
An Optimal Algorithm for Querying Tree Structures and its
Applications in Bioinformatics

Hsiao-Fei Liul, Ya-Hui Chang27 and Kun-Mao Chaol

'Department of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan, 106

(r92019, kmchao)@csie.ntu.edu.tw

2Department of Computer Science
National Taiwan Ocean University, Keelung, Taiwan, 202

yahui@cs.ntou.edu.tw

Abstract

Trees and graphs are widely used to model biologi-
cal databases. Providing efficient algorithms to s u p
port tree-based or graph-based querying is there-
fore an important issue. In this paper, we propose
an optimal algorithm which can answer the follow-
ing question: "Where do the root-to-leaf paths of
a rooted labeled tree Q occur in another rooted la-
beled tree T?" in time O(m + Occ), where m is
the size of Q and Occ is the output size. We also
show the problem of querying a general graph is
NP-complete and not approximable within nk for
any Ic < 1, where n is the number of nodes in the
queried graph, unless P = NP.

1 Introduction

Trees and graphs have been widely used to model
data with complicated structures or relationships,
such as XML, Web, and structured documents [ll].
The applications in life sciences also arise naturally,
such as the biological databases representing molec-
ular graphs, taxonomy, and pathways. The issue of
querying tree-based or graph-based databases effi-
ciently is therefore very important and attracts a
lot of attention [3, 4, 6, 121.

In this research, we first investigate how to query
tree-based biological databases, such as the newly
released KEGG Glycan database for glycan struc-
tures which contains thousands of tree-structured
entries [I]. More formally, given a database com-

'To whom all correspondence should be sent.

posed of a rooted labeled tree1 T and a query com-
posed of a rooted labeled tree Q, we intend to iden-
tify where each root-to-leaf path of Q occurs in
T. This problem is named as the TRPF problem
(Tree version of Root-to-leaf Path Finding prob-
lem). An algorithm with optimal querying time for
the TRPF problem is proposed.

We also consider the situation where the database
is represented as a complex graph, such as the reg-
ulatory pathway. It can be first converted into a
directed labeled graph by the following steps: 1)
Determine the similarity between genes by the se-
quence alignment approach [8] and give the same
label to similar genes. 2) Construct a correspond-
ing pseudo-node ij labeled with iL(g) for each gene
g labeled with L(g). 3) If there exists an inhibi-
tion edge from gl to gz, delete that inhibition edge
and add an activation edge from gl to &. Figure 1
shows an example of converting part of the regu-
latory pathway "map04210hsa" in KEGG [9] to a
directed labeled graph.2 Based on a set of regula-
tory pathways which have been represented as di-
rected labeled graphs, some interesting paths can
be extracted and stored collectively as a tree, as il-
lustrated in Figure 2. For an unfamiliar pathway,
we could get more insight on its structure and func-
tionality by pointing out where those paths stored
in the collected tree occur in that pathway.

The application stated above motivates the more

lIf the database is a forest, we can attach a pseudo root
to connect all the trees.

2CASP2, CASP7, CASP8 are assumed to be similar and
labeled with C. The other nodes are labeled with their first
character. Pseudo-nodes without edges are omitted in this
figure.

SIGMOD Record, Vol. 33, No. 2, June 2004

studied for next-generation database applications,
such as in the mobile environment [2].

There is also a huge amount of research results
in the field of XML query processing which is re-
lated to our research, since the XML document and
the XML query are usually represented as trees.
However, their researches differ from ours in sev-
eral ways due to the characteristics of XML. For
example, we allow the root of the path in the query
tree to match any point of the data tree, but the Figure 1: Representing a pathway as a directed la-

beled graph. simple path in the XML query tree needs to match
the root of the XML data tree. We will only discuss
the research results of some representative papers in
the following for comparison.

The Index Fabric indexing structure is proposed
in [4] to accelerate the searching of root-to-leaf
paths in the XML data tree which satisfy the query.
Their method is based on layered Patricia tries to
efficiently handle a large amount of disk-based data.

Path 1 Path2 The ViST indexing structure proposed in [12] is
based on the notation of suffixes and uses the tree

Figure 2: a set of paths as a tree. structure as the unit of querying to avoid join op
erations. Some researchers represent an XQuery

general problem, where the database to search is as the generalized tree pattern (GTP),

a directed labeled graph G, and we want to iden- and the problem an XQuer~ ex~res-

tify where the root-to-leaf paths of a rooted labeled is reduced the problem of finding matches

tree Q occur in G. hi^ is named as ,.he R ~ ~ ~ - ~ ~ - for its GTP representation [3]. The time complexity
leaf path ~~~d~~~ (RPF) problem. we show this of evaluating XPath is discussed in [6]. The full-
problem is NP-complete and is not approximable fledged XPath 1.0 expressions could be ~rocessed
within nk for any k < 1, where n is the number of in time 0(1D14 * I Q I ~) , where [D l is the size the

nodes in G, unless P = NP. Since the R P F prob- and I Q I is the size of 'he query, and the

lem is hard in general, a feasible solution in practice Core XPath Bagment can be effi-

might be converting the R P F problem to a slightly- ciently processed in time '(1 * IQI).
less-accurate TRPF approximation by considering
the spanning tree of the queried graph.

The rest of this paper is organized as follows. Sec- 3 Preliminarie~
tion 2 discusses some related researches. The for-
mal definitions of the R P F and T R P F problems We define the problem formally and provide the
are given in Section 3. Section 4 describes an algo- background knowledge for solving the problem.
rithm for the T R P F problem and Section 5 proves Given a finite alphabet C = (11, lz . . . llcl), we call
the hardness of the R P F problem. Section 5 con- G = (V, E, L) a directed labeled graph if (V, E) is a
cludes the paper with a few remarks. directed graph and L : V -, C is a labeling function.

Similarly, we call T = (V, E, r, L) a rooted labeled
tree if (V, E, r) is a rooted tree and L is a labeling

2 Related Work function. Both the directed labeled graph and the
rooted labeled tree are called directed labeled struc-

Multi-disciplinary research results are relevant to tures. Given two directed labeled structures GI and
this research, and we describe a few here. The al- G2, we say a path p' of G2 occurs at GI's node v
gorithm proposed in this paper is mainly based on iff there exists a simple path p of G1 starting from
the approach in [lo], which applies the suffix tree for v such that the concatenation of labels on p is the
efficient document retrieval. The well-established same as p'. For convenience, we let labels(p) denote
genomic databases represent data as a sequence of the concatenation of labels on a simple path p. If v
codes and querying is supported by sequence align- is a node of a rooted labeled tree, a(v) denotes the
ment algorithms [8]. Powerful query languages are path from the root to v.

SIGMOD Record, Vol. 33, No. 2, June 2004

1 2 3 4 5
S = [A B A B $1

4 Algorithms for TRPF
Now we introduce the algorithms for solving TRPF.
Algori thm Preprocessing constructs the suffix
tree with indexing structures based on the input
tree in 0(n2), where n is the number o f nodes in the
input. Algori thm Querying can then identify the
paths of the query tree in the s& tree in O (m +
O w) , where m is the number o f nodes in Q and
O w is the output size. W e will first explain the
algorithms and then analyze the time complexity.

Figure 3: An example of a suffix tree.

4.1 Preprocessing
Problem 1 The Root-to-leaf Path Finding (R P F)
problem: Given a directed labeled graph G =
(V, E, L) and a rooted labeled tree Q with leaves
(l l . .ele), the goal is to output (Owl . - .0cce),
where Occi = {vla(li) occurs in G at node v E V)
f o r i= l . . - t .

Problem 2 The Tree version of the RPF (T R P F)
problem: Given a rooted labeled tree T = (V, E , L , r)
and a rooted labeled tree Q with leaves (I 1 - . . le) ,
the goal is to output (Ocq . - . O C C ~) , where OCG =
{v(cr(li) occurs in T at node v E V) for i = 1 .- .t.

The query Q in both problems is in the form of
a rooted labeled tree. The difference is that the
database t o search is a directed labeled graph in
Problem 1, and is a rooted labeled tree in Problem
2. In the following, we introduce the data structure
used t o solve the T R P F problem.

The queried tree T is first augmented t o T' as in
Figure 4.3 A suffix tree S T will be built based on
the concatenation of all root- t~leaf paths o f T I , and
each leaf node t of S T is "colored" with the positive
integer Ic i f t corresponds t o the path of T' starting
from the node with ID Ic. All the colors on leaves o f
ST are collected into an array C from the leftmost
leaf t o the rightmost leaf, and each leaf is labeled by
[i, i] i f its color is represented by the ith entry o f C .
By depth-first traversal o f S T , we then label each
internal node with [l,r], i f its leftmost descendant
leaf has the label [l, 11 and the rightmost descendant
leaf has the label [r, r] . The last step is t o build an
indexing structure on C , such that for any interval
[l, r] , we can output the set o f distinct colors, i.e.,
distinct node ID'S, in C[l , r] efficiently. The detailed
steps o f the algorithm are listed as follows:

Algori thm PREPROCESSING
input: A rooted labeled tree T on C .

Definition 1 Let S be a string ended with a special Output: (ST, S,
symbol "$" which is not in the alphabet. A sufix for each leaf of
tree S T for S is a rooted tree with IS1 - 1 leaves add a new child with label $ to [;
numbered from 1 to / S J - 1, and each edge of S T is 2 end for
labeled with a pair of integers such that the following , T ; are satisfied: If (g, h, and (i>3) 4 p , all root-tele& paths of TI;
are the labels of two edges out of the same node,

+ labels(P);
S[g] # ' l i] ' (2) each leaf node ST with the 6 S T , build the s u f f i x tree of S;
number i, i f (i l , j l) , (i z , jz), . . . , (i k , jk) are the edge- 7 for each leaf t o f S T /* from left t o right*/
labels on the path from the root to I , then the con- color with Plnuml i f tts number is num;
catenation of S[il . . . 311, S[i2. . . j2], . . . , S[ik . . . jk] 9 C[i] +- P[num] /* i has initial value 1*/
spells out S[i . . . IS[]. 10 assign label [i, i] t o t;

11 i+ i+l ;
Figure 3 shows the suffix tree for the string [A B 12 end for

A B $1, where the path from the root t o the leaf 13 for each internal node
numbered with k will correspond t o the kth suffix 14 [1,1] + vrS left-mwt-descendant-leaf's label;
of S . For example, the shaded path corresponds t o 15 [r, r] c V'S right-most-descendant-leaf's label;
the third suffix o f S , i.e., [A B $1. A linear time 16 ,sign label [~ , ~ j to v ;
algorithm o f constructing a suffix tree for an input
string could be found in [7]. 3The symbol "8" is assumed to be not in the alphabet.

SIGMOD Record, Vol. 33, No. 2, June 2004

1s 1-4 T* Steps 5-6 1 2 3 4 5 6 7 8 9 10 11 12

1 Steps 7-19

1 2 9 8 1 i 6 9 1
A B B S A A A S]

Figure 4: An illustrative example of Algorithm PREPROCESSING.

17 end for
18 build the indexing structure on C;
19 output (ST, S, C);

Figure 4 shows an illustrative example. Note that
the root-to-leaf path in ST where the leaf node is
numbered with i, corresponds to the path starting
from the node P[i] in the tree T'. For example, the
leaf node of the shaded path in ST is associated with
the number 3 and colored with 3. This path repre-
sents [AABBAAA$] and exactly corresponds to
the following path in T': 3 + 1.

The time complexity of the algorithm is analyzed
in the following. Lemma 1 guarantees the efficiency
of building the supplement indexing structure on C
(line 18). Based on Lemma 1, the time complexity
is shown to be quadratic.

Lemma 1 [lo] Let C be a positive integer array. If
C[i] 5 ICI for all i , there exists an O(IC1) time al-
gorithm to build an index structure on C such that
for any interval [l,r], we can output the set of dis-
tinct numbers in C[l,r] within time O(d), where d
is the output size.

Theorem 1 The time complexity of Algorithm
Preprocessing is 0(n2), where n is the number of
nodes in the queried tree.

Proof. T' has at most n root-to-leaf paths and the
length of each root-to-leaf path is at most n + 1, so

IPI = IS1 = 0 (n 2 + n) = 0(n2). It follows that the
time complexity of building the corresponding S T
is 0(n2). The size of C is equal to the number of
leaves in ST, so ICI = 0(n2). According to Lemma
1, it takes O(IC1) = 0(n2) to preprocess C. The
total time complexity could be concluded as 0(n2).
0

4.2 Querying

Given a rooted labeled tree Q on C with leaves
l1 - . . le, we describe how to find (Occl . . . Occe),
where OCQ = {vla(li) occurs in T at node v E V)
for i = 1 . . - f?. Without loss of generality, we assume
that the root of Q has the label E which denotes the
empty string and is not in C .

The first step of the algorithm is to match Q with
ST, which is done by traversing Q in the depth-first
order as follows: First set p as the position of the
root of ST. Whenever we step downward to a node
v in Q, we also step downward in S T from p to find
the position p' in ST, such that p' corresponds to
o(v). If p' is found, we set the match point of v
as p', and reassign p as p'. If no such p' exists, we
backtrack from v to process other nodes, and assign
p as the match point of v's parent, if v is not the
root of Q; otherwise the procedure stops.

After finding all the match points for Q, suppose
that mk is the match point for the leaf lk. We will

SIGMOD Record, Vol. 33, No. 2, June 2004

[2 2 41, we output the distinct colors from the range
and obtain ow3 = (2 , 4).

Figure 5: An illustrative example of Algorithm
QUERYING.

identify the nearest node below (including) m k in
ST and suppose its label is [ik, jk]. W e can then
obtain O w k by determining the distinct colors on
mk's descendant leaves, which will be the distinct
colors in C [i k , jk].

Theorem 2 The time complexity of Algorithm
Querying is O (m + Occ), where m is the size of
the query and O w is the output size.

Proof. The time t o match Q with S T is O(m) .
According t o Lemma 1, it takes O(dk) time to out-
put the set o f distinct colors in C[ik, jk] for each k ,
where dk is the output size. Therefore, the total
time complexity is O (m) + O(dl) + ... + O(de) =
O (m + Occ), where Occ is the output size. 0

5 Analysis of RPF

Algorithm QUERYING
Input: Q = (V' , El, r', L') with leaves { l1 . . - le).
Output: (Occl . . . Owe).
1 match the tree Q with S T ;
2 for k := 1 to 1 do
3 mk c match point o f lk in S T ;
4 i f m k # NULL
5 N c the nearest node not above m k ;
6 [ik, jk] c label o f N ;
7 else
8 [ik,jk] [O, 01;
9 end i f
10 end for
11 for each leaf k E (1 . . l)
12 Omk +- distinct colors in C[ik , jk];
13 end for
14 output (O C C ~ . . . O C C ~) ;

W e define the Decision version of the R P F
(D R P F) problem as follows: Given a directed la-
beled graph G , a rooted labeled tree Q with leaves
(11 . . . le), and a positive integer k , is (IOccl 1 +
IOCC~~ + ... + 10~~~1) 2 k ?

Theorem 3 The DRPF problem is NP-complete.

Proof. I t is clear DRPF E NP, so we only have t o
show how t o reduce the Harniltonian path problem
[5] to DRPF. Given a graph G = (V, E) , let G' =
(V, E', L) be a directed labeled graph such that: 1)
{v l , vz) E E i f f (~ 1 , v2) and (v2, v1) E E' for all
vl,v2 E V and 2) each node in G' has the same
label. Let Q be a rooted labeled tree such that: 1)
Q has only one leaf, 2) each node o f Q has the same
label as G', and 3) the number of nodes in Q is IVI,
so Q is just a path of length IVI. I t is easy to see
that G has a Hamiltonian path i f f DRPF(G1, Q , 1)
is "yes". 0

W e define the Optimization version of the R P F
(O R P F) problem as follows: Given a directed la-
beled graph G t o be queried and a rooted labeled
tree Q with leaves (ll . . - l e) , S1 . . - St is a feasible
solution i f f i f v E Si then a(l i) occurs in G at node v
for i = 1 - - e. The goal is to find a feasible solution
such that the cost (IS11 + IS2[+ ... + lSel + 1) is
maximun.

Continue the example as illustrated in Figure 4. Theorem 4 Let n be the number of nodes in the
Suppose the query tree is the one shown in the bot- queried graph. The ORPF problem is not approx-
tom of Figure 5. Take the leaf node l3 as an ex- imable within p(n), where p(.) is any function with
ample. Its corresponding match point in S T will two constants cl and c2 such that xy 2 p(xY+l) i f
be the node labeled with [7, 91. Since C[7, 91 = x > cl and y 2 c2.

SIGMOD Record, Vol. 33, No. 2, June 2004

Proof. Assume there is a polynomial time p(n)-
approximation algorithm A for ORPF. We shall
describe a polynomial time algorithm for the Hamil-

Mamitsuka, Efficient Tree-Matching Methods
for Accurate Carbohydrate Database Queries.
Genome Informatics, 14: 134-143, 2003.

tonian path problem, so that we can conclude the
assumption is wrong unless P = NP. [2] Ya-Hui Chang, A Graphical Query Language

~ i v & a graph G: let n be the number of nodes
in G. If n 5 cl then we can determine whether G
has a Hamiltonian path by enumerating all simple [3]
paths in G. Otherwise we construct GI and Q as in
the proof of Theorem 3. Obtain Gtt by copying Gt
nc2-times. Let C = cost(A(G1', Q)). If C > 1 then
return "Yes" else return "No" .

It is clear this algorithm runs in polynomial time
and is correct when n L: cl. We now show this [41
algorithm is also correct when n > cl. Let C* be
the cost of the optimal solution of ORPF(GN, Q).
According. to our assumption, we know (C*/C) <
p(nC2+'). If G has a Hamiltonian path, then C* 1 151
nc2 + 1 > p(ncz + 1). Therefore, C has to be greater
than 1 to make (C*/C) 5 p(nC2 + 1). If G does
not have a Hamiltonian path, clearly C* = C = 1.

I61

Corollary 1 Let n be the number of nodes in the
queried graph. The ORPF problem is not approx-
imable vithin nk for any k < 1, unless P = NP.

6 Concluding Remarks
We expect that trees and graphs will play an im-
portant role in biological data archives in the post-
proteomic era. In this paper, an efficient algorithm PI
is proposed to solve the T R P F problem and the
R P F problem is proven to be hard. We close this
paper by mentioning some directions for future re- [9]
search: 1) improving the preprocessing time for the
T R P F problem, and 2) finding an efficient algo-
rithm for the R P F problem when the queried graph
is acyclic.

Acknowledgements. We thank the anonymous
reviewers for their valuable comments. We also
thank Atsuko Yamaguchi for providing the working
manuscript on the KEGG Glycan database queries
and Hsueh-I Lu for his superb lecture notes on suf-
fix trees. Hsiao-Fei Liu and Kun-Mao Chao were
supported in part by an NSC grant 92-2213-E002-
059. Ya-Hui Chang was supported in part by an
NSC grant 92-2213-E019-010.

References

[l] K. F. Aoki, A. Yamaguchi, Y. Okuno, T.
Akutsu, N. Ueda, M. Kanehisa, and H.

for Mobile Information Systems. SIGMOD
Record, 32(1): 20-25, 2003.

Z. Chen H. V. Jagadish L. V. S. Lakshmanan
S. Paparizos, From Tree Patterns to General-
ized Tree Patterns: On Efficient Evaluation of
XQuery. In Proceedings of the 29th Very Large
Data Base Conference, 2003.

B. F. Cooper, N. Sample, M. J. Franklin,
G. R. Hjaltason, M. Shadmon, A Fast Index
for Semistructured Data. In Proceedings of the
27th Very Large Data Base Conference, 2001.

T. H. Cormen, C. E. Leiserson, R. L. Rivest,
and C. Stein, Introduction to Algorithms, 2/e.
The MIT Press, 2001.

G. Gottlob, C. Koch, R. Pichler, XPath Query
Evalution: Improving Time and Space Effi-
ciency. In 'Proceedings of the 19th IEEE In-
ternational Conference on Data Engineering,
2003.

D. Gusfield, Algorithms on Strings, Trees, and
Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press,
1999.

X. Huang, and K.-M. Chao, A Generalized
Global Alignment Algorithm. Bioinformatics,
19: 228-233, 2003.

M. Kanehisa, S. Goto, S. Kawashima, Y.
Okuno, and M. Hattori, The KEGG Resource
for Deciphering the Genome. Nucleic Acids Re-
search, 32(1):D277-D280, 2004.

S. Muthukrishnan, Efficient Algorithms for
Document Retrieval Problems. In Proceedings
of the 13th Annual A CM-SIA M Symposium on
Discrete Algorithms, 657-666, 2002.

D. Shasha, J. T. L. Wang, R. Giugno, Algo-
rithmic~ and Applications of n e e and Graph
Searching. In Proceedings of the 2lst ACM
SIGACT-SIGMOD-SIGART Symposium on
Principles of Database System, 39-52, 2002.

H. Wang S. Park W. Fan P. S. Yu, ViST: A Dy-
namic Index Method for Querying XML Data
by Tree Structures. In Proceedings of the ACM
SIGMOD International Conference on Man-
agement of Data, 2003.

SIGMOD Record, Vol. 33, No. 2, June 2004

