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Abstract 

Trees and graphs are widely used to model biologi- 
cal databases. Providing efficient algorithms to s u p  
port tree-based or graph-based querying is there- 
fore an important issue. In this paper, we propose 
an optimal algorithm which can answer the follow- 
ing question: "Where do the root-to-leaf paths of 
a rooted labeled tree Q occur in another rooted la- 
beled tree T?" in time O(m + Occ), where m is 
the size of Q and Occ is the output size. We also 
show the problem of querying a general graph is 
NP-complete and not approximable within nk for 
any Ic < 1, where n is the number of nodes in the 
queried graph, unless P = NP. 

1 Introduction 

Trees and graphs have been widely used to model 
data with complicated structures or relationships, 
such as XML, Web, and structured documents [ll]. 
The applications in life sciences also arise naturally, 
such as the biological databases representing molec- 
ular graphs, taxonomy, and pathways. The issue of 
querying tree-based or graph-based databases effi- 
ciently is therefore very important and attracts a 
lot of attention [3, 4, 6,  121. 

In this research, we first investigate how to query 
tree-based biological databases, such as the newly 
released KEGG Glycan database for glycan struc- 
tures which contains thousands of tree-structured 
entries [I]. More formally, given a database com- 

'To whom all correspondence should be sent. 

posed of a rooted labeled tree1 T and a query com- 
posed of a rooted labeled tree Q, we intend to iden- 
tify where each root-to-leaf path of Q occurs in 
T. This problem is named as the TRPF problem 
(Tree version of Root-to-leaf Path Finding prob- 
lem). An algorithm with optimal querying time for 
the TRPF problem is proposed. 

We also consider the situation where the database 
is represented as a complex graph, such as the reg- 
ulatory pathway. It can be first converted into a 
directed labeled graph by the following steps: 1) 
Determine the similarity between genes by the se- 
quence alignment approach [8] and give the same 
label to similar genes. 2) Construct a correspond- 
ing pseudo-node ij labeled with iL(g) for each gene 
g labeled with L(g). 3) If there exists an inhibi- 
tion edge from gl to gz, delete that inhibition edge 
and add an activation edge from gl to &. Figure 1 
shows an example of converting part of the regu- 
latory pathway "map04210hsa" in KEGG [9] to a 
directed labeled graph.2 Based on a set of regula- 
tory pathways which have been represented as di- 
rected labeled graphs, some interesting paths can 
be extracted and stored collectively as a tree, as il- 
lustrated in Figure 2. For an unfamiliar pathway, 
we could get more insight on its structure and func- 
tionality by pointing out where those paths stored 
in the collected tree occur in that pathway. 

The application stated above motivates the more 

lIf the database is a forest, we can attach a pseudo root 
to connect all the trees. 

2CASP2, CASP7, CASP8 are assumed to be similar and 
labeled with C. The other nodes are labeled with their first 
character. Pseudo-nodes without edges are omitted in this 
figure. 
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studied for next-generation database applications, 
such as in the mobile environment [2]. 

There is also a huge amount of research results 
in the field of XML query processing which is re- 
lated to our research, since the XML document and 
the XML query are usually represented as trees. 
However, their researches differ from ours in sev- 
eral ways due to the characteristics of XML. For 
example, we allow the root of the path in the query 
tree to match any point of the data tree, but the Figure 1: Representing a pathway as a directed la- 

beled graph. simple path in the XML query tree needs to match 
the root of the XML data tree. We will only discuss 
the research results of some representative papers in 
the following for comparison. 

The Index Fabric indexing structure is proposed 
in [4] to accelerate the searching of root-to-leaf 
paths in the XML data tree which satisfy the query. 
Their method is based on layered Patricia tries to 
efficiently handle a large amount of disk-based data. 

Path 1 Path2 The ViST indexing structure proposed in [12] is 
based on the notation of suffixes and uses the tree 

Figure 2: a set of paths as a tree. structure as the unit of querying to avoid join op 
erations. Some researchers represent an XQuery 

general problem, where the database to search is as the generalized tree pattern (GTP), 

a directed labeled graph G, and we want to iden- and the problem an XQuer~ ex~res- 

tify where the root-to-leaf paths of a rooted labeled is reduced the problem of finding matches 

tree Q occur in G.  hi^ is named as ,.he R ~ ~ ~ - ~ ~ -  for its GTP representation [3]. The time complexity 
leaf path ~~~d~~~ (RPF) problem. we show this of evaluating XPath is discussed in [6]. The full- 
problem is NP-complete and is not approximable fledged XPath 1.0 expressions could be ~rocessed 
within nk for any k < 1, where n is the number of in time 0(1D14 * I Q I ~ ) ,  where [ D l  is the size the 

nodes in G,  unless P = NP. Since the R P F  prob- and I Q I  is the size of 'he query, and the 

lem is hard in general, a feasible solution in practice Core XPath Bagment can be effi- 

might be converting the R P F  problem to a slightly- ciently processed in time '(1 * IQI). 
less-accurate TRPF  approximation by considering 
the spanning tree of the queried graph. 

The rest of this paper is organized as follows. Sec- 3 Preliminarie~ 
tion 2 discusses some related researches. The for- 
mal definitions of the R P F  and T R P F  problems We define the problem formally and provide the 
are given in Section 3. Section 4 describes an algo- background knowledge for solving the problem. 
rithm for the T R P F  problem and Section 5 proves Given a finite alphabet C = (11, lz . . . llcl), we call 
the hardness of the R P F  problem. Section 5 con- G = (V, E, L) a directed labeled graph if (V, E )  is a 
cludes the paper with a few remarks. directed graph and L : V -, C is a labeling function. 

Similarly, we call T = (V, E, r, L) a rooted labeled 
tree if (V, E, r) is a rooted tree and L is a labeling 

2 Related Work function. Both the directed labeled graph and the 
rooted labeled tree are called directed labeled struc- 

Multi-disciplinary research results are relevant to tures. Given two directed labeled structures GI and 
this research, and we describe a few here. The al- G2, we say a path p' of G2 occurs at GI's node v 
gorithm proposed in this paper is mainly based on iff there exists a simple path p of G1 starting from 
the approach in [lo], which applies the suffix tree for v such that the concatenation of labels on p is the 
efficient document retrieval. The well-established same as p'. For convenience, we let labels(p) denote 
genomic databases represent data as a sequence of the concatenation of labels on a simple path p. If v 
codes and querying is supported by sequence align- is a node of a rooted labeled tree, a(v) denotes the 
ment algorithms [8]. Powerful query languages are path from the root to v. 
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1 2 3 4 5  
S = [ A B A B  $1 

4 Algorithms for TRPF 
Now we introduce the algorithms for solving TRPF. 
Algori thm Preprocessing constructs the suffix 
tree with indexing structures based on the input 
tree in 0(n2), where n is the number o f  nodes in the 
input. Algori thm Querying can then identify the 
paths of the query tree in the s& tree in O ( m  + 
O w ) ,  where m is the number o f  nodes in Q and 
O w  is the output size. W e  will first explain the 
algorithms and then analyze the time complexity. 

Figure 3: An example of  a suffix tree. 

4.1 Preprocessing 
Problem 1 The Root-to-leaf Path Finding ( R P F )  
problem: Given a directed labeled graph G = 
(V,  E,  L )  and a rooted labeled tree Q with leaves 
( l l .  .ele), the goal is to output (Owl . -  .0cce), 
where Occi = {vla(li) occurs in G at node v E V) 
f o r i=  l . . - t .  

Problem 2 The Tree version of the RPF ( T R P F )  
problem: Given a rooted labeled tree T = (V, E ,  L ,  r )  
and a rooted labeled tree Q with leaves ( I 1  - . . le ) ,  
the goal is to output (Ocq  . - . O C C ~ ) ,  where OCG = 
{v(cr(li) occurs in T at node v E V )  for i = 1 .- .t. 

The query Q in both problems is in the form of  
a rooted labeled tree. The difference is that the 
database t o  search is a directed labeled graph in 
Problem 1, and is a rooted labeled tree in Problem 
2. In the following, we introduce the data structure 
used t o  solve the T R P F  problem. 

The queried tree T is first augmented t o  T' as in 
Figure 4.3 A suffix tree S T  will be built based on 
the concatenation of  all root- t~leaf  paths o f  T I ,  and 
each leaf node t of  S T  is "colored" with the positive 
integer Ic i f  t corresponds t o  the path of  T' starting 
from the  node with ID Ic. All the colors on leaves o f  
ST are collected into an array C from the leftmost 
leaf t o  the rightmost leaf, and each leaf is labeled by 
[i, i] i f  its color is represented by the ith entry o f  C .  
By depth-first traversal o f  S T ,  we then label each 
internal node with [l,r], i f  its leftmost descendant 
leaf has the label [l, 11 and the rightmost descendant 
leaf has the label [r, r ] .  The last step is t o  build an 
indexing structure on C ,  such that for any interval 
[l, r ] ,  we can output the set o f  distinct colors, i.e., 
distinct node ID'S, in C[ l ,  r ]  efficiently. The detailed 
steps o f  the algorithm are listed as follows: 

Algori thm PREPROCESSING 
input: A rooted labeled tree T on C . 

Definition 1 Let S be a string ended with a special Output: (ST, S, 
symbol "$" which is not in the alphabet. A sufix for each leaf of 
tree S T  for S is a rooted tree with IS1 - 1 leaves add a new child with label $ to [; 
numbered from 1 to / S J  - 1, and each edge of S T  is 2 end for 
labeled with a pair of integers such that the following , T ;  are satisfied: If (g, h, and (i>3) 4 p , all root-tele& paths of TI; 
are the labels of two edges out of the same node, 

+ labels(P); 
S[g] # ' l i ] '  (2) each leaf node ST with the 6 S T  , build the s u f f i x  tree of S; 
number i, i f  ( i l ,  j l ) ,  ( i z ,  jz), . . . , ( i k ,  jk) are the edge- 7 for each leaf t o f  S T  /* from left t o  right*/ 
labels on the path from the root to I ,  then the con- color with Plnuml i f  tts number is num; 
catenation of S[il .  . . 311, S[i2. .  . j2], . . . , S[ik . .  . jk] 9 C[i]  +- P[num] /* i has initial value 1*/ 
spells out S[ i  . . . IS[]. 10 assign label [i, i] t o  t; 

11 i+ i+l ;  
Figure 3 shows the suffix tree for the string [ A  B 12 end for 

A B $1, where the path from the root t o  the leaf 13 for each internal node 
numbered with k will correspond t o  the kth suffix 14 [1,1] + vrS left-mwt-descendant-leaf's label; 
of S .  For example, the shaded path corresponds t o  15 [r, r ]  c V'S right-most-descendant-leaf's label; 
the third suffix o f  S ,  i.e., [ A  B $1. A linear time 16 ,sign label [ ~ , ~ j  to v ;  
algorithm o f  constructing a suffix tree for an input 
string could be found in [7]. 3The symbol "8" is assumed to be not in the alphabet. 

SIGMOD Record, Vol. 33, No. 2, June 2004 



1s 1-4 T* Steps 5-6 1 2 3 4 5 6 7 8 9 10 11 12 

1 Steps 7-19 

1 2 9  8 1  i 6 9 1  
A B B S A A A S ]  

Figure 4: An illustrative example of Algorithm PREPROCESSING. 

17 end for 
18 build the indexing structure on C; 
19 output (ST, S, C); 

Figure 4 shows an illustrative example. Note that 
the root-to-leaf path in ST where the leaf node is 
numbered with i, corresponds to the path starting 
from the node P[i] in the tree T'. For example, the 
leaf node of the shaded path in ST is associated with 
the number 3 and colored with 3. This path repre- 
sents [A$ABB$AAA$] and exactly corresponds to 
the following path in T': 3 + 1. 

The time complexity of the algorithm is analyzed 
in the following. Lemma 1 guarantees the efficiency 
of building the supplement indexing structure on C 
(line 18). Based on Lemma 1, the time complexity 
is shown to be quadratic. 

Lemma 1 [lo] Let C be a positive integer array. If 
C[i] 5 ICI for all i ,  there exists an O(IC1) time al- 
gorithm to build an index structure on C such that 
for any interval [l,r], we can output the set of dis- 
tinct numbers in C[l,r] within time O(d), where d 
is the output size. 

Theorem 1 The time complexity of Algorithm 
Preprocessing is 0(n2), where n is the number of 
nodes in the queried tree. 

Proof. T' has at  most n root-to-leaf paths and the 
length of each root-to-leaf path is at  most n + 1, so 

IPI = IS1 = 0 ( n 2  + n) = 0(n2). It follows that the 
time complexity of building the corresponding S T  
is 0(n2). The size of C is equal to the number of 
leaves in ST, so ICI = 0(n2). According to Lemma 
1, it takes O(IC1) = 0(n2)  to preprocess C. The 
total time complexity could be concluded as 0(n2). 
0 

4.2 Querying 

Given a rooted labeled tree Q on C with leaves 
l1 - . . le, we describe how to find (Occl . . . Occe), 
where OCQ = {vla(li) occurs in T at node v E V )  
for i = 1 . . - f?. Without loss of generality, we assume 
that the root of Q has the label E which denotes the 
empty string and is not in C .  

The first step of the algorithm is to match Q with 
ST, which is done by traversing Q in the depth-first 
order as follows: First set p as the position of the 
root of ST. Whenever we step downward to a node 
v in Q, we also step downward in S T  from p to find 
the position p' in ST, such that p' corresponds to 
o(v). If p' is found, we set the match point of v 
as p', and reassign p as p'. If no such p' exists, we 
backtrack from v to process other nodes, and assign 
p as the match point of v's parent, if v is not the 
root of Q; otherwise the procedure stops. 

After finding all the match points for Q, suppose 
that mk is the match point for the leaf lk. We will 
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[2 2 41, we output the distinct colors from the range 
and obtain ow3 = (2 ,  4).  

Figure 5: An illustrative example of  Algorithm 
QUERYING. 

identify the nearest node below (including) m k  in 
ST and suppose its label is [ik, jk].  W e  can then 
obtain O w k  by determining the distinct colors on 
mk's descendant leaves, which will be the distinct 
colors in C [ i k ,  jk].  

Theorem 2 The time complexity of Algorithm 
Querying is O ( m  + Occ), where m is the size of 
the query and O w  is the output size. 

Proof. The time t o  match Q with S T  is O(m) .  
According t o  Lemma 1, it takes O(dk) time to  out- 
put the set o f  distinct colors in C[ik, jk] for each k ,  
where dk is the output size. Therefore, the total 
time complexity is O ( m )  + O(dl )  + ... + O(de) = 
O ( m  + Occ), where Occ is the output size. 0 

5 Analysis of RPF 

Algorithm QUERYING 
Input: Q = (V' ,  El, r', L') with leaves { l1 . . - le). 
Output: (Occl . . . Owe). 
1 match the tree Q with S T ;  
2 for k := 1 to  1 do 
3 mk c match point o f  lk in S T  ; 
4 i f m k  # NULL 
5 N c the nearest node not above m k  ; 
6 [ik, jk] c label o f  N ;  
7 else 
8 [ik,jk] [O, 01; 
9 end i f  
10 end for 
11 for each leaf k E (1  . . l )  
12 Omk +- distinct colors in C[ik ,  jk]; 
13 end for 
14 output ( O C C ~  . . . O C C ~ ) ;  

W e  define the Decision version of  the R P F  
( D R P F )  problem as follows: Given a directed la- 
beled graph G ,  a rooted labeled tree Q with leaves 
(11 . . . le), and a positive integer k ,  is (IOccl 1 + 
IOCC~~ + ... + 10~~~1) 2 k ? 

Theorem 3 The DRPF problem is NP-complete. 

Proof. I t  is clear DRPF E NP, so we only have t o  
show how t o  reduce the Harniltonian path problem 
[5] to  DRPF.  Given a graph G = (V, E ) ,  let G' = 
(V, E', L )  be a directed labeled graph such that: 1) 
{v l ,  vz)  E E i f f  ( ~ 1 ,  v2) and (v2, v1) E E' for all 
vl,v2 E V and 2) each node in G' has the same 
label. Let Q be a rooted labeled tree such that: 1) 
Q has only one leaf, 2) each node o f  Q has the same 
label as G', and 3) the number of  nodes in Q is IVI, 
so Q is just a path of  length IVI. I t  is easy to  see 
that G has a Hamiltonian path i f f  DRPF(G1, Q ,  1)  
is "yes". 0 

W e  define the Optimization version of  the R P F  
( O R P F )  problem as follows: Given a directed la- 
beled graph G t o  be queried and a rooted labeled 
tree Q with leaves ( ll . . - l e ) ,  S1 . . - St is a feasible 
solution i f f  i f  v E Si then a( l i )  occurs in G at node v 
for i = 1 - - e. The goal is to  find a feasible solution 
such that the cost (IS11 + IS2[ + ... + lSel + 1)  is 
maximun. 

Continue the example as illustrated in Figure 4. Theorem 4 Let n be the number of nodes in the 
Suppose the query tree is the one shown in the bot- queried graph. The ORPF problem is not approx- 
tom of  Figure 5. Take the leaf node l3 as an ex- imable within p(n), where p(.) is any function with 
ample. Its corresponding match point in S T  will two constants cl and c2 such that xy 2 p(xY+l) i f  
be the node labeled with [7, 91. Since C[7, 91 = x > cl and y 2 c2. 
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Proof. Assume there is a polynomial time p(n)- 
approximation algorithm A for ORPF. We shall 
describe a polynomial time algorithm for the Hamil- 

Mamitsuka, Efficient Tree-Matching Methods 
for Accurate Carbohydrate Database Queries. 
Genome Informatics, 14: 134-143, 2003. 

tonian path problem, so that we can conclude the 
assumption is wrong unless P = NP. [2] Ya-Hui Chang, A Graphical Query Language 

~ i v &  a graph G: let n be the number of nodes 
in G. If n 5 cl then we can determine whether G 
has a Hamiltonian path by enumerating all simple [3] 
paths in G. Otherwise we construct GI and Q as in 
the proof of Theorem 3. Obtain Gtt by copying Gt 
nc2-times. Let C = cost(A(G1', Q)). If C > 1 then 
return "Yes" else return "No" . 

It is clear this algorithm runs in polynomial time 
and is correct when n L: cl. We now show this [41 
algorithm is also correct when n > cl. Let C* be 
the cost of the optimal solution of ORPF(GN, Q). 
According. to  our assumption, we know (C*/C) < 
p(nC2+'). If G has a Hamiltonian path, then C* 1 151 
nc2 + 1 > p(ncz + 1). Therefore, C has to be greater 
than 1 to make (C*/C) 5 p(nC2 + 1). If G does 
not have a Hamiltonian path, clearly C* = C = 1. 

I61 

Corollary 1 Let n be the number of nodes in the 
queried graph. The ORPF problem is not approx- 
imable vithin nk for any k < 1, unless P = NP. 

6 Concluding Remarks 
We expect that trees and graphs will play an im- 
portant role in biological data archives in the post- 
proteomic era. In this paper, an efficient algorithm PI 
is proposed to solve the T R P F  problem and the 
R P F  problem is proven to be hard. We close this 
paper by mentioning some directions for future re- [9] 
search: 1) improving the preprocessing time for the 
T R P F  problem, and 2) finding an efficient algo- 
rithm for the R P F  problem when the queried graph 
is acyclic. 
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