
行政院國家科學委員會專題研究計畫 成果報告

Java 虛擬機器支援之數值運算

計畫類別：個別型計畫

計畫編號： NSC93-2213-E-002-114-

執行期間： 93 年 08 月 01 日至 94 年 07 月 31 日

執行單位：國立臺灣大學資訊工程學系暨研究所

計畫主持人：陳俊良

報告類型：精簡報告

處理方式：本計畫可公開查詢

中 華 民 國 95 年 1 月 23 日

行政院國家科學委員會專題研究計畫成果報告
Java 虛擬機器支援之數值運算

計畫編號：NSC 93-2213-E-002-114
執行期限：93 年 8 月 1 日至 94 年 7 月 31 日
主持人：陳俊良 國立台灣大學資訊工程學系

中文摘要
Java 技術在數值運算上的改良已經被

廣泛的討論。大致可區分為兩個類別：第
一、著重在利用新的 Java 編譯器，或者更
改 Java 語言來達到增進效能。第二、著重
在修改 Java 虛擬機器 (JVM) 並配合自定
的函式庫來增進效能。

但無論何者，都有其不可避免的優缺
點。修改 Java 語言或 class 檔案格式將失
去 Java 跨平台的特性，而只修改 JVM 而
不配合修改編譯器，將會增加許多額外的
負擔來檢查執行時物件的狀態。到目前為
止，仍然沒有一個完整的架構能整合 Java
編譯器及 JVM。因此我們提出一套讓 Java
編譯器和 JVM 能更緊密配合的架構，來支
援像數值運算這樣的特殊運算環境。

我們的概念是，不更改 Java 語言，只
修改 Java 編譯器在 class 檔案中加入有用
的 attribute 資訊，並修改 JVM 去讀取這些
資訊並做對應的動作來提升整體的效率。
如此一來我們不但能保有 class 跨平台的
特性，也能省去 JVM 在執行時的許多負
擔，以增進效能。

關鍵詞： Java、數值運算、編譯器、虛擬
機器。

Abstract
Enhancements of Java techniques on

numerical computation have already under-
gone wide discussion. These attempts may
be divided into two categories: through
utilizing new Java compilers or modifying
the Java language, and through modifying
Java Virtual Machine (JVM) as well as
providing with self-defined class libraries.

By altering the Java language or its
class format, one risks losing the advantage
of cross-platform portability, which is an

important trait of Java. By altering only the
JVM but not the compiler, one would have
to put more work into examining the status
of objects at execution time. Until now
there has not been a complete architecture
capable of integrating Java compiler and
JVM, and it is the reason why we shall
present a set of infrastructure that will bind
the compiler and JVM more closely so that
they could support special computing
environments such as numerical computing.

Our concept is to keep the Java
language unaltered, and to change only the
Java compiler so that it would add useful
attribute information to the class file during
compilation. Then, we modify the JVM to
read in the information and to react corres-
pondingly. In this way, we not only preserve
class portability, but also free JVM from
excess status judgment at execution time,
which greatly improves its performance.

Keywords: Java, numerical computation,
compiler, virtual machine.

Introduction
Java has many irreplaceable advantages,

and these advantages give Java an edge over
other programming languages. However,
the Java technology has never been widely
used in the field of numerical and scientific
computing. The main reason is that Java is
not designed specifically for numerical
computing: it supports neither complex
primitive data type nor regular arrays.

Since 1998 there have been numerous
publications dedicated to the application of
Java on numerical and scientific computing.
The proposed methods greatly improved the
performance of Java on the tasks, but each
of them still has its own Achilles' heel. For
example, [1] solved the problems that Java

lacks complex data type. But, because they
made changes to the language, the source
code became incompatible with the original
Java compiler, affecting its portability. On
the other hand, [2] used "Semantic
Expansion" for improvement, but it took a
long time to examine all possible situations
and therefore resulted in an even longer
compilation time in JIT (Just-In-Time
Compiler).

We learn from these methods that we
need an integrated architecture to bind the
Java compiler and Java Virtual Machine
closely together. This architecture must
increase system performance without
destroying Java's virtues, for example,
object-orientated nature and cross-platform
ability. Here we propose the architecture
as follows.

The original compiler and VM for Java
are standard Javac and JVM, respectively.
We have modified them into Jncc and JnVM
by the following: during compilation, Jncc
adds "useful" information to the attribute
fields of class file (bytecode2). During
execution, JnVM reads these newly-added
attributes and makes the necessary moves.
Bytecode2 can also be executed by standard
JVM, which will ignore the additional
attributes and maintain cross-platform
flexibility.

The key point in our architecture is the
"attributes" in the bytecode structure.
Attribute is the place where bytecode stores
information. The attributes can be either
added or neglected, and JVM can choose
whether to use them or not. Because of
this design, we believe that we could use
self-defined attributes to make Java compiler
and JVM work hand in hand, letting the
compiler share the task by recording useful
data on attributes, and giving JVM time to
do other things.

When we have added self-defined
attributes to the bytecode, we could still run
it on normal JVM, and the attributes would
be ignored. On the other hand, these

self-defined attributes would be useful to the
JnVM, improving its overall performance.

For example, DAXPY (ax+y) is a
computation commonly seen in numerical
computing. The original Java language
does not provide such subroutine, and to
determine where DAXPY would appear
simply by JVM is next to impossible
because the bytecode loses the tree structure
once it is read into the JVM. Thus, we can
use Jncc to record each location (Program
Counter) at which DAXPY appeared and
convert them into an attribute, and all JnVM
needs to do is to read and process them at
the given locations.

JNC Framework
To design a sound architecture, we

must take Java language, Java compilers,
and JVM into full-scale consideration.
Here we propose a new architecture, which
does not modify the Java language for the
sake of source code compatibility, but binds
the Java compiler and JVM more closely.
The key to this binding is the utilization of
attribute in the Java class format.

Without changing the bytecode
structure, we let the process be done by the
compiler at compilation time, and adding the
compiled results as attribute into
Code_attribute, alleviating JVM's workload
at runtime.

A standard .java file produces bytecode
after javac compilation, and is then executed
by normal JVM. In the JNC framework,
the java file is compiled by Jncc, producing
also bytecode but different from the
bytecode generated by javac. The
difference is the additional self-defined
attributes. Such bytecode can be executed
by normal JVMs, though the result would be
the same as not adding these new attributes
(they are ignored). When the bytecode is
executed by JnVM, however, self-defined
attributes would improve the performance of
execution.

In the following we will discuss
problems about DAXPY. Similar issues
like array or complex nimber can be
discussed in a similar way. We start
treating all these issues by defining suitable
attributes. As we explained, these attributes

would be ignored in standard JVM, so they
would not affect cross-platform ability.

DAXPY refers to a commonly seen
computation in numerical computing, aX+Y.
X or Y could represent complex data
structure such as matrices. Java itself does
not support an instruction like aX+Y, but if
JVM can complete a lot of numerical
computing work - multiplication, addition,
and so on - all at one, the performance may
be improved. For the processor with native
DAXPY instruction, JnVM may get huge
performance improvement from compiling
aX+Y to single native instruction by JIT.

DAXPY serves as a good example
because it embodies the spirit of the JNC
framework. In JNC, we hope that Jncc can
gather useful and relative information for
JnVM in compilation time, reducing
overhead for JnVM at runtime. It's easy to
find a pattern like DAXPY at compilation
time, but difficult in JVM.

In the Jncc compilation, all the
computation is established as tree structure,
so it's easy to judge the location of DAXPY
appearances. When the compilation ends,
JVM wouldn't spend much time
reconstructing the whole tree, which is why
it's extremely difficult to determine DAXPY
in bytecode.

Because DAXPY patterns can be
nested, so we must find DAXPY patterns in
whole tree structure. But in JVM, the tree
structure is difficult to re-construct.

We experiment with the most
simplified situation in Jncc: when a, X, Y
are all double variables. A self-defined
DAXPY attribute is used for recording:

DAXPY_attribute_info {
u2 attribute_name_index;
u4 attribute_length;
u4 daxpy_attribute_length;
{

u2 dmul_pos;
u2 dadd_pos;

} daxpy_info[daxpy_attr_length];
}
The attribute_name_index will point to

the UTF8 string "DAXPY" in constant_pool,
while dmul_pos and dadd_pos stores the PC
(Program Counter) values where DMUL and
DADD appeared in DAXPY. We write in

the DAXPY_attribute when the class file is
produced.

DAXPY_attribute is ignored in
standard JVM, but in JnVM the class loader
reads in this attribute, and changes the PC
(in theory, it should always be DMUL)
location MUL_POS points to in the code to
NOP, and change ADD_POS's PC value
(should always be DADD) into a new
instruction - JNC_DAXPY.

JnVM adds a new JNC_DAXPY
instruction. When the instruction is
executed, there are at least three double
values on the stack, namely a, x, and y.
JNC_DAXPY will pop these three double
values and push the result of ax+y back onto
the stack, so it would require one less
instruction, one less stack push, and one less
stack pop, thus achieving performance
enhancement. Furthermore, if the
hardware processor supports a native
instruction of ax+y, we can translate a
DAXPY pattern into one native instruction.

By adding JNC_DAXPY instruction
into JVM, the two sequential instructions,
multiply and add, are combined into one
instruction, reducing one stack push and
stack pop. Although this may not seem much
improvement, we can get the flavor of how
it works. The JNC framework binds Java
compiler and JVM to be more close,
expanding the function of the compiler, and
lifts the workload on VM execution.

Implementation
The prototype of our implementation is

based on a platform of Red Hat Linux 9, and
is divided into two parts: Jncc compiler and
JnVM.

The Jncc compiler uses the open source
code of javac published by Sun as the
underlying basis. The Sun's javac is
written in Java and can compile .java source
code to bytecode format. We modify
javac's code to analyze tree structure in
compilation time, and add attributes like
DAXPY, when class files are produced. The
resulting class file can work normally under
standard JVM such as Sun's JVM, Kaffe's
VM, and IBM's VM.

Jncc complier will analyze tree
structure, and try to find the pattern of

DAXPY. Jncc checks the tree structure
and looks for an AddExresssion, which is a
binary expression. A DAXPY will appear in
a situation that a MulExpression at the
left-hand side of AddExpression.

JnVM is based on Kaffe 1.1.3. Kaffe
is a clean room implementation of the Java
virtual machine, plus the associated class
libraries needed to provide a Java runtime
environment. It contains no Sun source
code at all, and was developed without even
looking at the Sun source code. But Kaffe
is a great choice as a base for virtual
machine education and research. The
Kaffe virtual machine is free software,
licensed under the terms of the GNU
General Public License.

We modify Kaffe 1.1.3, at class loader
it reads in attributes like DAXPY which
were added by jncc, and fetches the PC
value of these appearances. Kaffe 1.1.3 is
an open-source project and support two
engines- interpreter and JIT. We also build
JnVM in different engine modes.

After reading attributes, we try to
improve performance by these attributes'
information. In DAXPY, JnVM converts the
original two-instruction set - DMUL and
DADD into a new instruction, DAXPY.
This simplifies the process by one
instruction.

Conclusions
The goal of our proposed framework is

to share VM's workload into compilation
time. We let the process done by the
compiler at compilation time, and add the
compiled results as attribute into
Code_attribute, alleviating JVM's workload
at runtime. Through the architectural
design of Jncc and JnVM, we have
demonstrated in this study that this
framework successfully improves Java's
performance on numerical computing while
keeping its cross-platform strength.
Because jncc didn't change the Java
language itself, programmers do not need to
comply with specialized syntax, and the
source code is compatible with compilers
like Javac, Jike, etc. The class file
compiled by Jncc can also be transmitted
through the Internet as other standard classes

do with general dynamic linking and loading.
The only price to pay is a larger class file
caused by additional attributes. This
doesn't affect compatibility.

JnVM is specifically designed for the
classes compiled by Jncc, so it is capable of
expressing self-defined attributes such as
DAXPY enhancing the system performance
by introducing "Semantic Expansion" at the
same time. By applying this framework on
kaffe 1.1.3, we have demonstrated that in
some extreme test programs, we have
achieved at most 11.236 times better than
original kaffe under JIT, while achieving at
most 8.231 times better than Sun's J2SDK
1.3.1 . In Java Linpack benchmark, we have
also achieved 3.45 times better than original
kaffe under JIT, while having achieved
82.4% of Sun's J2SDK.

References
[1] B. Blout and S. Chatterjee, An

Evaluation of Java for Numerical
Computing, Unversity of North
Carolina, 1999.

[2] P. Wu, S. Midkiff, J. Moreira and M.
Gupta, Efficient Support for Complex
Number in Java, IBM T.J. Watson
Research Center, 1999.

[3] M. Philippsen and E. Ghnthner,
Complex numbers for Java, University
of Karlsruhe, 1999.

[4] P. V. Artigas, M. Gupta, S. P. Midkiff,
and J. E. Moreira, High Performance
Numerical Computing in Java :
Language and Compiler Issues. IBM
Thomas J. Watson Research Center,
1999.

[5] R. F. Boisvert, J. Moreira, M.
Philippsen and R. Pozo, Java and
Numerical Computing, IEEE 2001.

[6] J. E. Moreira, S. P. Midkiff and M.
Gupta, Supporting Multidimensional
Array in Java, IBM T.J. Watson
Research Center, 2001.

[7] J. E. Moreira, S. P. Midkiff and M.
Gupta, The NINJA Project: Making
Java Work for High Performance
Numerical Computing, IBM T.J.
Watson Research Center, 2001.

