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Abstract.
This project presents the implementation of a surface mesh on a genus zero

manifold with 3D scattered data of sculpture surfaces using the conformal self-
organizing map(CSM). It starts with a regular mesh on a sphere and gradually
shapes the regular mesh to match its object's surface by using the CSM. It can drape
a uniform mesh on an object with a high degree of conformality. It accomplishes the
surface reconstruction and also de¯nes a conformal mapping from a sphere to the
object's manifold.

1. Introduction

Laser scanners can sample a 3D object's surface data quickly and ac-
curately, and yield enormous amounts of scattered digitized point data
useful for surface modeling [27][2]. Many 3D objects like sculptures are
classi¯ed as genus zero manifold [22]. Mapping a smooth mesh onto
a sculpture's surface is an important issue in surface parameterization
[15]. The conformal self-organizing map (CSM) can mimic a given man-
ifold by continuously and selectively tuning to the input point patterns
[20][25][21][26]. That is, its neurons can span the manifold smoothly.
Therefore, it is able to lay a smooth mesh on the manifold. The input
pattern points for CSM are unorganized points, therefore, CSM is also
capable of solving the surface reconstruction problem.

The topological space of a given manifold and the parameterization
domain a®ect the mapping distortion [11]. A large amount of distortion
is unavoidable when di®erent topological spaces are parameterized, e.g.
from a genus zero manifold to a °at R2 plane. In the texture mapping
procedure, the range data must be segmented into an atlas [19]. But for
applications such as morphing and remeshing, it is best to parameterize
the mesh over a domain that is topologically equivalent to it [11].

In this project, we focus on the genus zero manifold. Many 3D
manifolds belong to the genus zero class, such as creatures, sculptures
of the human body, etc. It is natural to use spherical parameterization
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for genus zero manifolds. Thus, we extend the CSM to the confor-
mal spherical self-organizing map (CSSM), which employs spherical
network space.

We will introduce the CSSM in detail and then employ useful de-
formation indicators, conformality measures, to quantify the mapping
quality. The result will be compared with results obtained using the
self-organizing map (SOM)[20].

Related works
The CSSM method is capable of reconstructing a surface from un-

organized points and de¯ning a conformal mapping from a sphere to
certain object's manifold. There are three modern methods to accom-
plish the surface reconstruction with varying degrees of success. They
are neural network methods, interpolation methods and approximation
methods. Yu [28] and Barhak [2] employ SOM to reconstruct a
closed surface of genus 0. Ivrissimtzis [16] develops the growing
cell structure, which is also derived from SOM, to generate ¯tting
meshes for various objects. The interpolation methods include the -
shape by Edelsbrunner [10] and the 'crust' by Amenta and Bern
[1]. They work well for uniform and dense sampling, but the local
topology may deviate and have holes due to undersampling. The ap-
proximation methods include algorithms developed by Hoppe [14]
and Curless . [8]. They calculate the normal vector from a data set
and obtain its tangent plane. All of the three modern methods solve
the surface reconstruction properly, but they do not seek a surface with
the content of conformal mapping.

There are ¯ve approaches to achieve conformal parameterizations:
harmonic energy minimization, Cauchy-Riemann equation approxima-
tion, Laplacian operator linearization, angle based method and circle
packing [13]. Gu and Yau [12] introduce a method for modeling genus
zero surfaces based on nonlinear optimization of harmonic energy. Their
algorithm starts with a given mesh. That is, it is not designed to resolve
unorganized points and noisy data. This project presents a novel °exible
mesh that can resolve unorganized points and noisy data. This mesh is
capable of reconstructing a surface from unorganized points.

2. Conformal spherical SOM (CSSM)

The conformal SOM, CSM [20][25], attempts to accomplish conformal
transformations between forms. It uses a Euclidean plane as its network
space, e.g., R2. But an R2 plane cannot wrap a genus zero manifold
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(a) The network space. There are 11x11 neurons arranged uniformly
in a rectangular plane2 2. (b) The input space. The location of each
lattice node is represented by its corresponding neuron's weight vector
2 3.
Figure 1.

without producing seams. See an example in Figs. 1 and 2. Therefore,
we extend the CSM to the CSSM, which uses a sphere as its network
space. This is because a sphere is topologically equivalent to a genus
zero manifold [23]. The details about arranging neurons and the CSSM
algorithm will be given in successive subsections.

The SOM model [20] is made of neurons. The neurons are usually
placed regularly in one- or two-dimensional space that is named the
network space. The neurons of the CSSM model are placed on the
tessellation of a unit sphere. Each neuron has a weight vector (or
synapse vector) where  contains the location of the  neuron
in the input space. Fig. 1 shows the positions of the neurons in the
network space and the input space.

2.1. The spherical network space

The neurons of the SOM are usually arranged uniformly in Euclidean
space lattices [18]. Adhering to this property, the neurons are arranged
uniformly on a unit sphere. We use a geodesic dome to approximate this
[17]. There are ¯ve tessellations (platonic bodies) of a sphere; terahe-
dron, octahedron, cube, pentagondodecahedron, and icosahedron [23].
An icosahedron is preferred because each of its face is an equilateral
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This ¯gure shows that an R2 plane cannot wrap a surface with a genus
zero manifold. The meshes in (c) and (d) are learned by SOM with R2

network space.
Figure 2.

triangle. The basic type of icosahedron has 12 vertices, 30 edges, and
20 equivalent equilateral triangular faces. It is varied by combining
more icosahedrons into a single body. We use the term (frequency) to
denote its multiplicity. The formula of the icosahedron is

= 202

=


2
+ 2 (1)

See Fig. 3 for frequencies from 1 to 6.
Since the neurons are arranged on the surface of a unit sphere, its

metric should no longer be Euclidean. Instead, we compute the distance
along the sphere surface. The distance between two neurons is

= cos¡1 (¢ ) jj jj = cos¡1 (¢) (2)

where and are 3 dimensional column vectors with a unit mag-
nitude, jj = jj = 1, and contain the locations of neurons and 
on the sphererespectively. The center of the sphere is at the origin,
(000)
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Icosahedrons approximate spheres at di®erent frequencies. From (a) to
(f) at = 1 to = 6respectively.
Figure 3.

2.2. Learning algorithm

The CSSM learning algorithm is very similar to the CSM. The only
di®erence is in the distance metric, see Eq. 2. The CSSM model is
a continuous version of the SOM with spherical network space. It
uses conformal mapping to compute the precise location of a pattern
mapped onto the network space. We will ¯rst introduce the CSSM
model, some terminologies, and then the learning algorithm.

The CSSM model contains neurons that are arranged on a sphere
surface (which is approximated by a multi-frequency icosahedron). Each
vertex of the icosahedron is set as a neuron in CSSM, see Fig. 3.
The evolution of these neurons' weights proceeds based on competitive
learning with a conformal updating rule. Each neuron occupies a ¯xed
location in the network space and represents a marker in the input
space, a vertex point in a mesh. Here, let be the neuron's location
in the network space and have a ¯xed value. Let (), the neuron's
weight vector, be the neuron's location in the input space at learning
time . () is a 3D column vector. Let  denote all input patterns,
the set of all scattered points sampled from the scanned model, and let
2  be an input pattern. The learning algorithm is as follows.

swp0000.tex; 2/05/2005; 10:09; p.5
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1. Initialization. Initialize the CSSM network. In all our simulations,
we initialize neurons' weight vectors as their uniform locations on
a sphere.

(= 0) = position of the neuron on a sphere as in Fig. 3
(3)

The neurons' weight vectors denote the positions of the mesh ver-
tices, see Fig. 1(b). Set the initial variance =0 and initial learn-
ing rate =0. The variance and learning rate decrease gradually
with the annealing scheme, e.g.,  = 0 exp

³
¡ 

1

´
and =

0 exp
³
¡ 

2

´
where 1 and 2 are time constants and denotes

the learning time. We start the algorithm from = 0.

2. Sampling. Randomly choose an input pattern 2  with equal
probability.  is the set of all scattered points of the model.

3. Similarity Matching. Determine the winning or best-matching neu-
ron by using

k¡k = min


k() ¡k() 2 () (4)

where is the weight vector of the winning neuron for the corre-
sponding input in time , and () is the set of all weight vectors.
That is to ¯nd a nearest neuron to the sampled point .

4. Updating. Update all weight vectors according to the following
equation:

¢= ((M ())) (¡()) = (()) (¡())
(+ 1) = () + ¢ (5)

where 2 [01) is the learning rate at time and is the neigh-
borhood function which decreases monotonously with the distance
metric in the network space. This step is to improve the similarity
of the weight vectors toward the pattern . Here, we use a Gaussian
neighborhood function:

() = exp

Ã
¡ 2

22


!
 (6)

where is the variance at time . The distance metric here is
based on the spherical metric, = cos¡1 (¢). = M () is
the reference vector of input pattern projected onto the network
¯eld. The function M ¯rst projects pattern onto the simplex, ,
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formed by the winning neuron weight vector () and its adjacent
neighboring neuron vectors and then maps it to the network space
using conformal mapping. Fig. 4 illustrates the transformation of
input into the reference vector .

If a pattern does not project inside any simplex of the CSSM
mesh, it will be tuned based on the updating equation:

¢= (k¡()k) (¡())
(+ 1) = () + ¢ (7)

5. Continuation. Continue with step 2 until a satisfactory result is
obtained. One epoch means that all patterns 2  have been
selected once. Successful learning requires many epochs.

In Step 4 of the learning algorithm, the function M requires the
use of conformal mapping to map simplex in the input space to 0
in the network space, see Figs. 4 and 5. The conformal mapping from
simplex to equilateral simplex 0 can be approximated by means of
Schwarz-Christo®el mapping [20][7][9].

The mapping function from the -plane to the -plane is given by

= 1() = 1 +1

Z 

0

1
2

3Y

=1

µ
1 ¡ 



¶¡
 (8)

The mapping function from the -plane to the 0-plane is given by

0 = 2() = 2 +2

Z 

0

1
2

3Y

=1

µ
1 ¡ 



¶¡
 (9)

Since and are known, and have to be solved in the above
equations. Therefore, the mapping from simplex to simplex 0 is 0 =
2(¡1

1 ()), where is any point on and 0 is its corresponding point
on 0. Then, the reference vector is computed using = +(0).
Function (0) projects 0 in the complex plane onto the network
space. In this project, is always normalized with the same magnitude
as that of , jj = jj = 1.

3. Deformation measure

We now review the conformality measure [21]. It can be used to ex-
press both the distribution error and topology preservation for the
self-organizing process. It achieves better performance than the MSE
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The procedure for mapping input pattern to the reference vector 
in the network space.
Figure 4.
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Figure 5.

Diagram of the relative input 0 and the relative synapse is the
input pattern, is the winning neuron weight, and and are the
neighboring neuron weights. 0, 1, and 2 form a 3D simplex.
Figure 6.

[4] or TPG [6] measure [21]. Although it is derived for the SOM, it
is also applicable to the CSSM. To formulate it, we ¯rst de¯ne two
vectors:

relative synapse vector, = ¡;
relative input, 0 = ¡.

Note that in this section has a di®erent meaning from those in
Eqs. 8 and 9. Fig. 6 shows the topological representation of the synapse
vectors. The topology formed through self-organization can be regarded
as a collection of disjoint -dimensional simplices. In this project, the
pattern is in 3D and the network is intrinsic in 2D. Therefore, the
simplex is 3D and is a 3-dimensional simplice.

>From the CSSM synapse update equation, Eq. 5, we have

(+ 1) = () +((M ())) (¡()) for winning neuron and
(+ 1) = () +((M ())) (¡()) for other neurons.

(10)
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Then the update of relative synapse vector , ¢, in the simplex is

¢= (+ 1) ¡() = ((+ 1) ¡(+ 1)) ¡ (() ¡())
= (¡ 1)0 ¡() (11)

where denotes ((0)) = (()). Note that the variables in the
neighborhood function here are di®erent from those in Eq. 5. To for-
mulate the deformation measure in each adaptation step, the mapping
function is de¯ned as

(0()) = (+ 1) = () + ¢= (¡ 1)0 + (1 ¡)()(12)

Function is the update equation for relative synapse . We now
introduce the Jacobian matrix used to analyze function . The Jaco-
bian matrix can represent the derivative map of function in a small
neighborhood around certain point [3]. The explicit de¯nition of the
derivative map is ignored here, but it can be thought of as a linear
transformation that approximates function near the point , i.e.,
(+ ¢) = () +¢.

Let (0) be (12)and let each component be
a function of = (1). Let us focus on each component
of , i.e.,

(0) = (¡ 1)0+ (1 ¡) = 1. (13)

Here, we will use the Euclidean metric for in the simplicial coordinate,
that is (0) =

P
=1(0¡)2. Note that the metric (0) should

be normalized to work correctly. Hence, the partial derivatives of , for
1 · · , are




= ¡2
d
d

(0¡)2 + (1 ¡) = ¡20(0¡)2 + (1 ¡)for = ;




= ¡2
d
d

(0¡)(0¡) = ¡20(0¡)(0¡)for 6= .

(14)

The derivative of is

0 =
d
d

=
d

³
exp

³
¡
22

´´

d
= ¡ 1

22 exp
µ ¡

22

¶
 (15)
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Therefore, the Jacobian matrix, d= of function is

=

2
666664

1
1

1
2 1


2
1

2
2 2


...

...
. . .

...

1


2 



3
777775

=

2
64

¡20(1 ¡1)2 + (1 ¡)  ¡20(1 ¡1)(¡)
...

. . .
...

¡20(¡)(1 ¡1) ¡20(¡)2 + (1 ¡)

3
75

(16)

Because matrix is symmetric, every eigenvalue of is real. Using the
results in [21], the eigenvalues of matrix are

1 = 1 ¡ and 2 = ¡20
X

=1
(0¡)2 + (1 ¡) (17)

with multiplicities ¡ 1 and 1, respectively. If the Jacobian (),
the determinant of the Jacobian matrix d= , is greater than zero,
then the deformation of the mapping function can be de¯ned. Based
on the above introduction, the three non-conformality measures are
de¯ned as follows:

1. The deformation measure : (0) ´
q

max
min

,

2. The non-conformality measure : (0) ´ (
P

=1kr()k2)2
2() ,

3. The deformation potential : (0) ´
³P

=1 kr()k2
´2¡2()

In the deformation measure , max and min are the maximal and
minimal eigenvalues of the Jacobian matrix respectively. The two
distinct eigenvalues (12) of , in Eq. 17, are all greater than zero.
In addition, 2 is greater than or equal to 1:

2 ¡1 = ¡20
X

=1
(0¡)2 > 0 (18)

Above equation holds because 2 [01) and 0 6 0where is a
monotonous decreasing function. Hence, the deformation measure for
the CSSM is

(0) =
µ
2
1

¶12
=

Ã
¡20

(1 ¡)

X

=1
(0¡)2 + 1

!12

 (19)
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The value of  is not less than 1. If = 1, the measure  indicates
that there is no deformation in the mapping function .

In the non-conformality measure, a geometrical interpretation may
give us a better sense of this criterion. The term () is the volume
of the hyper-parallelpipe determined by the vectors r()= 1.

The term in the numerator,
³P

=1 kr()k2
´12

is the length of
the diagonal in the hypercube formed by the orthogonal vectors

of length kr()k= 1, and (
P

=1kr()k2)2
2 is the max-

imum volume of the hypercube inside a hypersphere with diameter³P
=1 kr()k2

´12
 is always greater than 1 for any function 

where () 0. When = 1, the mapping function is conformal.
After some derivations, the non-conformality measure in CSSM can be
reduced to

(0) ´

·³
¡20 k0 ¡k2 + 1 ¡

´2
+ (¡ 1)(1 ¡)2

¸2

2(¡20 k0 ¡k2 + 1 ¡)(1 ¡)¡1


(20)
The non-conformality measure  in Eq. 20 may be in¯nity when its
denominator is equal to or close to zero. This condition cannot be
predicted at all in general.

The deformation potentialcan measure the non-conformality with-
out encountering this serious problem. After some derivations, the de-
formation potential in the CSSM is

() =
·³

¡20
°°0 ¡

°°2 + 1 ¡
´2

+ (¡ 1)(1 ¡)2
¸2

¡2(¡20
°°0 ¡

°°2 + 1 ¡)(1 ¡)¡1 (21)

The measures  and are all based on the individual sampled
relative input, 0 = ¡ , and relative synapse = ¡ of the
neighboring neuronsTo compute the network's overall performance,
the individual deformation is averaged as follows:

Deformation measure of the whole network : =
1


X

=1

X

=1
()

Non-conformality measure of the whole network :=
1


X

=1

X

=1
()

Deformation potential of the whole network :=
1


X

=1

X

=1
()
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where is the total number of input data and is the dimension of the
simplex shown in Fig. 6. Furthermore, a total non-conformality metric
[21] is introduced. It is the product of consecutive non-conformality
measures

=

¦
=1

(0) (22)

where denotes the total number of the learning steps in the whole
learning process. This metric indicates the accumulative deformation
of the neuron through the whole learning process.

4. Simulation

4.1. Process

In our simulation, 3D models were collected from the sample archive
of the Cyberware company website [29], and the ¯les were in the PLY
format. The CSSM is capable of learning from scattered point data.
Therefore, the source ¯les were translated into point clouds to serve
the input patterns in our simulation, see Fig. 7. The procedure for our
simulation is described below.

1. 3D points were extracted out of the source ¯le as raw input pat-
terns, . These points were scattered.

2. A CSSM network was initialized on a sphere by using an fre-
quency icosahedron, see Fig. 3.

3. The CSSM was trained to learn  until convergence was reached.
The details of this step have been given in section 2.

4. Its conformality measures were computed.

The conformal mapping in function M was solved by using the
MATLAB Schwarz-Christo®el toolbox [15]. We also applied a spherical
network space to the conventional SOM model, which will be called
SSOM in the following sections, for the purpose of comparison.

For the convenience of coding and debugging, we use MATLAB to
implement our program. Solving Schwarz-Christo®el mapping, Eqs. 8
and 9, using the SC-map toolbox was a bottleneck in our program.
About 40 minutes were required to complete one epoch with 3000
neurons and 20000 patterns on an Althon XP 2500+ with 768MB DDR
RAM.
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In our simulation, we used scattered data points as input patterns. (a)
The original model after rendering, (b) the point cloud extracted from
the original model.
Figure 7.

4.2. Results

In our simulation, we used two head models that came from the Cy-
berware company website [29]. Both models were extracted to obtain
scattered data points and are shown in Fig. 8. The ¯rst model was a
woman's head with a °aw beside her mouth, see Fig. 7(a). The second
model was a female head scanned from a real person.

Figs. 9 and 10 show the CSSM and SSOM results obtained with
di®erent densities for surface reconstruction. Figs. 9(a,b) show the
results obtained using the CSSM with 2562 neurons (= 16). The
number of learning epochs was set to 80, learning rate was decreased
from 0.01 to 0.001, and the variance decreased from 0.3 to 0.1. Figs.
9(c,d) show the results obtained using the SSOM with 2562 neurons
(= 16). Figs. 10(a,b) show the results obtained using the CSSM
with 5762 neurons (= 24). The number of learning epochs was 69,
the learning rate decreased from 0.01 to 0.001, and the variance 
decreased from 0.3 to 0.1. Figs. 10(c,d) show the results obtained using
the SSOM with 5762 neurons (= 24). All the learning criteria were
set to be equal for the purpose of comparing these two methods. From
the results obtained using these two methods, it shows that the CSSM
learns smoother meshes than the SSOM does. The performance of the
CSSM and SSOM is shown in Tables 1 and 2. The deformation measure
and non-conformality measure for both methods are close
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The scattered data extracted from the PLY ¯le. These point clouds
are the input patterns in our simulations. (a) Venus model, 33587 data
points, (b) Female model, 49463 data points.
Figure 8.

to 1, and the deformation potential for both methods is close to
zero. This shows that the results obtained using the CSSM and SSOM
are close to conformal mapping.

Table. 1. The conformality measures of the CSSM and SSOM results
with 2562 neurons. These data correspond to Fig. 9 (a) to (d).

The conformality measure CSSM (= 16) SSOM (= 16)

deformation measure  1.0188 1.0191

non-conformality measure  1.001 1.0011

deformation potential  0.006007 0.0061
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Table. 2. The conformality measures of the CSSM and SSOM results
with 5762 neurons. These data correspond to Fig. 10 (a) to (d).

The conformality measure CSSM (= 24) SSOM (= 24)

deformation measure  1.0088 1.0088

non-conformality measure  1.0002 1.0002

deformation potential  0.0012869 0.0012563

In Fig. 11, The CSSM and SSOM results for the second model are
shown. In Figs. 11(a-c) show the results obtained using the CSSM
with 2562 neurons (= 16). The number of learning epochs was 88,
the learning rate decreased from 0.01 to 0.001, and the variance
decreased from 0.3 to 0.1. Figs. 11(d-f) show the results obtained
using the SSOM with 2562 neurons (= 16). The number of learning
epochs was 88, the learning rate decreased from 0.01 to 0.001, and the
variance decreased from 0.4 to 0.1. All the learning criteria were set
to be equal for the purpose of comparison. Using simulation with this
model, the SSOM failed to learn when the variance started at = 03.
Hence, we started the variance at 0.4 (= 04). From the results shown
in Fig. 11, the SSOM did not converge to smooth meshes and did not
tighten the manifold. The performance of the CSSM and SSOM for
the second model is shown in Table 3. The non-conformality measure
of the CSSM model was 1.175, which means that the map was a
quasi-conformal mapping. The SSOM had worse performance than the
CSSM for this model.

Table. 3. The conformality measures of the CSSM and SSOM results
with 2562 neurons. These data correspond to Fig. 11 (a) to (f).

The conformality measure CSSM (= 16) SSOM (= 16)

deformation measure  1.1821 2.7646

non-conformality measure  1.175 23.003

deformation potential  1.0549 1949.3

The quality of the CSSM mesh is shown in Fig. 12. It shows the
mesh angle distribution [24] of the Venus model in Figs. 9 and 10.

The adaptation procedure for the CSSM is applicable to the morph-
ing problem. In this case we ¯rst use the CSSM to learn the ¯rst model
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The results produced by the CSSM and SSOM model with 2562 neurons
(vertices) using the CSSM (a,b) and using the SSOM (c,d). Comparing
the forehead part of the CSSM and SSOM meshes, the mesh by the
CSSM model is more regular than that by the SSOM model.
Figure 9.

and save the trained result. We then use this result as the initial mesh
in a successive learning to learn the second model. We test this idea,
and plot its result in Fig. 13. The number of learning epochs was 88,
the learning rate was 0001 and the variance was decreased from
026 to 01. In Fig. 13, we show the shape changes from the ¯rst model
toward the second model smoothly.
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The results produced by the CSSM and SSOM model with 5762 neurons
(vertices) using the CSSM (a,b) and using the SSOM (c,d). Comparing
the forehead part of the CSSM and SSOM meshes, the mesh by the
CSSM model is more regular than that by the SSOM model.
Figure 10.

To compare the shape di®erence between these two models, we
calculate the total non-conformality metric through the morphing
process. The result is shown in Fig. 14.

5. Summary

This project presents a novel CSSM mesh. A conformal spherical self-
organization method for parameterization of genus zero manifold mod-
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The results produced by the CSSM and SSOM model for the second
3D model. All the ¯gures are composed of the resulting meshes and
rendered models. (a)-(c) CSSM results for 2562 neurons, (d)-(f) SSOM
results for 2562 neurons. These results are obtained under the same
parameters and show that CSSM gives a better mesh.
Figure 11.

The histogram of the mesh angle distribution. The Venus model with
2562 vertices (a) and with 5762 vertices (b) by the CSSM.
Figure 12.
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The morphing results produced by the CSSM model. The CSSM starts
to learn the model in Fig.8(a) toward the model in Fig.8(b). During
learning, intermediate surface meshes are saved as in (b) to (k).
Figure 13.

els is presented. It di®ers from those by X. Gu et al. [13][12] and
V. Surazhsky et al. [24]. X. Gu et al. proposed a method for ¯nd-
ing global conformal parameterizations for surfaces which is derived
from the gradient ¯elds of conformal maps [13]. Their method needs
mathematic techniques to process zero points. The proposed method
is a deformable model and is fully automatic without zero points. V.
Surazhsky et al. proposed the area-based smoothing method in ver-
tex sampling for remeshing [24]. The proposed method has a similar
function as remeshing, it ¯nds the global conformal parameterization
of the mesh. The neural network proposed by S.-W. Chen [5] utilizes
the multilayer neural networks to learn the desired model. It does not
necessarily have the conformal content.

The CSSM is intrinsically suitable for the morphing application, see
Fig. 13, in its learning process. It is also suitable for studying morpho-
logical variability that is an important issue in many surface structure
analyses, see Fig. 14. As for the long legs (sticking out the body)
the proposed method needs extra-techniques. It is needed to include
extra-nodes or links to accomplish such tasks. We did not develop such
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The total non-conformality metric from the left model to the middle
one. The metric values are plotted in the right column. The scale is nor-
malized and double logged with di®erent colors. The red area indicates
a large di®erence while the blue area indicates a small di®erence.
Figure 14.

techniques. In CSSM the initial spherical mesh is extended toward the
object surface without adding any node or link during self-organizing
evolution. This CSSM mesh is capable of reconstructing a surface from
unorganized points and de¯ning a conformal mapping from a sphere to
certain object's manifold. This mesh can resolve models with random
noisy data. We are working on several applications shown below.

Hole recovery
The Venus model with 133446 sample points has a °aw near its

right chin, see Fig. 15(a). We manually remove the data points of this
°aw region, Fig. 15(b), and apply CSSM with 12962 vertices to ¯ll
this region, see Fig. 15(c). The learning rate was set to 0.01 and the
variance decreased from 0.2 to 0.01. CSSM can ¯ll the missing region
without any hole inside [10][1].

Mixed patterns
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In this ¯gure, the °aw region in the right chin of the Venus model is
deleted and the CSSM can ¯ll this hole. (a) The original Venus model
using a mesh with 133446 vertices. (b) The input point cloud. The °aw
region is removed. (c) The CSSM mesh with 12962 vertices.
Figure 15.

In this example, two models of male heads are mixed together. The
total number of data points is 80507. The CSSM model has 12962
vertices. The results using CSSM are shown in Fig. 16. The CSSM
mesh shows a new head that is similar to both of the two heads. The
neighborhood variance is crucial in this example. The mesh in Fig.
16(d), decreased from 0.2 to 0.1, is smoother than that in Fig. 16(e),
decreased from 0.2 to 0.01.

Model with random noise
One percent of uniform random noise is added in a male head model.

The mesh by CSSM is in Fig. 17. Although the result has some imper-
fection, it recovers the head model that is not much a®ected by the
noisy points.

References

1. Amenta N, Bern M, Kamvysselis M (1999) A new Voronoi-based surface
reconstruction algorithm. Proceedings of SIGGRAPH, pp 415-421

2. Barhak J, Fischer A (2001) Parameterization and reconstruction from 3D scat-
tered points based on neural network and PDE techniques. IEEE Transactions
on Visualization and Computer Graphics, Vol 7, Issue 1, pp 1-16

swp0000.tex; 2/05/2005; 10:09; p.22



23
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Figure Legend

1. ¯gure 1: (a) The network space. There are 11x11 neurons arranged
uniformly in a rectangular plane2 2. (b) The input space. The
location of each lattice node is represented by its corresponding
neuron's weight vector 2 3.

2. ¯gure 2: This ¯gure shows that an R2 plane cannot wrap a surface
with a genus zero manifold. The meshes in (c) and (d) are learned
by SOM with R2 network space.

3. ¯gure 3: Icosahedrons approximate spheres at di®erent frequencies.
From (a) to (f) at = 1 to = 6respectively.

4. ¯gure 4: The procedure for mapping input pattern to the refer-
ence vector in the network space.

5. ¯gure 5: The conformal mapping from an arbitrary triangle to a
unit disk and then to an equilateral triangle and vice versa.
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6. ¯gure 6: Diagram of the relative input 0 and the relative synapse
is the input pattern, is the winning neuron weight, and 
and are the neighboring neuron weights. 0, 1, and 2 form a
3D simplex.

7. ¯gure 7: In our simulation, we used scattered data points as input
patterns. (a) The original model after rendering, (b) the point cloud
extracted from the original model.

8. ¯gure 8: The scattered data extracted from the PLY ¯le. These
point clouds are the input patterns in our simulations. (a) Venus
model, 33587 data points, (b) Female model, 49463 data points.

9. ¯gure 9: The results produced by the CSSM and SSOM model
with 2562 neurons (vertices) using the CSSM (a,b) and using the
SSOM (c,d). Comparing the forehead part of the CSSM and SSOM
meshes, the mesh by the CSSM model is more regular than that by
the SSOM model.

10. ¯gure 10: The results produced by the CSSM and SSOM model
with 5762 neurons (vertices) using the CSSM (a,b) and using the
SSOM (c,d). Comparing the forehead part of the CSSM and SSOM
meshes, the mesh by the CSSM model is more regular than that by
the SSOM model.

11. ¯gure 11: The results produced by the CSSM and SSOM model
for the second 3D model. All the ¯gures are composed of the re-
sulting meshes and rendered models. (a)-(c) CSSM results for 2562
neurons, (d)-(f) SSOM results for 2562 neurons. These results are
obtained under the same parameters and show that CSSM gives a
better mesh.

12. ¯gure 12: The histogram of the mesh angle distribution. The Venus
model with 2562 vertices (a) and with 5762 vertices (b) by the
CSSM.

13. ¯gure 13: The morphing results produced by the CSSM model. The
CSSM starts to learn the model in Fig.8(a) toward the model in
Fig.8(b). During learning, intermediate surface meshes are saved as
in (b) to (k).

14. ¯gure 14: The total non-conformality metric from the left model to
the middle one. The metric values are plotted in the right column.
The scale is normalized and double logged with di®erent colors. The
red area indicates a large di®erence while the blue area indicates a
small di®erence.
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15. ¯gure 15: In this ¯gure, the °aw region in the right chin of the
Venus model is deleted and the CSSM can ¯ll this hole. (a) The
original Venus model using a mesh with 133446 vertices. (b) The
input point cloud. The °aw region is removed. (c) The CSSM mesh
with 12962 vertices.

16. ¯gure 16: Two male head models are mixed together. (a) The ¯rst
male head model with 35091 vertices. (b) The second male head
model with 30492 vertices. (c) The mixed point cloud. (d) The
mesh by CSSM using = 02~01 and = 001. (e) The mesh
using = 02~001 and = 001.

17. ¯gure 17: A male head model with 1% random noise. CSSM can
recover the model without topological error. (a) The head model
with 1% noise. The model has 35091 points (green dots) and there
are 351 uniform random noise points (red dots). (b) The mesh by
CSSM using 12962 vertices. The rate was set to 0.01 and the 
was decreased from 0.6 to 0.03. (c) The CSSM mesh same as (b).
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