There are some retargetable compilers [ l .  2,3,  
41 which have attempted to improve the speed of 
gencrated code-generator and the quality of output code in 
order to compete with a hand-crafted code generator for 
specific machines. But, to be a retargetable compiler, 
there should be another critical component that is the 
specification facilitation of machine-dependent ingredient. 
The major goals of Arden are to reduce the complexity 
of describing architecture characteristics, to eliminate the 
gap between the compiler and the architecture designer, 
and to integrate the compiler with the simulator into a 
flexible environment. 

Some of the developed code generator generators 
have their defects at targeting to one specific machine. 
For example: 

1) Relargetable compiler GNU cc [ 11 I is being 
updated and redistributed periodically. However, our 
experience with GNU shows that it is hard to write the 
instruction descriptions with peephole optimization for a 
specific instruction set. On the other hand, GNU cc 
adopts intermediate paitern orienied instead of instruction 
oriented instruction descriptions such that users must 

check all the patterns in the description file while one 
instruction is added to or deleted from the instruction set. 
2) Twig[ 11 and BEG[4] used dynamic programming to 
guarantee that the code generator will output instructions 
with minimum cost for each subject tree pattern. They 
associated cost variation with each instruction pattern 
instead of defining peephole optimization pattern in 
instruction descriptions. But, the writers of instruction 
description must take care of the completeness of 
description by themselves. The code generator in Arden 
uses dynamic programming technology to get optimal 
code as Twig did and adds semantic-equivalent translation 
scheme to pattern matching phase for facilitating 
instructions description. The semantic-equivalent 
uanslator wanslates an unmatched pattern into the pattern 
defined in instruction descriptions. 

Pattern matching usually dominates the speed of 
recargetable code generator (about 80 percent of the time 
in twig-generated code generator is devoted to the pattern 
matching [ I ]  ). Section 4 gives the details of pattern 
matching algorithm. 
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Fig. 1 Architecture Development Envlronment 

Figure 1 presents a rough overview of Arden and 
the details of critical components which are shadowed in 
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Figure 1 will be discussed separately. The following 
section will give an overview of the prototype compiler 
system in Arden and the description language of 
instruction set will be shown in section 3. The final 
section describes a retargetable instruction simulator to 
evaluate the performance of our designed architecture. 

2. Prototype Compiler of Arden 
An experimental code generator generator is being 

developed and incorporated into GNU cc. This code 
generator uses simple specification language to facilitate 
general users constructing a compiler easily. Arden joins 
this retargetable code generator with GNU RTL generator 
as the prototype compiler system. Two major parts are 
involved: 
1) GNU RTL Generator: 

The work of this phase is translating the source 
language into an intermediate representation language 
(RTL), a parenthesized prefix expression form. Global 
optimizations are also achieved in this phase. 
2) Retargetable Code Generator: 

The current code generator in Arden accomplishes 
instruction selection by searching through instruction 
descriptions based on dynamic programming algorithm to 
get the best instructions with minimum cost. In the 
meantime, peephole optimization is done in part if  
combinational patterns are specified in the instruction 
descriptions. Part of peephole optimization will be 
delayed to post processor while tree patterns in 
instruction descriptions can not specify the characteristics 
of Ihe targeted architecture. 

In summary, the prototype compiler system of 
Arden modifies the machine dependent component in 
GNU cc and includes a post processor which is 
responsible for pipeline organization, special peephole 
optimization and instruction scheduling. It is a 
preliminary stage for Arden system to construct such a 
prototype compiler and to gather useful experience. 

3. Instruction Description Language 
Generally speaking, the processor description 

contains instruction descriptions and layout 
characteristics such as register usage, stack and memory 
management. Here we lay emphasis on instruction 
descriptions. 

The chief goal of instruction description language in 
Arden is to make it easy to specify instruction set. The 
specification of instruction descriptions is a set of 
pattern-action rules. The syntax of an instruction rule in 
Arden is 

%define-insn 
@ Macro expression @ 
{Template I 
@ Condition expression @ 
@ Cost @ 
(Action ] % 

where the entry between two @ is optional. 
1) Macro expression defines the macro strings which 

will be expanded in other entries like template, condition 
or action. Macro expression facilitates users to define a 

subset of instructions which have similar template, cost 
and action specification in one define-insn rule, 

2)Template is a parenthesized prefix expression 
representing a tree pattern. 

3 )  Condition expression is aset of constraints 
applied to operands in template. The pattern matcher will 
make condition check after template is matched. 

4) Cost is an optional simple assignment 
statement. When omitted. the pattern matcher in Arden 
assumes the default value. The default value is one, but 
can be redefined in another file named "machine.h". 

5 )  Action is a C source code which returns the 
output object code for this rule. The output code is 
included by pattern matcher once this rule has been 
selected as part of the minimal cost instruction subset for 
the subject tree. 

Macro expression has the following form: 
VAR term = { string [,string [ ... I 1 ] 

[ &term = { suing [,string I ... ] ] ] 
[ * term = { string [.string [ ... 1 ] ] ] 

1) Term, a constant variable, represents a vector 0 1  
suing which is a set of cases applied in template, 
condition and action. 

2 )  "&", a one-to-one connection operator, 
synchronizcs two vectors of string while they arc 
applied in template, condition and action. 

3) "*", means a projection relation which expands 
two vectors of string to one combinational vector 
by row major. 

When 

Example 1 
We can define four instructions ADD, ADDI, SUB 

and SUB1 instructions of DLX insuuction subset in one 
rule by specifying macro expression as follows: 

%define-insn 
@ VAR operutor = [ "plus","minus" ] 

* mode = [ "r","l"] 
&opcode = ["add" ,"addi", "sub", "subi"] 

@ 
I ( SI 0 r ) = operuior : SI ( SI 1 r ) 

(SI 2 mode ) I 
1 opcode %0,%1,%2 I 
% 

With the macro expression, the number of rules in 
insuuction descriptions will be smaller. 

The specification language has been used in 
describing DLX architecture. Expcrimenlal results show 
that it uses only 31 rules to describe DLX instruction set 
which was described originally in GNU by 144 rules, not 
including peephole optimization rules. There are 
significant reductions in the number of rules and the 
complexity to describe one architecture. 

4. Improved Bottom-Up Matching 
Algorithm 

The kernel of code generator generator is pattern 
matching routine. Arden adopts a modified bottom-up 
matching algorithm using numerical computation in the 
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pattern matching of code generator generator. Before 
going through the pattern matching algorithm, we list 
the definitions of some terms which are used in 
complexity analysis and defined in [81. 
parno : the number of different patterns involved 
parsize : the size of the pauern forest 
subsize : the size of the subject tree 
sym : the number of symbols in alphabet Z 
rank : the highest rank (arity) of any symbol in 

march : the number of matches which are found 
alphabet X 

For the remainder of this section. complexity will be 
expressed in terms of the above defined terms. We 
assume the arity of all symbols is q-ary. 

Bottom-Up Matching Algorithm The basic idea of 
bottom-up matching algorithm is to find, at each node in 
the subject tree, all patterns and all parts of patlerns 
which match at this node[8]. The overhead of bottom-up 
matching algorithm comes from qat  the size of match 
set could be as large as O( 2Pa1S'2e ) and table size is 
O(setraflk * sym ). For calculating the match sets in 
step 1 and tables in step 2, the preprocessing time is 
O(ser('Mk+l) * sym * patsize). The complexity can be 
reduced if the pattern forest is simple. However, not 
every pattern forest matching problem can fit such 
constraints. 

Top-Down Matching Algorithm Top-down 
matching algorithm regards each path from root to leaf in 
pattern tree as a string. The main loads of top-down 
matching method result from 
1) constructing the pattern matching automaton, and 
2) maintaining bit suings operation or counter at each 
node. The preprocessing space is O(parsize*) and the 
matching time is O(subsire +march) [8]. But, to find all 
possible match sets in a subject tree, the top-down 
algorithm must involve a for-loop at each node to check 
all possible matches, starting at the node, for each 
pattern. Therefore, the physical complexity will be 
O(subsize * parno + match). 

ISottom-Up Matching Algorithm with Number 
Operations The idea for this algorithm originated 
from the observation that pattern matching problems will 
be simplified as long as a pattern tree could be reduced to 
a number. Then pattern matching will become a number 
comparison problem if each node of the subject tree is 
also represented by a number and traversed associated 
with number computation. We give each terminal and 
operator in intermediate language an identity number. 
Then the pattern trees will be translated into trees with 
identity numbers and calculated by an identical function 
from bottom to top. Finally, each pattern tree is labeled 
with its own computed value at root node. The pattern 
trees possibly match with the subtree in subject tree if 
the computed value rooted at this subtree is same as the 
computed values of pattern trees. The pattern matcher 
confirms the match by brute-force searching between the 
subtree and possible matched pattern trees. Our 

experiment with a random-generating pattern forest 
shows that different pattern trees with the same computed 
values are few if the parno is not larger than lo3. 
Example 2 

Consider the following three binary pattern trees, 
1. reg c- + 2. reg e- + 

I \  
reg reg 

cost= 1 

3 .  reg <- rnem 
I 

I \  
reg reg 

and the subject ~ e e  
reg <- + 

+ 

I 
mem 
I 

I \ 
+ 

reg reg 

I \  
mem reg 
I 

cost = 3 

cost = 2 

Then we define the mapping function F as 
F ( op, left, right ) = ( op * left + right ) mod prime 
where the op, left, and right mean operator, left subtree, 
and right subtree, respectively. The prime is a prime 
number. To be more precise, we give the operators and 
terminals identity numbers as 

and prime is assigned to 41 arbitrarily. The null subtree 
is given as 1. It is straightforward to translate pattern 
trees to numerical trees. The first step is to calculate the 
value of each pattern tree using F from bottom to top. 
We obtain the results for three pattern trees as follows: 

1)18 2) 23 3) 13 
after applying the function F. Now, traverse the subject 
tree in postorder and apply the function F at the same 
time. 8 

reg : 2, mem : 4 ,  + :  5 

Definition 4.1: 
Two pauern trees are overlapping if one of them is a 

subuee of another and a pattern forest is overlapping if 
there are any two patterns in it that are overlapping. 

To pattern matching algorithm in code generator 
generator, the crisis is not finding subtrees which can be 
matched but getting all possible overlapping match sets. 
The reader will find that the overlapping factor for pattern 
forest is critical to matching time complexity in later 
discussion. 

The primitive task of preprocessing routine is to 
traverse each pattern tree and record the height of it. The 
next task is to traverse again and to apply function 
calculation at all paitern trces in height sequence, from 
the pattern tree with shorter height to longer one. In the 
meantime, the routine must check the overlapping at 
each node of current pattern tree by looking at the 
previous computed pattern trees. When overlapping 
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occurs, the number at this node will be replaced by the 
identity number of the replacement terminal which 
associated the overlapped pattern tree. Overlapping 
relation is also recorded at once. In example 2, pattern #3 
contains an overlapping subtree at node “+” and the 
number will be replaced by 3. This means the computed 
value of “reg” which is the replacement node of pattern 
#I .  It is the reason why the result number of pattern #3 
is 13 (4 a 3 + 1). We illustrate the details of 
preprocessing phase in the following routines. 

1. pre-process (Forest) [ 
2. for each pattern tree ti in Forest 
3. height [i] e- visit-height ( ti ) 
4. sort Forest in height sequence 
5 .  for each pauern tree ti in Forest 
6. result [i] e- visit-number ( ti ) 
7. I 
8. int visit-height (tree) 1 
9. if tree is null 
IO. return 0 
11. return (1 + max (visit-height (tree.left), 
12. visit-height(tree.right))) 
13. I 
14. int visit-number (tree ) ( 
15. if tree is null 
16. return nullid 
17. result = F (op, visit-number (tree.left), 
18. visit-number (tree.right) ) 
19. for all computed pattern tj 
20. if result=result~] and uue matching( 
21. record the match at tj 
22. return tj.replace.id 
23. I 
24. return result 
25. I 

The context of traversing subject tree routine is the same 
as visit-number() except for the part of match handling. 
For finding all possible matching covers for the subject 
tree, i t  must consider both replacement and non- 
replacement at matched node. When replacement is made, 
the match subtree will be rewritten into the left-hand side 
of matched pattern tree, for instance, the rewriting tree of 
pattern # I  in example 2 is “reg”. If non-replacement is 
considered, record the match and go on the traversal. But, 
replacement is necessary when the matched pautern does 
not cover other pattern. As Twig[l] did, if multiple tree 
patterns match at one node, cost will determine which 
one is selected. The possible match cover trees of 
example 2 are shown in Figure 2. Between the two cover 
trees, the second cover tree meats the match at “mem” 

Top-down 

Modied 

:able 1. Space and 
Constraints 

none 

none 

non-overlapping 
pauem forest 

node as non-replacement and match at root in final. It is 
clear that first match set will be selected. 

Total cost = 4 
match set = (1.2) match set = 13.1 1 

Fig. 2 Two possible cover trees for Example 2 

In the worst case scenario, the preprocessing time is 
O(pauize a pamo) and matching time is O(subsize a 

parno * 2march). However, the complexity will reduce to 
O(subsize * putno) if there is no overlapping in pattern 
trees. In RISC based architecture, it is scare that one 
instruction can cover another one. It means the matching 
time for RISC base architecture set is O(subsire a 
pamo). The benefits of this algorithm result from 

1) litlle space required, 
2) no constraint on pattern forest, 
3) simple computation and easy to implement, 
4) guarantee of minimum cost cover is selected 

without string automaton. Table 1 lists the comparison 
of three matching algorithms. 

5. Retargetable Instruction Simulator 
In Arden, an instruction level machine simulator is 

developed to evaluate the performance of archilecture and 
to gather run-time information for analysis when 
designing a new architecture or compiler technology. A 
designer can simulate the system before it is built and 
use h e  results to improve the design. 

Time is the measure of computer performance. User 
CPU time (not including the lime waiting for 1/0 or 
running system call) for a program can be expressed as 

CPU time = (CPU clock cycles) a (clock cycle 
time) 

CPU clock cycles = CPI (clock cycles per 
instruction) a (Instruction count) 

Because clock cycle time is dependent on hardware 
technology and circuit design and it can be simulatcd by 
other CAD tools, we use only CPU clock cycles to 
represent the computer performance in Arden. In addition 

Where 
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to CPI and instruction count, the simulator can gather 
some execution-time results like instruction level 
parallelism, time and frequency distribution of 
instructions, memory reference location, register usage, 
and branch results to improve the design. The target 
machines of our simulator are limited on RISC machines 
and include multi-issue processors called superscalar. 
When developing a retargetable simulator, we need to 
define a method to describe a new architecture. There are 
two major requirements, the first is that it must be as 
simple as possible when describing a general design. If 
description is harder than writing a new simulator, the 
relargetable simulator will fail. The second is that the 
description can't limit the creation of new architecture. If 
new designs can not be described in advance, the 
reurgetable simulator will be useless. But these two 
requirements sometimes conflict. We decided to employ 
object oriented technology to solve this problem. Object 
oriented programming can transmute the software design 
into choosing bricks, just as hardware design is now a 
matter of selecting integrated circuits. This new concept 
has advantages to modify and to reuse. Our work happens 
to be simulating the behavior of a hardware system and 
we can use this concept straightforwardly. A general 
design is described by combining the basic components, 
and a special design can be described by adding some 
special components or modifying the old ones. 

The simulator is divided into four parts, namely, 
target machine, result handler, command interpreter and 
user interface. The target machine is the kernel of our 
simulator. It simulates the execution of a computer. The 
development of the target machine simulator includes 
three jobs, defining the structure of the target machine 
and implementation of basic functions, defining a 
description language, and writing a precompiler to 
translate the description language to programming 
language. 

The components of the target machine are: 
1)System call handler: system calls like getc or open 

are hard to be performed in an instruction level simulator. 
They are handled here and the results will be returned to 
the target machine. 

2)Memory module: includes memory management to 
maintain the structure of computer memory and performs 
basic functions including memory read, memory write, 
load file. dump memory. 

3)Registers module: maintains the structure of 
register file and performs basic functions including read 
register, set register 

4)ALU module: simulates the behavior of arithmetic 
and logic unit and performs basic functions like addition. 
shifi. and. 

5)IFPC module: maintains the program counter, 
simulates instruction fetch and handles the branch or 
procedure call instructions. 

6)Decoder module: starts sequential actions according 
the instruction format description and instruction 
bchavior description. 

A machine description was defined by three parts. 
Machine configuration description defines some processor 

parameters like the number of registers, memory ports, 
functions units, instructions fetched per cycle and data 
width. Insauction format description defines the tokens 
of instructions and the fields of each instruction. It 
performs lexical analysis to scan an insvuction and to 
decode it. Instruction behavior description describes the 
behavior and the operation latency (the delay cycles 
before the result is valid) of an instruction. The 
architecture designer can simulate a processor and does 
not have to worry about the hardware design in this way. 

6. Conclusion 
This paper presents an architecture developing 

system environment and a modified algorithm to find the 
optimal match pattern set for one subject tree with 
reduced space complexity considerably. 
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