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An Approximation Algorithm for Broadcast Scheduling

in Asynchronous Heterogeneous Clusters
Abstract

Network of workstation (NOW) is a cost-effective alternative to massively parallel supercomputers.

However, a cluster may consist of different types of processors and this heterogeneity complicates the

design of efficient collective communication protocols. This paper shows that a simple fastest-node-first

(FNF) heuristic is very effective in reducing broadcast time for heterogeneous cluster systems. Despite the

fact that FNF heuristic does not guarantee optimal time, we prove that FNF always gives near optimal

broadcast time for a special case of cluster, and guarantees performance for general clusters. We show that

FNF gives a total broadcast time of 2T + h, where T is the optimum time and h is a constant. This

improves over the previous bound on 2gT +h, where g is a theoretically unbounded ratio of processor

speed. We also describe the experimental results in which we compare the completion time of FNF with

the optimal solutions found by an exhaustive search. The experimental results indicate that FNF gives

solutions that are most of the time within 10% of the optimum, and with a probability up to 0.65 FNF

actually finds the optimal solution. Our theoretical results also improve the efficiency of the exhaustive

search by 33%.
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heterogeneous cluster systems, data broadcast, scheduling.

摘要

工作站叢集是一種有效的計算平台. 一個工作站叢集中可能包含不同種類的工作站, 所以如何在這

些異質工作站之間快速傳布資料就成為工作站叢集效能的重要因素之一. 本計畫成果顯示一簡單

的’快速者優先’方法可有效減少異質工作站叢集中資料由一部工作站傳布至其餘所有工作站的總時

間. 如果最佳總傳布時間為T, 則’快速者優先’方法可保證在2T+h的時間內將資料由一部工作站傳

布至其餘所有工作站. 這比過去文獻中的分析結果更為精準, 而且根據實驗顯示, 有百分之六十五

的時候’快速者優先’方法可達成最佳總傳布時間.

關鍵字

異質工作站叢集, 資料傳布, 排程

1 Introduction
Network of workstation (NOW) is a cost-effective alternative to massively parallel
supercomputers [1]. As commercially available off-the-shelf processors become cheaper and
faster, it is now possible to build a PC or workstation cluster that provides high computing power
within a limited budget. High performance parallelism is achieved by dividing the computation
into manageable subtasks, and distributing these subtasks to the processors within the cluster.
These off-the-shelf high-performance processors provide a much higher performance-to-cost
ratio so that high performance clusters can be built inexpensively. In addition, the processors can
be conveniently connected by industry standard network components. For example, Fast Ethernet
technology provides up to 100 Mega bits per second of bandwidth with inexpensive Fast Ethernet
adaptors and hubs.

Parallel to the development of inexpensive and standardized hardware components for



NOW, system software for programming on NOW is also advancing rapidly. For example, the
Message Passing Interface (MPI) library has evolved into a standard for writing message-passing
parallel codes [9, 8, 13]. An MPI programmer uses a standardized high-level programming
interface to exchange information among processes, instead of native machine-specific
communication libraries. An MPI programmer can write highly portable parallel codes and run
them on any parallel machine (including network of workstation) that has MPI implementation.
Most of the literature on cluster computing emphasizes on homogeneous cluster–a cluster
consisting of the same type of processors. However, we argue that heterogeneity is one of the key
issues that must be addressed in improving parallel performance of NOW. Firstly, it is always the
case that one wishes to connect as many processors as possible into a cluster to increase
parallelism and reduce execution time. Despite the increased computing power,
the scheduling management of such a heterogeneous network of workstation (HNOW) becomes
complicated since these processors will have different performances in computation and
communication. Secondly, since most of the processors that are used to build a cluster are
commercially off-the-shelf products, they will very likely be outdated by faster successors before
they become unusable. Very often a cluster consists of “leftovers” from the previousinstallation,
and “new comers” that are recently purchased. The issue of heterogeneity is bothscientific and
economic.
Every workstation cluster, be it homogeneous or heterogeneous, requires efficient collective
communication [2]. For example, a barrier synchronization is often placed between two
successive phases of computation to make sure that all processors finish the first phase before any
can go to the next phase. In addition, a scatter operation distributes input data from the source to
all the other processors for parallel processing, then a global reduction operation combines the
partial solutions obtained from individual processors into the final answer. The 2 efficiency of
these collective communications will affect the overall performance, sometimes dramatically.
Heterogeneity of a cluster complicates the design of efficient collective communication protocols.
When the processors send and receive messages at different rates, it is difficult to synchronize
them so that the message can arrive at the right processor at the right time for maximum
communication throughput. On the other hand, in homogeneous NOW every processor requires
the same amount of time to transmit a message. For example, it is straightforward to implement a
broadcast operation as a series of sending and receiving messages, and in each phase we double
the number of processors that have received the broadcast message. In a heterogeneous
environment it is no longer clear how we should proceed to complete the same task.
This paper shows that a simple heuristic called fastest-node-first (FNF), introduced by
Banikazemi et. al. [2], is very effective in designing broadcast protocols for heterogeneous cluster
systems. The fastest-node-first technique schedules the processors to receive the broadcast in the
order of their communication speed, that is, the faster node should be scheduled earlier. Despite
the fact that the FNF heuristic does not guarantee optimal broadcast time for every heterogeneous
network of workstations, we show that FNF does give near optimal broadcast time when the
communication time of any slower processor in the cluster is a multiple of any faster processor.
Based on this result, we show that FNF is actually an approximation algorithm that guarantees a
broadcast time within 2T + t, where T is the optimal broadcast time and t is the maximum
difference between two processors. This improves over the previous bound 2gT + h [17] where g



is the maximum ratio between receiving and sending costs, and can be arbitrarily large
theoretically. In a previous paper [19] we show a similar result for a communication model where
the communication cost is determined by the sender only. This paper shows that FNF can still
achieve guaranteed performance when the model determines the communication costs based on
both the sender and the receiver. We also conduct experiments on the performance of the
fastest-node-first technique. The cluster we construct in our simulation consists of three types of
processors, and the number of nodes is 100. We construct the schedules from a random selection
and FNF, and apply them on the heterogeneous cluster model. Experimental results indicate that
FNF gives superior performance over random selection, for up to 2 times of throughput. This
simulation result indicates that FNF is very effective in reducing broadcast time in practice.

2 Communication Model
There have been two classes of models for collective communication in homogeneous cluster
environments. The first group of models assumes that all the processors are fully connected. As a
result it takes the same amount of time for a processor to send a message to any other processor.
For example, both the Postal model [5] and LogP model [15] use a set of parameters to capture
the communication costs. In addition the Postal and LogP model assume that the sender can
engage in other activities after a fixed startup cost, during which the sender injects the message
into the network and is ready for the next message. Optimal broadcast scheduling for these
homogeneous models can be found in [5, 15]. The second group of models assume that the
processors are connected by an arbitrary network. It has been shown that even when every edge
has a unit communication cost (denoted as the Telephone model), finding an optimal broadcast
schedule remains NP-hard [10]. Efficient algorithms and network topologies for other similar
problems related to broadcast, including multiple broadcast, gossiping and reduction, can be
found in [7, 11, 12, 14, 18, 21, 22, 23].
Various models for heterogeneous environments have also been proposed in the literature.
Bar-Nod et al. introduced a heterogeneous postal model [4] in which the communication costs
among links are not uniform. In addition, the sender may engage another communication before
the current one is finished, just like homogeneous postal and LogP model. An approximation
algorithm for multicast is given, with a competitive ratio logk where k is the number of
destination of the multicast [4]. Banikazemi et al. [2] proposed a simple model in which the
heterogeneity among processors is characterized by the speed of sending processors, and show
that a broadcast technique called fastest-node-first works well in practice. We will refer to this
model as the sender-only model. Based on the sender-only model, an approximation algorithm
for reduction with competitive ratio 2 is reported in [20], and the fastest-node-first technique is
shown to be also 2-competitive [19]. Despite the fact that the sender-only model is simple and
has a high level abstraction of network topology, the speed of the receiving processor is not
accounted for. In a refined model proposed by Banikazemi et al. [3], communication overheads
consists of both sending and receiving time, which we will refer to as the sender-receiver model.
For the sender-receiver model the same fastest- node-first is proven (Libeskind-Hadas and
Hartline [17]) to have a total time of no more than 2hT + g, where h is the maximum ratio
between receiving and sending time, g is the maximum difference between two receiving time,
and T is the optimal time. We adopt the sender- receiver model in this paper and improve this



bound to 2T + g. Other models for heterogeneous clusters
include [6, 16].

2.1 Model Definition
The model is defined as follows: A heterogeneous cluster is defined as a collection of processors
p0, p1, ..., pn−1, each capable of point-to-point communication with any other processor in the
cluster. Each processor is characterized by its speed of sending and receiving messages, and the
network is characterized by the speed to route a message from the source to the destination.
Formally, we define the sending time of a processor p, denoted by s(p), to be the time it needs for
p to send a unit of message into the network. The network is characterized by its latency L, which
is the time for the message to go from its source to its destination. Finally we define the receiving
time of a processor p, denoted by r(p), to be the time it takes for p to retrieve the message from
the network interface. We further assume that the processor speed is consistent–if a processor p
can send messages faster than another processor q, it can also receive the messages faster.
Formally we assume that for two processors p and q, s(p) ≤ s(q) if and only if r(p) ≤ r(q). The
communication model dictates that the sender and receiver processors cannot engage in multiple
message transmissions simultaneously–a sender processor must complete its data transmission
to the network before sending the next message. Also a processor can only inject messages into
the network at an interval specified by its sending time. This restriction is due to the fact that
processor and communication networks have limited bandwidth, therefore we would like to
exclude from our model the unrealistic algorithms in which a processor simply sends the
broadcast message to all the other processors simultaneously. Similarly, the model prohibits the
simultaneous receiving of multiple messages by any processor. That is, the model disallows the
unrealistic implementation of a reduction operation by having one processor to receive the
messages from all the other processors simultaneously. Many message passing libraries provide
non-blocking send and receive primitives, but these simultaneous message transmissions are
eventually serialized in the hardware level.
The communication model allows asynchronous send. In asynchronous message passing the
sender only needs to wait for its sending time before initiating the next send. The sender can
immediately start preparing the next transmission without waiting for the receiver to complete.
This asynchronous send has been implemented in various communication libraries, including
MPI, and it is consistent with the behaviors of communication hardware.

2.2 Simplified Model Description
We can simplify the model as follows: Since a receiving node p always has to wait for L+r(p)
time steps before it actually receives the message, we add the network latency L into its receiving
time. As a result we simply state that the new receiving time of p1 in the previous example is 2.
The processor p1 therefore receives its message at time s(p0)+r(p1) = 1+2 = 3, and p3 receives its
message from p0 at time 2s(p0)+r(p3) = 8. From now on we will use this simplified model.
After simplifying the communication model, we can define other terminologies for the broadcast
problem in a heterogeneous system. Assume that a processor q sends a message to another
processor p at time t, then p becomes ready to receive at time t + s(q), since p now can start
receiving the message, and we denote the ready to receive time of p by R(p). At time t + s(q) +



r(p) p becomes ready to send because it can start sending its own message now, and we use S(p)
to denote the ready to send time of p. A processor p can finish sending messages into the network
at time S(p) + s(p), S(p) + 2s(p), ..., S(p) + i ∗ s(p), where i is a positive integer, until the
broadcast finishes.

3 Fastest-node-first Technique
It is difficult to find the optimal broadcast tree that minimizes the total broadcast time in a
heterogeneous cluster, therefore a simple heuristic called fastest-node-first (FNF) is proposed in
[2] to find a reasonably good broadcast schedule for the original sender-only heterogeneous
model [2].

3.1 Fastest-Node-First Scheduling for Broadcast
The FNF heuristic works as follows: In each iteration the algorithm chooses a sender from the set
of processors that have received the broadcast message (denoted by A), and a receiver from the
set that have not (denoted by B). The algorithm picks the sender s from A because, as the chosen
one, it can inject the message into the network as early as possible. The algorithm then chooses
the fastest processor in B as the destination of s. That is, r is the processor that has the minimum
sending time in B. After the assignment, r is moved from B to A and the algorithm iterates to find
the next sender/receiver pair. Note that this same technique can be applied to both models–the
sender only and the sender-receiver heterogeneous models–since we assume that the sending
and receiving times are consistent among processors. The intuition behind this heuristic is that, by
sending the message to those fast processors first, it is likely that the messages will propagate
more rapidly.
The fastest-node-first technique is very effective in reducing broadcast time [2, 17, 19]. The FNF
has been shown in simulation to have a high probability to find the optimal broadcast time when
the transmission time is randomly chosen from a given table [2]. The FNF technique also delivers
good communication efficiency in actual experiments. In addition, FNF is simple to implement
and easy to compute.

3.2 FNF Does not Guarantee Optimal Broadcast Time
Despite its efficiency in scheduling broadcast in heterogeneous systems, the FNF heuristic does
not guarantee optimal broadcast time [2, 6] in sender-only model. Since the sender-only model is
a special case of the sender-receiver model, FNF is not optimal in the sender-receiver model
either. For example, in the situation of Figure 1 FNF will not achieve optimal time,

4 Theoretical Results
Despite the fact that FNF cannot guarantee optimal broadcast time, we show that FNF is optimal
in some special cases of heterogeneous clusters. Based on the results of these special cases, we
show that the fastest-node-first algorithm produces a schedule with guaranteed performance.
We first consider the following theorem from [2].
Theorem 1 [2]
There exists an optimal schedule in which all processors sends messages without delay. That is,
for all processor p in T, starting from its ready to send time, p repeatedly sends a message with a



period of its sending time until the broadcast ends.
With Theorem 1, we can simply discard those schedules that will delay messages, and still find
the optimal one. Since there is no delay, we can characterize a schedule as a sequence of
processors sorted in their ready to receive time. Recall the set A and B in the description of
fast-node-first method. Since no delay is allowed, any scheduling method must schedule s, the
processor in A that could have completed the sending at the earliest time, to send a message
immediately. Formally we define P = (p0, ..., pn−1) to be a sequence of n processors sorted in their
ready to receive time and the processors appear in P in non-decreasing sending speed, except for
the source s0. That is, the processors will be ready to receive the broadcast according to their
sending time. The total broadcast time of P (denoted by T(P)) is by definition maxn−1 i=1 S(pi), the
latest ready to send time among all the processors1. A broadcast sequence P is optimal if and only
if for any other permutation of P (denoted by P′), T(P) ≤ T(P′).Let p be a processor and NSP (p, t)
be the number of messages successfully sent at and before time t by p in the sequence P.

Formally, NSP (p, t) =⌊t−S(p) s(p)⌋, for t ≥ S(p). We can define ready to receive time R(pi) and

ready to send time S(pi) recursively (Eqn. 1). that is, the ready to receive time of the i-th
processor in P is the earliest time when the total number of messages sent by the first i − 1
processors reaches i.

R(p0) = 0 and S(p0) = 0
R(pi) = min{t| i−1 X j=0 NSP (pj , t) ≥ i}, 1 ≤ i ≤ n − 1
S(pi) = R(pi) + r(pi), 1 ≤ i ≤ n − 1 (1)

4.1 Power 2 clusters
In this section we consider a special case of heterogeneous clusters in which all the sending and
receiving costs are power of 2, and we refer to such clusters as power 2 clusters [19]. Similar
notation is also used in [17]. We show that FNF technique does guarantee minimum ready to
receive time for the last processor receiving the broadcast message in a power 2 cluster, and this
is the foundation of our competitive ratio analysis.
Henceforth we will focus on minimizing the ready to receive time of the last processor in a
sequence P = (p0, ..., pn−1), which is denoted as TR(P) = R(pn−1). We will later relate our finding
with the latest ready to send time among all the processors, denoted by TS(P) = maxn−1

i=0 S(pi), which is the time the broadcast actually takes. We choose this approach since TR(P) is
much easier to handle in our mathematical analysis than TS(P). Note that the processor that has
the latest ready to receive time may not have the latest ready to send time.

We first establish a lemma that it is always possible to switch a processor p with a slower
processor q that became ready to receive right ahead of p (with the exception that q is the
source) so that p and q will contribute more on the NS function after the switch. We then
use an induction to show that this modification will not increase the ready to receive time of the
processors thereafter, including the last one in the sequence. That is, the switch of p and q will
not increase the final ready to receive time. This leads to the optimality of FNF for the last ready
to receive time in a power 2 cluster.



Lemma 2 Let p be a first faster processor that became ready to receive right after a slower
processor q in a sequence P, that is, R(p) = t1 > R(q) = t0, and s(p) < s(q). By switching p with q in
P we obtain a new sequence P′. Then, in this new sequence P′, R(p) is moved forward from t1 to t0,
and R(q) is delayed from t0 to no later than t1, and NSP′(p, t) + NSP′(q, t) ≥ NSP (p, t) + NSP (q,
t), for t ≥ t0.

Let us consider the change of NS function from q’s point of view. q is delayed by only one time
step, so NSS(q) is at most greater than NSS′(q) by 1, which only happens at time interval [t0 + r(q)
+ ks(q), t0 + r(q) + ks(q) + 1), where k is a positive integer, r(q) is the receiving time of q, and s(q)
is the sending time of q. Note that this interval includes the time t0+r(q)+ks(q) but not
t0+r(q)+ks(q)+1. See Figure 4 for an illustration. However, during this interval NSP′(p) will be
larger than NSP (p) by one since s(q) is a multiple of s(p), and r(q) is a multiple of r(p) due to
speed consistency. This increase compensates the decrease due to q and the Lemma follows.
After establishing the effects of exchanging the two processors on the NS function, we argue that
the ready to receive time of the processors after p and q will not be delayed from P to P′. We
prove this statement by an induction and the following lemma serves as the induction base:

Lemma 3 Let p and q be the (j − 1)th and jth processor in P, then the ready to receive time
of pj+1 in P′ is no later than in P.

Lemma 4 The ready to receive time of pl in P′ is no later than in P, for j + 1 ≤ l ≤ n − 1.

One immediate result from Lemma 3 and 4 is that for any processor sequence of a power 2
cluster, including the optimal ones, the final ready to receive time will never be increased by
making the faster processors ready to receive earlier than slower ones. Now we have the
following theorem: Theorem 5 The fastest-node-first algorithm gives optimal final ready to
receive time for a power 2 cluster.

4.2 An approximation algorithm
Theorem 5 by itself is not very useful in practice since most clusters do not have such property on
their transmission speed. We can use Theorem 5 to show that FNF is actually an approximation
algorithm of competitive ratio 2 for the final ready to receive time. By increasing the transmission
time of processors, we can transform any heterogeneous cluster into a power 2 cluster. We
increase the sending and receiving time of each processor p to be 2⌈log s(p)⌉ and 2⌈log r(p)⌉ 

respectively, that is, the smallest power of 2 that is no less than the original value.
We will show that FNF, optimal for the transformed cluster, also gives a schedule at most twice
that of the optimal final ready to receive time for the original cluster. Theorem 6 The
fastest-node-first scheduling has a final ready to receive time no greater than twice that of the
optimal final ready to receive time. Now we establish the relation between the final ready to
receive time and the total broadcast time.
Theorem 7 The total broadcast time from fast-node-first technique is at most 2T +_, where
T is the optimal total broadcast time, and is max{r(pi)} − 2min{r(pi)}.
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