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Abstract Hardware variance can significantly degrade the
positional accuracy of RSS-based WiFi localization sys-
tems. Although manual adjustment can reduce positional
error, this solution is not scalable as the number of new
WiFi devices increases. We propose an unsupervised
learning method to automatically solve the hardware
variance problem in WiFi localization. This method was
designed and implemented in a working WiFi positioning
system and evaluated using different WiFi devices with
diverse RSS signal patterns. Experimental results demon-
strate that the proposed learning method improves posi-
tional accuracy within 100 s of learning time.
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1 Introduction

The WiFi location system is a promising technology aimed at
complying with real-world location-based applications. In
comparison with other location systems using GPS, cameras,
RFID, ultrasound, etc., WiFi location systems have several
advantages in deployment practicability. For examples, WiFi
works in both indoor and outdoor environments; it also
leverages existing and widely-deployed Wi-Fi networks. As a
result, several companies such as Ekahau (http://www.ekahau.
com/), Aeroscout (http://www.aeroscout.com/), Innerwireless
Pango (http://www.innerwireless.com/) and Skyhook wire-
less (http://www.skyhookwireless.com/) are actively devel-
oping location-based applications for using this technology
in hospitals, warehouses, factories, amusement parks and
other locations. Additionally, Cisco, a key WiFi industry
player, has developed a unique WiFi localization system
(http://www.cisco.com/go/location) based on WiFi access
points that detect signal strengths emitted from client WiFi
devices such that no software installation is needed on the
WiFi devices.

Despite its numerous advantages in deployment practi-
cability, deployment of current WiFi location systems
remains problematic. A major issue is the WiFi hardware
variance problem: the WiFi device used to train the radio
map during the calibration phase (the training device) may
differ from the WiFi devices used during the tracking phase
(tracking devices). Varying Received Signal Strength (RSS)
can degrade the signal patterns between training and
tracking devices as well as the positional accuracy of WiFi
location systems. The experiments described later in this
paper indicate that the average positional error may increase
by more than 100%. Further, this hardware variance
problem is not limited to differences in the WiFi chipsets
used by training and tracking devices (e.g., Intel Centrino
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vs. Lucent chipsets) but also occurs when the same WiFi
chipsets are connected to different antenna types and/or
packaged in different encapsulation materials (e.g., Intel
Centrino chipset in a Sony VAIO laptop PC vs. the same
chipset in a Panasonic laptop PC). Signal patterns are
affected by both antennas and packaging materials. This
hardware variance problem also applies to the Cisco
location system: positional error is produced when the
WiFi device used in the training phase emits signals of
different signal strength from WiFi devices used in the
tracking phase.

Of the several proposed solutions for addressing this
hardware variance problem, the most effective is manual
adjustment, proposed by Haeberlen et al. [1]. For RSS
mapping between training and tracking devices, RSS
readings are collected from both devices at the same
location during the training phase. Experiments conducted
by the authors and others [1, 2] show that RSS mapping
from a tracking device to a training device exhibits a linear
relationship. Hence, RSS mapping can be modeled as a
linear function. The difficulty lies in manually identifying
the best linear coefficients in a linear function that maps the
RSS signal pattern of the target device to that of the training
device. Although manual adjustment improves the posi-
tional accuracy of WiFi localization in hardware variance
conditions, manually performing all possible combinations
of pair-by-pair training for different WiFi training and
tracking devices is overly laborious. Further, the ever-
increasing number of new WiFi chipsets, antennas, and
encapsulation materials makes this manual adjustment
approach impractical for real-world deployment.

Ekahau [3] proposes an automated adjustment method in
which signal transformation functions are learned by
analyzing signal shifts from unknown tracking devices
when they pass through certain easy-to-estimate locations,
such as doorways, where signals exhibit highly distinguish-
able patterns. This method’s primary drawback is that an
unknown tracking device may not immediately enter these
easy-to-estimate locations, or may stay only for a short
time. Kjaergaard et al. [4] propose an improved automated
adjustment method that uses the ratio of RSS values from
different access points (rather than the absolute RSS values)
in the location estimation to overcome the hardware
variance problem. However, the method considers only
the ratio term of the linear transformation function in the
RSS mapping between two different WiFi devices, but not
the offset term in the linear function. Hence, a sizable

positional error occurs when RSS values of two WiFi
devices vary mainly in the offset term.

We analyze this hardware variance problem and propose
an unsupervised learning approach to automatically and
accurately determine a linear transformation function that
can map RSS signal patterns from any unknown tracking
device to a training device, thus eliminating the need for
exhaustive, manual pair-by-pair training. Further, in this
work we demonstrate that unsupervised learning accurately
and efficiently determines these transformation functions.

To put this work in the appropriate context, current
fingerprint-based positioning systems have two phases: the
off-line training phase during which RSS signals of a
training device are used to calibrate a radio map, and the
online estimation phase during which RSS fingerprints
from a tracked device are used for positioning. As shown in
Fig. 1, we propose the addition of an intermediate phase,
called the online adjustment phase, during which the signal
transformation function between the training device and a
new tracked device is learned and determined. Adding this
online adjustment phase reduces the positional error caused
by the hardware variance between the training device and
the tracked device. Note that the online adjustment phase is
a one-time effort when a new tracked device, identified by
its unique MAC address, first enters the environment. In
subsequent visits of the same tracked device in the
environment, the system uses its MAC address to find
and reuse the previously trained transformation function.

Notable contributions of this study include the following:
several unsupervised learning methods developed in this
study resolve the WiFi variance problem by accurately and
efficiently determining an RSS signal-pattern transformation
function. These methods were implemented in a working
WiFi positioning system, and performance was evaluated in
an actual working environment. The performance of the
proposed unsupervised learning method of RSS-based WiFi
localization improved positional accuracy by as much as 46%.
Additionally, when the tracking and training WiFi devices
were identical, applying unsupervised learning to WiFi
localization did not reduce positional accuracy.

The remainder of this paper is organized as follows.
Section 2 presents the WiFi hardware variance problem by
first demonstrating experimental results on the varying RSS
signal patterns from different WiFi devices, and then the
WiFi hardware variance problem is formulated. Section 3
presents the design and implementation of the proposed
unsupervised learning method to address this WiFi hard-

Offline Training
(Calibration) Phase

Online Adjustment
Phase

Online Estimation
(Tracking) Phase

Figure 1 The online adjustment phase in in the WiFi fingerprinting-based localization system
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ware variance problem while Section 4 describes the
experimental setup and evaluation of the unsupervised
learning methods in an actual working environment. In
Section 5 we discuss related work, and in Section 6 we
draw conclusions and suggest future studies.

2 Rationale

We first conducted experiments to identify varying RSS
signal patterns between different WiFi devices. The
experimental observations revealed how RSS signal-pattern
variations cause positional error in a WiFi localization
system. We formulate the proposed approach based on
unsupervised learning to solve the RSS signal-pattern
variation problem.

2.1 Signal-pattern variations of WiFi client devices

We performed experiments to determine the variation in RSS
signal patterns from different WiFi devices. The test environ-
ment was the fifth floor of an office building. Figure 2 shows
the floor plan of the test environment, which was 25 m by
47 m and had sixteen WiFi access points (APs). While
walking the path indicated by the blue dotted line in Fig. 2,
RSS readings for four different WiFi devices were recorded.
Table 1 shows the hardware profiles of the four WiFi
devices.

Figure 3 compares the RSS readings of different
training/tracking device pairs. Each point (RSS-x, RSS-y)
on the plots represents RSS readings from two different
devices at the same location and from the same WiFi AP.
For example, if the Compaq device RSS readings are (x;,3)
from three WiFi APs (4P;,3) while the HP device readings
are (y;,3) from the same three WiFi APs (4P;,3) at the

Table 1 WiFi client devices and hardware profiles

Abbreviations WiFi client devices

IBM IBM notebook PC with Intel PRO/wireless
2915 ABG

Compaq Compaq WL110 wireless LAN PC card
(Attacted to Fujitsu Tablet PC)

Orinoco Orinoco wireless LAN PC card (attached

to Fujitsu Tablet PC)
HP HP iPAQ RW6828 PDA with built-in WiFi

same location, the three points (x;;), (x22), and (x33) are
plotted on the upper left graph of Fig. 3. Each of six plots in
Fig. 3 is constructed from 500 sample points.

From the RSS trace data shown in Fig. 3, we can
observe a linear shift in RSS readings between the two
WiFi devices in all six tested pairs. For example, Fig. 3
shows the Compaq vs. HP RSS mapping relation, which
can be approximated by a line with a slope of 0.93 at
y-intercept (or “offset”) of 1.20. This linear shift in RSS
signal patterns was also observed in experiments conducted
by Kjaergaard et al. [4] and Haeberlen et al. [1].

Figure 4 plots the RSS readings of a Sony VAIO SZ18
laptop PC against a Panasonic CFT5 laptop PC at the same
location. Both have the same Intel Centrino WiFi chipset
but use different antennas and packing materials. The RSS
analysis shows that their RSS signal patterns differ with an
approximate linear RSS mapping function of a slope (0.92)
at an offset (—8.155 dbm).

2.2 Effect of linear signal-pattern shift on the accuracy
of a WiFi positioning system

Before describing how this linear shift in RSS signal
patterns affects the positional accuracy of a WiFi position-

Figure 2 Sixteen WiFi APs
(red circles), were distributed

throughout the 25 mx47 m test
environment. The movement of
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ing engine, we examine the characteristics of a general
RSS-based WiFi location system. Such a system consists of
two phases. In Phase I, the offline training phase, we
perform a site survey by using a training device to measure
RSS signal patterns from different APs at fixed sample
points in the environment. These RSS readings are encoded
as fingerprints and recorded onto a radio map depicting the
RSS of APs at different sample location points. Phase II is
the online estimation phase, in which the location of
tracking devices is calculated in real time by matching
sample points on the radio map with the RSS fingerprint
closest to the tracking device. By considering each RSS
fingerprint a vector, the proximity of two RSS fingerprints
can be measured using their Euclidean distance [5, 6] or a
probabilistic model [1, 7-9].

@ Springer
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The example in Fig. 5 shows the effect of RSS signal-
pattern variations on the positional accuracy of RSS-based
WiFi localization. The blue line () indicates the RSS
fingerprint of a training device measured at location x. The
green line (=) shows the RSS fingerprint of the same
training device measured at location y. The red line ()
indicates the RSS fingerprint of the tracking device at
location x. Since the tracking device differs from the
training device in RSS signal patterns, the red (°)
fingerprint exhibits a linear shift away from the blue (4)
fingerprint (Fig. 5). By computing their Euclidean distance,
the red fingerprint vector is closer to the green fingerprint
vector than to the blue fingerprint vector. Thus, the
positioning system mistakenly estimates that the tracking
device is located at y rather than at x.
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2.3 Signal-pattern transformation function

The proposed solution to the above problem is to apply a
transformation function on the RSS fingerprint of the tracking
device such that the transformed fingerprint (the grey dotted
line in Fig. 5) is shifted closer to the RSS fingerprint of the
training device. Thus, the positioning engine can estimate the
tracking location of the tracking device.

This hardware variation problem is formally defined as
follows. Denote the training device as H.. (¢ for calibration)
and the tracking device as H,, (o for observed). Since H,, and
H, produce different RSS signal patterns, denoted as S. and
S,, the probability of training RSS readings at location 1 using
training device H,, denoted as P (S | Location = /, Hardware =
H,), differs from the one obtained for the tracking device,
denoted as P (S, | Location=1, Hardware=H,) . The problem
is finding an accurate transformation function F such that
applying F to S, shifts P (S, | Location=/, Hardware=H,))

: Tracking device RSS fingerprint at location x
: Training device RSS fingerprint at location x
: Training device RSS fingerprint at location y
: Transformed tracking device RSS fingerprint.

om»reo

Transformation
Sfunction

(SS¥) WSuang [puSIS paa1ay

AP1 AP2 AP3 AP4

Figure 5 Example of positional estimation error caused by RSS
signal-pattern variation in RSS-based WiFi localization

-80 -70 60 -50 40 -30 -2C
RSS of Panasonic CFTS (dbm)

closer to P (S. | Location=/, Hardware=H_) for all /i in the
tracking space,

Se = F(S,) (1)

A simple method of determining this transformation function
is to survey the site by collecting RSS samples from devices
H,. and H, while manually holding them at each location.
Using this training dataset as examples of RSS mappings
between tracking and training devices, different learning
algorithms are applied to learn a signal-pattern transformation
function. From a learning perspective, this manual procedure
of collecting training examples is analogous to manual
labeling inputs in supervised learning. However, as mentioned
in Section 1, this manual data collection is impractical given a
large number of WiFi device pairs. Therefore, an unsupervised
learning algorithm is needed.

2.4 Unsupervised learning

The proposed unsupervised learning system automatically
learns this signal-pattern transformation function at runtime
for any unknown tracking device. The learning procedure
consists of the following two general steps.

- The RSS readings from an unknown tracking device
are first labeled with a rough location estimation using
a correlation ratio computed from the Pearson product-
moment correlation coefficient [10] defined below:

2 ((se = 1(Se)) (st = u(S2)))

p—— (2)

35 6wl 5 4 -5
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The k is the number of APs (or the dimension of RSS
fingerprint vectors), s. is the RSS fingerprints of the
training device from the radio map, p is the mean or
expected value of a random variable, and s,, is the RSS
fingerprint from the tracking device. The absolute
value of Pearson correlation ratio has a value range in
(0—1) where 1 indicates the best linear dependency (or
greatest similarity between two fingerprint vectors),
and 0 indicates complete linear independency (or least
similarity). The Pearson correlation ratio is therefore
used to measure similarities in RSS fingerprints
between tracking and training devices.

- After labeling the RSS data with rough location
estimates, four learning algorithms including linear
regression, two versions of expectation maximization,
and neural networks, are applied to train the transfor-
mation function. These four learning algorithms are
detailed in Section 3.

The proposed approach differs from the one proposed by
Kjaergaard et al. [4], which computes an RSS ratio (i.e., the
RSS reading of one AP divided by the RSS reading from
another AP) to reduce the effect of linear shift in RSS
fingerprint matching. Since the Kjaergaard approach only
approximates the ratio term but not the offset term in a linear
shift function, approximation error is increased when the
offset term is relatively large. In comparison, the proposed
approach uses the Pearson formula in Eq. (2), which captures
both the ratio and the offset terms in a linear relationship.

3 Design and implementation

Our system design is shown in Fig. 6. In the first step, RSS
fingerprints (RSS?) measured from an unknown tracking
device are sent to the localization system server. In the
second step, Eq. (2) is applied to compute the Pearson
correlation ratio from the RSS fingerprints. This ratio is

then used as input to the positioning engine, which consults
the radio map to find the best matched location point. Since
the parameters to the transformation function have yet to be
determined at this time, location estimate is rough. In the
third step, from the rough location estimate, the
corresponding RSS fingerprints stored on the radio map
(RSS™) are identified and coupled with the device’s RSS
fingerprints (RSS?) to form a training sample (RSS?, RSS™).
Assuming that n training samples are collected over the
training period, the training set consists of { (RSS{, RSSy'),
(RSS¢,RSST"), (RSSZ_,,RSS™ |)}. We propose two learn-
ing methods to train this transformation function — batch
learning and iterative learning. In batch learning (repre-
sented by the solid path in Fig. 6), the entire training set is
input to a learning algorithm at the end of the training
period to determine the parameters for the transformation
function. In iterative learning (represented by the dotted
path of Fig. 6), individual training data is input iteratively
to a learning algorithm to determine the parameters for the
transformation function. Although the initial parameters to
the transformation function are likely to be inaccurate due
to the training set’s small size, they will gradually become
more accurate through repetitive training. During the
training process, users may move around freely: there is
no need to stand still at certain locations as in the
calibration process.

3.1 On-line regression algorithm

The linear regression in the first learning algorithm assumes
that the regression model for a tracking device’s RSS
mappings to a training device exhibits a linear relationship,
as shown in Fig. 3:

RSS, =b+a x (RSS,) +¢. (3)

RSS,. and RSS, represent RSS fingerprints from the training
and tracking devices, (@, b) are coefficients in the

Figure 6 System design RSSY, RSSY, RSSY, RSSY,
v - L . Y
» Transformation;, Transformation; Transformation,,
- - [
Y . Y _ \J Y -
Positioning Positioning Pasitioning Positioning '
Engine Engine Engine Engine
Il
Y  (RSS™, RSS%) \ \j (RSS™,.1, RSS%1) v :
Positiong Position (Rss™, RsS®) Positions Position,, Final
(signal pattern (signal pattern (signal pattern model
in calibration in calibration in calibration
data = RSS"g) data = RSS™) data =RSS™,)
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transformation function, and ¢ is the error term. The
training dataset is determined by the tracking device’s
RSS readings and are labeled with rough position estimates
using the Pearson correlation ratio. After collecting a
sufficient number of data points, least squares analysis is
applied to find the best (a, b) coefficients with the lowest
sum of error squares.

3.2 EM algorithm

An alternative approach to on-line regression is expectation
maximization (EM). Starting with the initial estimates of
(a, b) coefficients, EM is an iterative procedure to refine the
(a, b) estimates by repeatedly computing expectation and
maximization.

The true location is postulated by combining the original
probabilistic location computation with the Pearson corre-
lation ratio. Particle filters [11-14] are used for historical
moving pattern adjustments with a probability of correla-
tion coefficient for each cell. At each iteration, the
estimated linear parameters (a, b) are used in the subse-
quent iteration to transform the RSS fingerprints from the
tracking device. This iterative procedure continues until a
convergence criterion is met.

The convergence criterion is that the result of the linear
mapping function (i.e., the ’y’ in ‘y=ax+5b’), stays within
the range of ¢ (=1) dbm over a period of time 7 (=50 s). We
choose the result of the linear mapping function (y) over the
parameters (a, b) for faster convergence. Since the RSS
values have limited range between —30 dbm and —90 dbm,
training points fall only within a small segment of this
linear function. Therefore, it is more important that we
accurately identify this specific segment rather than the
entire linear function. A more detailed discussion on the
convergence criterion is discussed in Section 4.3.

The output parameters at each iterative step are the linear
coefficients (a, b). The © = (a, b) and S,(¢) are denoted as
the tracking device’s RSS readings at time ¢. The
optimization problem is as follows:

_ P(O,5,(1))
argg1axP(9|&(t)) arg(;nax{ P(s,(1)) } 4)

EM is applied to solve the above problem by estimating
P(1]S,(¢),©(t)) and maximizing O(t+1), where /; € L (L
for the set of all locations in space) is the latent variable.

3.3 Neural network algorithm

We implemented the neural network learning method to capture
any non-linear components of the signal-pattern transformation
function. Similar to online regression, the training dataset for
the neural network was obtained from the tracking device’s

RSS readings and labeled with rough position estimates from
the Pearson correlation ratio. The network realized using radial
basis functions [15] has the following form:

p(8) =Y wip(lIS —al)), (5)
i=1

where N is the number of neurons and S is the single signal-
strength pattern value observed. The basic function
(/IS = ¢|) is Gaussian:

(IS = cill) o< exp[=p[|S — cill]- (6)

The weights w; are learned using gradient descent:

wi(t + 1) = wi(t) +vy(0) — o(S@)Ip(IS(0) —all),  (7)

where y(?) is the signal pattern with the highest correlation
coefficient selected from the training data.

3.4 Extended EM algorithm

Since both EM and neural networks are limited by local
optimum, we designed and implemented a fourth method to
extend EM as follows. First, six EM models with different
initial seeds are executed in parallel. From the six EM
models, the results with the highest probability are used as
the output [16].

4 Evaluation

This section describes the experimental procedure and
analyzes the performance results of the unsupervised
learning system in an actual WiFi localization system and
environment.

4.1 Experimental setup

As Fig. 2 shows, the test environment was the same as in
the previous experiment for observing signal-pattern varia-
tions from different WiFi devices. The radio map was
constructed as follows. First, the test environment was
divided into 38*69 cells with each cell occupying a
0.69-meter by 0.69-meter space. The position of the
tracking devices was estimated using cell granularity. Addi-
tionally, to minimize manual calibration, 107 of the 2,622
cells were uniformly selected as the training cells. Thirty RSS
samples were collected from each training cell. The RSS
samples from the other unselected cells were interpolated with
those of the training cells. Interpolation was intended to reflect
the common practice of minimizing manual calibration in
deployments over a wide coverage area, even though
interpolation reduces positional accuracy [17].
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4.2 Positional accuracy

Table 1 shows the four WiFi devices used in the experi-
ments. The Compaq device was selected as the training
device for calibrating the radio map. During the online
estimation phase, a person carried each of these four WiFi
devices while walking at a constant speed along a path
indicated by the blue dotted line in Fig. 2. The RSS
readings along this walking path were collected for use in
the training dataset for each of the four learning algorithms
(that is, online regression, EM, neural network, and
extended EM) to train the signal-pattern transformation
function.

Figure 7 plots the mean positional error when applying
each of four learning algorithms to track each of the four
different WiFi devices, and also plots the mean positional
error for manual adjustment and non-adjustment. Manual
adjustment re-implements the method developed by
Misikangas et al. [3], which provides near-optimal
performance. Non-adjustment means no transformation
function was applied for WiFi localization; therefore, its
performance is used as a baseline for measuring improve-
ments in the four learning algorithms.

From Fig. 7 we find that: (1) the EM produced the least
average positional error of the four tracking devices, and its
performance approached that of the near-optimal manual
adjustment; (2) except for the Orinoco device, which had an
RSS signal pattern similar to that of the Compaq training
device, the learning algorithms all yielded less positional
error than non-adjustment. This suggests that applying the
unsupervised learning to RSS-based WiFi localization
effectively reduced positional error due to hardware
variance. (3) Under some training/tracking device pairs,
EM outperformed the near-optimal manual adjustment. One

explanation is that the unsupervised system adjusts dynam-
ic changes in environmental factors (for example, humidity
levels, open/closed doors, etc.) that affect signal patterns.

4.3 Training time

In EM and neural networks, the training time is important
for determining a signal-pattern transformation function for
an unknown tracking device. During the learning phase,
positional estimates are unreliable.

The training process is complete when the changes in the
linear parameters of the transformation function being
trained fall within a limited range. However, the experi-
ments reveal that while function parameters rarely con-
verge, the output of transformation functions often do. The
reason is that several solutions to function parameters may
co-exist when the input training dataset is concentrated on a
small segment of the function where the RSS readings fall
between —90 dbm and —30 dbm. To address this problem,
the convergence criterion depends on the change in
function output rather than the change in the trained input
parameters.

The convergence criterion uses the near-optimal output
from manual adjustment (as determined during post-
processing) as a baseline to determine the speed of the
proposed runtime learning algorithms (EM or neural
network) which then stabilized at the near-optimal output.
Specifically, as Fig. 8 shows, the training curves were
constructed using the near-optimal output differences and
the learning algorithm.

(8)

where the tested learning algorithms were EM (dotted line)
and neural network (solid line), and the training/tracking
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devices were Compaq/HP. The training times of both the
EM and neural network were under 100 s. Although the
EM training time was slightly longer than that of the neural
network, the EM training error was smaller (1.8 dbm vs.
4.2 dbm).

Whether or not the 100-second training time is sufficient
depends on the specific application. For example, 100 s
may be acceptable for a location-based museum tour guide
but may be too long for locating an emergency call. Note
that the 100-second training time is a one-time cost when a
new WiFi device enters an environment. After the system
learns the parameters to its transformation function, it stores
them into a database indexed by the device’s MAC address.
Subsequent visits from the same WiFi device incur a
database lookup and require no additional learning cost.

4.4 Case study: the Orinoco as the training device
After using the Compaq computer as the training device in

the above tests, the unsupervised learning system was
tested using other training devices. Table 2 shows the

Table 2 Positional error reduction when using orinico as the training
device

Positional error
reduction (%)

Positional error
reduction (meters)

Tracked device

Compaq 0.31 13.13
IBM 1.66 46.51
HP 1.96 44.41

amount and percentage of positional error reduction when
the Orinoco was used as the training device.

The experiments show that the IBM device produced the
strongest RSS readings followed by the Orinoco and
Compaq devices (which yielded RSS readings with similar
strengths) and finally the HP device, which recorded the
weakest strength. Since the difference in RSS signal
patterns between Compaq (the tracking device) and
Orinoco (the training device) was small, the 0.31 m
positional error reduction was also small. Conversely, the
difference in RSS signal patterns was large for Orinoco-
IBM and Orinoco-HP pairs, as was the positional error
reduction (1.66 m and 1.96 m, respectively). Table 2 shows
that, given a larger RSS signal-pattern difference between
tracking/training devices, the proposed system generally
achieves higher positional error reduction. However, one
exception is discussed in Section 4.7 below.

4.5 Case study: similarity between tracking/training devices

In this case study we investigated whether unsupervised
learning on the same training/tracking device pairs degrades
positional accuracy given that learning and applying
transformation functions to the same device pairs is
unnecessary. Table 3 shows the positional error for Orinoco
and Compaq training and tracking devices, respectively,
with and without using unsupervised learning. No degra-
dation of positional accuracy was observed. Surprisingly, a
slight improvement was observed (i.e., the positional error
was reduced from 2.66-2.40 m for the Orinoco devices and
from 2.40-2.08 m for the Compaq devices). A possible
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Table 3 Positional error reduction in the same training/tracking
device pair with/without learning

Positional error with
EM learning (meters)

Positional error without
learning (meters)

2.66
2.40

2.40
2.08

Orinoco
Compaq

explanation is that, since training was performed 1 day
before testing, the unsupervised system also adjusted to
changes in environmental factors (for example, humidity
levels, open/closed doors, the presence of people, etc.) that
affect WiFi signal patterns. This effect was also observed in
previous work [18-21] that applied learning algorithms to
adjust the radio maps given sensor-detected changes in
these environmental factors. However, in the future we are
interested in validating how well unsupervised learning can
adapt to such changes in the environmental factors.

4.6 Case study: variable-speed vs. constant-speed
movement

Since variable-speed movement is common in real-world
scenarios, in this case study we compared the effectiveness
of unsupervised learning for both constant-speed and
variable-speed movements. The variable-speed trace was
collected as follows. Figure 9 shows several walking
segments marked with arrowed lines. Each walking
segment has a unique movement speed whereas the speed
within each walking segment is constant.

Since most WiFi localization systems adopt a motion
model that assumes constant-speed movement, variable-

speed movement often increases positional error. Table 4
shows positional error after applying different learning
methods to WiFi localization in two cases involving
constant-speed movement and variable-speed movement.
The results in Table 4 show that the unsupervised learning
method is effective for both constant-speed and variable-
speed movement.

4.7 Relationship between RSS signal-pattern difference
and positional error

Intuitively, since increased difference in RSS signal
patterns between tracking and training devices produces
larger difference between the tracking device’s RSS
fingerprint and the RSS fingerprint on the radio map
constructed by the training devices, the positional error
in WiFi localization should be larger also. Although this
relationship between the RSS signal-pattern difference
and positional error seems reasonable, the experiments in
this study proved otherwise.

Figure 10 plots this relationship between the positional
error and RSS signal-pattern variance for several training/
tracking device pairs. The x-axis measures the percentage
of the average AP RSS readings between the training and
tracking devices, computed as follows:

|avg(RSS. — avg(RSS,)|
avg(RSS,)

©)

The y-axis measures the average percentage of increased
positional error due to device hardware variance, which is
computed as the difference between the positional error
without hardware variance (that is, using the same device
for tracking and training) and the positional error with
hardware variance. The results in Fig. 10 do not indicate

Figure 9 Moving testing traces
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Table 4 Positional error under constant-speed movement and
variable-speed movement

EM  Neural Modified  Online
network EM regression
Constant-speed 2.46 3.75 3.51 3.50
motions
Variable-speed 237 3.82 2.48 3.11
motions

that greater RSS signal-pattern variance increases position-
ing error.

Several factors such as AP spatial distribution can
enlarge or mitigate the effect of RSS signal-pattern variance
on positional error. An interesting situation in which a large
RSS signal-pattern variance produces negligible positional
error is the following. This situation arises under two
conditions: (1) the RSS readings between the tracking and
training devices differ only in offset but not in ratio, and (2)
the spatial distribution of APs is balanced or evenly
distributed relative to the position of the tracking device.
Figure 11 shows an example of a balanced distribution of
APs, which are marked in red circles, relative to the
location of a tracking device, which is moving within the
blue dotted rectangular area. The distribution is balanced to
the tracking device in that the APs to its right and left are
more or less equal in number and distance. Appendix
describes an analytical model showing how this balanced
AP distribution mitigates the effect of RSS signal-pattern
variation on positional accuracy.

5 Related work

Many location estimation systems have been developed
using Wi-Fi RSS values to estimate locations. These
systems can be categorized into two broad approaches.
The first approach is based on the deterministic method [5,
6]. Systems following this approach apply deterministic
inference, such as triangulation and k-nearest-neighbors
(KNN) search, to estimate the target device’s location. For
example, the RADAR system applies KNN to obtain the
k nearest neighbors and estimates the location of the target
device by averaging the locations of these k nearest
neighbors. The second approach is based on the probabi-
listic method [7-9, 11]. Seshadri et al. [11] apply Bayesian
inference, which uses multiple probabilistic models and
histograms to enhance the performance of the original
system. It calculates the conditional probabilities over
location-based RSSI. It also adds a motion model to
describe the continuity in human movement such that it
can lower the oscillatory location estimations in Wi-Fi
based localization systems.

A notable WiFi based localization system is from Cisco:
this system tracks all WiFi devices in the environment
without installing any additional software on the devices.
WiFi access points are programmed to measure RSS signals
emitted by the tracked devices. Then, RSS measurements
from multiple access points are aggregated at a localization
server that determines the locations of all tracked devices.
Similar to other WiFi fingerprint-based localization sys-
tems, the Cisco system requires an offline training phase
during which a tracked device is used to calibrate a radio
map. Therefore, our unsupervised learning approach is also

Figure 10 RSSI difference vs. 120 T
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Figure 11 A balanced AP distribution that mitigates the effect of RSS
signal-pattern variation on positional accuracy. The APs are marked in
red circles. The tracking device is moving within the blue rectangular
area

applicable to address the hardware variance problem in the
Cisco system. Additionally, since our unsupervised learning
algorithms are computed on the server side, it works well
with the Cisco system in that no software installation is
needed on the WiFi devices.

Hardware variance can be minimized by not relying on
RSS information to implement WiFi positioning systems. For
example, Cheng et al. [22] develop a method of ranking (i.e.,
high to low) RSS values instead of relying on absolute RSS
values. Ranking overcomes the hardware variance problem
because it is not effected by a linear shift in RSS. However,
the ranking approach sacrifices positional accuracy because
the detailed data for signal strength levels is not used.

This hardware variance problem was addressed by
Misikangas et al. [3], who propose a manual approach
based on pair-wise mapping. In this approach, different
hardware devices are placed at the same position at the
same time to differentiate their signal patterns; their
mapping functions are then derived. Haeberlen et al. [1]
propose a similar manual solution. Their experiments
demonstrated a linear RSS mapping function between
different WiFi devices. They then used the least-squares
fit method to determine the coefficients in the linear
transformation function. However, they did not apply the
signal-pattern transformation function in a positioning
engine to demonstrate improved positional accuracy.
Although manual adjustment can achieve good positional
accuracy, its main problem is the required manual labor,
which does not scale well with the size of the environment
and the wide array of emerging WiFi devices.

Misikangas et al. [3] describe an automatic approach for
solving this hardware variance problem. Firstly, they

@ Springer

manually obtain the available hardware pairs. They then
assume the existence of an easily distinguishable location
(i.e., a location with a unique RSS fingerprint) such as the
entrance to a room. When an unknown WiFi device moves
through this location, its signal patterns are collected, and a
small set of calibrated-observed variant signal pairs are
produced. Instead of computing the transformation from
this limited information, the best-fit transformation identi-
fied in the manually compiled transformation database is
assigned to this unknown device. However, an easily
distinguishable location is required, which may only exist
in certain environments. Additionally, a new WiFi device
may never pass through these easily distinguishable
locations or may not pass through them early enough to
learn its transformation function. Haeberlen et al. [1] also
explore fully automatic calibration. They suggest EM and
particle filtering to learn coefficients, but do not mention
implementation details or experiments. Kjaergaard et al. [4]
propose an automatic method using RSS ratios when
matching closeness in the RSS fingerprints. Although using
the RSS ratios reduces the linear shift effect in RSS
fingerprints caused by hardware variance, it can still
produce errors (as described in Section 2) when the offset
component in the linear shift is large.

Some WiFi location systems [23] do not use RSS
fingerprints for location determination; for these systems,
therefore, hardware variance does not present a problem.
One such system, the Aeroscout WiFi location system, is
based on accurately computing the TDOA (time difference
of arrival) of WiFi signals. In order to accurately measure
the time differences, specialized and proprietary hardware
is needed to tightly synchronize the clocks on the WiFi
devices. NearMe [23] also avoids the hardware variance
problem by using only the received access points for
proximity determination. Since its goal is to compute not
fine-grained location but proximity among devices, the
detailed RSS information is not needed.

6 Conclusion and future work

This work presents an unsupervised learning method for
solving the hardware variance problem in WiFi localization.
At runtime, the unsupervised learning method automatically
learns a transformation function for mapping WiFi signal
patterns from an unknown tracking device to the training
device under which the radio map was calibrated. Several
learning algorithms, including online regression, EM,
neural network and extended EM were designed, imple-
mented, and evaluated in a working WiFi localization
system and environment. The experimental results demon-
strate that, in WiFi localization, applying a transformation
function learned from our unsupervised learning reduces
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Figure 12 Highest probability
distribution at location u,

pdf of (RSS=s/uy,
AP="a’)

| pdf of (RSS=s/(z-uy),
AP="b")

AP b’

position error caused by device hardware variance by an
average of 4%. Additional case study experiments show
that (1) positional accuracy in the same training/tracking
device pairs does not degrade, and (2) unsupervised
learning is effective for both variable-speed and constant-
speed movement. Finally, RSS signal-pattern variance was
shown to be uncorrelated with positioning error.

Several questions remain for future studies in unsuper-
vised learning. First, this technique could be applicable to
other RSS-based localization systems such as Zigbee,
WiMax, and GSM, in reducing positional error caused by
hardware variance. Second, this unsupervised learning
technique could also be applicable in adapting WiFi
localization to dynamic environment factors affecting WiFi
signal patterns such as humidity level, human presence,
open/closed doors, etc.

APPENDIX: Analytical model for the balanced AP
distribution

A typical location in an RSS fingerprint localization system
is characterized by several (RSS, AP) pairs, where RSS is
not a single value but rather a distribution of signals
collected from the training phase and often modeled by a
Gaussian distribution. While tracking a device, the proba-
bility of a set of observed (RSS, AP) pairs against a certain
location is then computed by multiplying all the probabil-
ities acquired from the previously modeled Gaussian
probability distribution function. The location with the
highest joint probability is the output result.

Figure 13 Highest probability
distribution at location u, shifted
by hardware difference with
linearity of y=x+b

(ﬁ)

The above localization system is assumed here. Further,
without loss of generality, the following assumptions are
made:

1. RSS decays linearly;
2. The variances of all pairs are identical.

Consider the one-dimensional example in Fig. 12. Two
access points AP, and AP, are at either side of a tracking
device. Suppose the tracking device is at an arbitrary
position u, on the line from 0 (the leftmost position) to z
(the rightmost position).

According to the first assumption above, if the RSS
directly beneath an access point is s, the distributions of
(RSS=s/uy, AP=AP,) and (RSS=s/(z-uy), AP=AP,) at posi-
tion u, are identical, and u, and u, are located at u,. If the
above two RSS signal patterns are entered into an RSS-based
positioning engine, the estimated location will be u.

As Fig. 13 shows, if the tracking device differs from the
training device with a linear RSS mapping function with
slope = 1 as in the first assumption, the RSS distribution is
simply shifted.

Although u, is no longer the most probable location for
both APs, the multiplied probability is still the highest. This
outcome is demonstrated by comparing the multiplied
probability at each position. Since the RSS variances are
assumedz identical, in the p.d.f. of Gaussian distribution
- ﬁe = , we need only compare the (x - u)’ part. Restated,
the smaller the value, the higher the probability.

At uy, after multiplication, the next procedure would be

(o — (uo — b)1+[uo — (o + b)]*= 257,

shifted pdf of
(RSS=s/uy, AP="a")
from a different
hardware device

shifted pdf of (RSS=s/(z-11g),
AP=‘b") from a different
hardware device

AP b

@)
!

z
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Assume an arbitrary position denoted as (uyt+d) in

Fig. 13. After substitution, (x - 1)° becomes

(o + d) — (1o — B)+[(uo + d) — (uo + b)]

=2(d> + ).

Since 2(d, + b,) > 2b, for any nonzero d, u, is the

location with maximum probability.
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