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Abstract - The hierarchical hypercube network is suitable 
for massively parallel systems. The number of links in the 
hierarchical hypercube network forms a compromise 
between those of the hypercube and the cube-connected 
cycles. Recently, some interesting properties of the 
hierarchical hypercube network were investigated. Since 
the hierarchical hypercube is bipartite. A bipartite graph 
is bipancyclic if it contains cycles of every even length 
from 4 to |V(G)| inclusively. In this paper, we show that the 
hierarchical hypercube network is bipancyclic. 

Keywords: Bipancyclic, bipartite graph, embedding, Gray 
code, Hamiltonian cycle, hierarchical hypercube networks, 
hypercube. 

 
1 Introduction 
  In recent decades, many interconnection network 
topologies have been proposed in the literature (see [12], 
[16]) for purpose of connecting hundreds or thousands of 
processing elements. Among these topologies, the 
hypercube network is a popular interconnection network 
with many attractive properties such as regularity, 
symmetry, small diameter, strong connectivity, recursive 
construction, partition ability, and relatively low link 
complexity [21].  

 Malluhi and Bayoumi were proposed the hierarchical 
hypercube network [19], which is an alternative to the 
hypercube. It owns many favorable topological properties 
for building massively parallel systems. An appealing 
property of this network is the low number of connections 
per processor which enhances the VLSI design and 
fabrication of the system. Other alluring features include 
regularity, symmetry and logarithmic diameter which imply 
easy and fast algorithms for communication. Besides, it can 
perform one-to-one communication, one-to-all 
communication and divide-and-conquer algorithms 
efficiently [17]-[19]. Moreover, the one-to-one disjoint 
paths algorithm was investigated in [24].  

 On the other hand, linear arrays and rings, which are 
two of the most fundamental networks for parallel and 

distributed computation, are suitable for developing simple 
algorithms with low communication costs. Many efficient 
algorithms designed on linear arrays and rings for solving a 
variety of algebraic problems and graph problems can be 
found in previous works [16]. The pancyclicity of a 
network represents its power of embedding cycles of all 
possible lengths. An n-node network (graph) is pancyclic if 
it contains all cycles of lengths from 3 to n [3]. It can 
embed rings of all possible lengths with dilation 1, 
congestion 1, load 1, and expansion 1. The pancycle 
problem on a network W asks, for every integer 3 ≤ l ≤ |W|, 
whether or not W contains a cycle of length l, where |W| is 
the number of nodes contained in W. Obviously, a 
pancyclic network is Hamiltonian because a cycle of length 
n corresponds to a Hamiltonian cycle. The pancycle 
problem was solved on many networks, e.g., the twisted 
cube [5], the butterfly graph [13], the arrangement graph 
[7], the hypercomplete network [6], the alternating group 
graph [15] the CCC network [9], and the hierarchical cubic 
network [8]. 

 The hypercube network [16] and the hierarchical 
hypercube network [19] are bipartite graphs. Bipancyclicity 
is essentially a restriction of the concept of pancyclicity to 
bipartite graphs whose cycles are necessarily of even 
length. A bipartite graph is bipancyclic if it contains a cycle 
of every even length from 4 to the number of its vertices. 
In this paper we solve the pancycle problem on the 
hierarchical hypercube network, that is, we show that the 
hierarchical hypercube network is bipancyclic. 

 The rest of this paper is organized as follows: In the 
next section, the structure of the hierarchical hypercube 
network is first reviewed. And the cycle embedding 
problem in the network is solved in Section 3. Finally, this 
paper concludes in Section 4.  

 
2 Preliminaries 
 A network is conveniently represented as an 
undirected graph whose vertices represent the nodes (i.e., 
processors) of the network and whose edges represent the 
communication links of the network. Throughout this paper, 



for the graph theoretical definitions and notations we 
follow [22].  

 Let G = (V, E) be a connected graph, where the set of 
vertices V(G) represent processors, and the set of edges 
E(G) represent links between processors. We use network 
and graph, node and link (vertex and edge) interchangeably. 
A graph G = (V0∪V1, E) is bipartite if V(G) is the union of 
two disjoint sets V0 and V1, such that every edge joins V0 
with V1. Two vertices, u and v, have the same color if and 
only if u and v are in the same partite set. If e1 and e2 are 
distinct edges that are incident to a common vertex, then e1 
and e2 are adjacent edges.  

 The degree of a vertex in G is the number of edges 
incident to it. If all vertices have the same degree d, then G 
is called regular or d-regular. The distance between two 
vertices u and v, denoted by d(u, v), is the length of the 
shortest path between u and v.  

 An n-dimensional hypercube, denoted by Qn, is one 
of the most popular networks. There are 2n nodes contained 
in a Qn network, each is uniquely represented by a binary 
sequence bn−1bn−2…b0 of length n. Two nodes in a Qn 
network are adjacent if and only if they differ at exactly 
one bit position. An edge of Qn network is dimension k 
(0≤k≤n−1) if its two end vertices differ at bk. The 
hypercube network suffers from a practical limitation when 
it is used as the topology of a multiprocessor system. As n 
increases, it becomes more difficult to design and fabricate 
the nodes of Qn because of the large fanout.  

 To remove the limitation, the cube-connected cycles 
(CCC) network [20] was designed as a substitute for the 
hypercube. The node degree of CCC is restricted to three. 
However, this restriction degrades the performance of CCC 
at the same time. For example, CCC has a larger diameter 

than the hypercube. Taking both the practical limitation 
and the performance into account, the hierarchical 
hypercube (HHC) network [19] was proposed as a 
compromise between the hypercube and CCC. An HHC 
network, which has a two-level structure, takes hypercube 
as basic modules and connects them in a hypercube manner. 
An HHC network has a logarithmic diameter, which is the 
same as a hypercube network. Since the topology of an 
HHC is closely related to the topology of a hypercube 
network, it inherits some favorable properties from the 
latter.  

 Recall that a CCC network can be obtained by 
replacing each node of a Qk network with a cycle of k 
nodes so that these k nodes are connected to the k 
neighbors of the original node in the Qk network. Actually, 
an HHC network is a modification of a CCC network in 
which the k−node cycle is replaced with a hypercube. 
Assume k=2m. An HHC network can be constructed as 
follows: start with mQ

2  network and replace each node of it 
with a Qm network.  

 Since there are a total of 
m22 × m2  = 

mm +22  nodes in the 
HHC network, each node of the HHC network can be 
uniquely represented by a binary sequence bn−1bn−2…b0, 
where n=2m+m. Refer to Figure 1, where an example with 
m=2 is shown. For convenience, bn−1bn−2…b0 is expressed 
as a two-tuple (S, P), where S=bn−1bn−2…bm tells which Qm 
network the node is located in and P=bm−1bm−2…b0 gives 
the address of the node in the located Qm network.  

 Let P(l)
 = bm−1…bl+1 lb bl−1…b0 (S(m+l)

 = bn−1…bm+l+1 1+mb  
bm+l−1…bm), where lb  denote the complement of bl. An 
HHC network can be defined in terms of graph as follows. 
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Figure 1: Construction of an HHC network from a 22
Q  network. 



 Definition 2.1 The node set of an n-dimensional HHC (n-
HHC for short) is {(S, P)| S = bn−1bn−2…bm, and P = 

bm−1bm−2…b0, and bi ∈ {0, 1} for all 0 ≤ i ≤ n − 1}, where n = 

2m + m and m ≥ 1. Node adjacency of an n-HHC network is 
defined as follows: (S, P) is adjacent to (1) (S, P(l)) for all 0 
≤ l ≤ m−1 and (2) (S(m+dec(P)), P), where dec(P) is the 
decimal value of P. 

 Edges defined by (1) are referred to as internal edges, 
and those defined by (2) are referred to as external edges. 
Internal edges are within Qm networks and each of external 
edges connects two Qm networks. As Figure 1, node (0000, 
01) and node (0000, 11) are connected by an internal edge; 
node (0000, 01) and node (0010, 01) are connected by an 
external edge. Notice that an n-HHC network is (m + 1)-
regular, symmetric, and has a diameter of 2m+1 (see [19]). 
In subsequent discussion, whenever a node A of an n-HHC 
network is mentioned, we use AS and AP to denote the S 
part and P part of A, respectively. For each bi in S part, we 
decrease each index i by m, so that all the index i would 
follow 0 ≤ i ≤ 2m − 1 in the rest of paper.  

 In the following, we define Gray codes, which will be 
used in the next section. 
Definition 2.2 [11] An m-bit Gray code, denoted by Gm, 
defines an ordering among all the m-bit binary numbers. 
G1 is defined as (0, 1), and for m > 1, Gm is defined 
recursively in terms of Gm−1 as (0Gm−1, 1Gm−1

r), where 
Gm−1

r stands for the reverse ordering of Gm−1 and 0Gm−1 
(1Gm−1

r) stands for prefixing each binary number in Gm−1 
(Gm−1

r) with 0 (1). 

 For example, G2 can be (00, 01, 11, 10) and G3 can be 
(000, 001, 011, 010, 110, 111, 101, 100). Notice that every 
two adjacent binary numbers, including the first one and 
the last one, in Gm differ in exactly one bit position. 

 
3 Cycles Embedding in HHC Networks 
 In this section, we embed cycles of all possible 
lengths into an n-HHC network. Since an n-HHC network 
is bipartite (see [19]), only cycles of even lengths, ranging 
from 4 to 

22
m

, can be embedded. 

 We used dH(V0, V1) to denoted the Hamming distance 
between V0 and V1, which is the number of different bits 
between V0 and V1. A path from V0 to Vm is denoted V0 → 
V1 → V2 → …→ Vm. It can be also abbreviated to a V0-Vm 
path. A cycle cl is denoted V0 → V1 → V2 → …→ Vm → V0, 
where l is the length of the cycle. Obeying the convention 
of most graph books, every path (or cycle) in this paper 
contains no repeated node.  

 For example, A = (00000000, 000) → (00000001, 000) 
*→ (00000001, 010) → (00000101, 010) *→ (00000101, 
000) → (00000100, 000) *→ (00000100, 010) → 
(00000000, 010) = B expresses a path, denoted by A-B path, 

from A = (00000000, 000) to B =(00000000, 010), where 
*→ denotes a shortest path within a Q3 network. The path 
in a 11-HHC contains internal edges and external edges 
alternately. Each subpath of it within a Q3 network is 
maintained shortest. It is easy to obtain a shortest path 
between any two distinct nodes in a Qm [21]. So, if the 
subpaths within Qm networks are ignored, then a path in an 
n-HHC network can be simply represented by a sequence 
of external edges, called an external edge sequence (EES). 
In this example, the path contains four external edges that 
can be represented by their P parts, i.e., 000, 010, 000 and 
010 in sequence. Hence, the path can be simply represented 
by an EES (000, 010, 000, 010).  

Lemma 3.1 [8] Suppose dH(X, Y) = d ≥ 1. There are X-Y 
path in a Qm whose length are d+2, d+4,…, c, where m≥1, 
c = 2m

 − 1 if d is odd, and c = 2m
 − 2 if d is even.  

 Let dH(X, Y) = 1. By lemma 3.1, there are X-Y path in 
Qm whose length is ranging from 3 to 2m

 − 1 connect these 
adjacent nodes, X and Y. Then, there are cycles in Qm 
whose length is even and ranging from 4 to 2m.  In the 
other word, we have following corollary. 

Corollary 3.2 An m-cube (Qm) is bipancyclic, where m>1.  

Lemma 3.3 Suppose 4 ≤ l ≤ 
mm+22 and cl is a cycle or path 

within an n-HHC. Let A and B are two arbitrary adjacent 
vertices in cl such that no external edges in cl incident to 
them. Then, we can replace the link (A, B) by a path which 
obtained according to the EES (AP, BP, AP, BP). Then, the 
cycle (or path) is extended to length l + 6.  

 For example, by corollary 3.2, we can construct 
cycles c6 = (00000000, 000) → (00000000, 001) →  
(00000000, 011) → (00000000, 111) → (00000000, 110) 
→ (00000000, 010) → (00000000, 000) within a Q3 of an 
11-HHC (m = 3). Arbitrarily select two adjacent nodes A = 
(00000000, 111) and B = (00000000, 110) from c6. By 
lemma 3.3, the link (A, B) can be replaced by the path 
which obtained according to the EES (111, 110, 111, 110). 
Then, the cycle is extended to length 12. The extended 
cycle is described as follow and the path obtained by the 
EES (111, 110, 111, 110) is underlined.  

c12: (00000000, 000)→(00000000, 001)→ (00000000, 
011)→(00000000, 111)→(10000000, 111)→(10000000, 
110)→(11000000, 110)→ (11000000, 111)→(01000000, 
111)→(01000000, 110)→(00000000, 110)→(00000000, 
010)→ (00000000, 000). 

 Some observations on above example, the original 
cycle c6 is located within a Q3 of an 11-HHC. The cycle c12 
is the result of extending cycle c6 and the cycle c12 pass 
through 4 different Q3’s. Clearly, the result of applying 
lemma 3.2 one time can increase 3 Qm’s to the cycle. By 
lemma 3.1, we can extend the cycle cl repeatedly until l ≤ 

32 (= 4 × |V(Q3)| ) and l is even. Then, we will describe the 
cycle construction in an n-HHC in next theorem. 



Theorem 3.4 An n-HHC network contains cycles of 
lengths ranging from 4 to 2n ( = 

mm+22 ), where m > 2.  

Proof. In the proof, we assume l is even. To construct a 
cycle of length l, two cases should be considered as follows.  

Case 1. (4 ≤ l ≤ 2m): Without losing generality, we apply 
corollary 3.2 in a Qm which is located in 

m20 , where 
m20  

represents 2m consecutive 0’s. By corollary 3.2, we can 
construct cycles in a Qm of an n-HHC whose length is even 
and ranging from 4 to 2m.  

Case 2. (2m
 + 2 ≤ l ≤ 

mm+22 ): Let node X and node Y be two 
adjacent vertices in 22 −mc  such that no external edges in cl−4 
incident to them. Without loss of generality, assume XP = 
xm-1xm-2…x10 and YP = XP

(1) = xm-1xm-2…x11. There are at 
most 2m-1 can be selected. We sort them by Gray code 
ordering. When l = k2m + 2 and 1 ≤ k ≤ 

mm −22 , the cycle is 
extended by adding new Qm’s. We describe how to add 
new Qm’s in two parts: (A) k = 1 or k = 2t, where 2 ≤ t ≤ 2m

 − 
m; (B) otherwise. 

(A) First, we select a new link (X, Y) by Gary code 
ordering. Then, we replace the link (X, Y) of Qm 

m20  by a 
path which is obtained according to the EES (AP, BP, AP, BP) 
by applying lemma 3.3. Clearly, we add three Qm to the 
cycle, and therefore the length of the cycle is l + 2 ( = l − 4 + 
6).  

(B) We can find a Qm in cl−4 where Qm's link (X, Y) is not 
replaced. And we apply lemma 3.3 to extend the cycle. 
Clearly, we add three Qm to the cycle and the length of the 
cycle is l + 2 ( = l − 4 + 6).  

 Then, we can apply corollary 3.2 to extend the cycle 
cl, where k2m+4 ≤ l ≤ (k + 3)2m and 1 ≤ k ≤ 

m22 − 1. Apply the 
method describe above repeatedly until all Qm’s of an n-
HHC are added to the cycle. We can extend the cycles with 
all even length from 4 × 2m+ 2 to mm+22 . There are 

m22  Qm’s 
in an n-HHC. Each time we apply lemma 3.3, we can add 
three Qm’s to the cycle. After (

m22 − 1) / 3 times, we can add 
all Qm’s of an n-HHC to the cycle. Note that (

m22 − 1) / 3 is 

an integer since 
m22 −1= 

22 1

2 ×−m

− 1 = 
22 )2(

1−m

− 1 = (
122
−m

+ 1) 

(
122
−m

− 1) = 3
1

1
−
=∏m

i (
i22 + 1). As a result, all Qm’s can be 

added to the cycle.                     
■ 

 To consider the m ≤ 2, these cases are special. When 
m=1, obviously a 3-HHC is also a cycle with length 8. 
When m = 2, there are 16 Q2’s in a 6-HHC. Clearly, a Q2 is 
also a cycle c4. We use the construction method of theorem 
3.4 which repeatedly applies lemma 3.3 five ( = (

222 − 1) / 3) 
times to add all Q2’s to the cycle. Then, we have cycles cl, 
where 10 ≤ l ≤ 26 and l is even. So, a 6-HHC network 
contains cycles of all possible even lengths, except 6. 

4 Conclusions 
 The hierarchical hypercube network was originally 
proposed in [17]-[19] for building massively parallel 
systems. It uses logarithmic links of a comparable 
hypercube and owns many favorable topological properties 
include regularity, symmetry and logarithmic diameter 
which imply easy and fast algorithms for communication. 
And an appealing property of this network is the low 
number of connections per processor which enhances the 
VLSI design and fabrication of the system. Besides, it can 
perform one-to-one communication, one-to-all 
communication and divide-and-conquer algorithms 
efficiently [17]-[19]. Moreover, the one-to-one disjoint 
paths algorithm was investigated in [24]. The hierarchical 
hypercube network was originally proposed in [9-11] for 
building massively parallel systems. It uses logarithmic 
links of a comparable hypercube and owns many favorable 
topological properties include regularity, symmetry and 
logarithmic diameter which imply easy and fast  

 In this paper, we solved the cycle embedding problem 
by showing that there are cycles of all possible even length 
in the n-dimensional hierarchical hypercube network, 
where m > 2. Consequently, the hierarchical hypercube 
network can efficiently execute all algorithms that are 
executable on linear arrays or rings. Many of such 
algorithms can be found in [1].  

 Finally, further research problems on the hierarchical 
hypercube network are suggested. For instance, 
Hamiltonian-laceability [10], [14], [23] and conditional 
faults [2], [4] problems were proposed. It still includes 
research issues in the hierarchical hypercube network. 
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