
行政院國家科學委員會專題研究計畫 期中進度報告

 

分散式系統中為提升資料存取效率的複製策略(2/3) 

期中進度報告(精簡版) 

 
 
 
計 畫 類 別 ：個別型 

計 畫 編 號 ： NSC 95-2221-E-002-071- 

執 行 期 間 ： 95 年 08 月 01 日至 96 年 07 月 31 日 

執 行 單 位 ：國立臺灣大學資訊工程學系暨研究所 

  

計 畫 主 持 人 ：劉邦鋒 

  

  

  

  

報 告 附 件 ：出席國際會議研究心得報告及發表論文 

 

  

公 開 資 訊 ：本計畫可公開查詢 

 
 
 

中 華 民 國   96 年 11 月 03 日 
 



行政院國家科學委員會補助專題研究計畫
□ 成 果 報 告
█期中進度報告

分散式系統中為提升資料存取效率的複製策略(2/3)

計畫類別：▓個別型計畫 □ 整合型計畫
計畫編號：NSC 95-2221-E-002-071
執行期間： 2006 年 8 月 1日至 2007 年 7月 31 日

計畫主持人：劉邦鋒
共同主持人：
計畫參與人員： 陳惠麟, 李龢軒

成果報告類型(依經費核定清單規定繳交)：□精簡報告 □完整報告

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、
列管計畫及下列情形者外，得立即公開查詢
□涉及專利或其他智慧財產權，□一年□二年後可公開查詢

執行單位：

中 華 民 國 年 月 日

附件一



1 Introduction

Grid computing is an important mechanism for utilizing computing resources that are distributed in
different geographical locations, but are organized to provide an integrated service. A grid system provides
computing resources that enable users in different locations to utilize the CPU cycles of remote sites. In
addition, users can access important data that is only available in certain locations, without the overheads
of replicating it locally. These services are provided by an integrated grid service platform, which helps
users access the resources easily and effectively. One class of grid computing, and the focus of this paper,
is Data Grids, which provide geographically distributed storage resources for complex computational
problems that require the evaluation and management of large amounts of data. For example, scientists
working in the field of bioinformatics may need to access human genome databases in different remote
locations. These databases hold tremendous amounts of data, so the cost of maintaining a local copy at
each site that needs the data would be prohibitive. In addition, such databases are usually read-only,
since they contain the input data for various applications, such as benchmarking, identification, and
classification. With the high latency of the wide-area networks that underlie most Grid systems, and
the need to access/manage several petabytes of data in Grid environments, data availability and access
optimization have become key challenges that must be addressed.

An important technique that speeds up data access in Data Grid systems is to replicate the data in
multiple locations so that a user can access the data from a server in his vicinity. It has been shown that
data replication not only reduces access costs, but also increases data availability in many applications
[7, 13, 12]. Although a substantial amount of work has been done on data replication in Grid environments,
most of it has focused on infrastructures for replication and mechanisms for creating/deleting replicas [2,
5, 4, 6, 12, 14, 13, 15]. We believe that, to obtain maximum benefits from replication, a strategic placement
of replicas is essential.

Although there has been much work on replica placement problem [10, 11, 17, 18, 20], very few of
them concerns quality of service. A large part of these work concerns the average system performance,
for example, to minimize the total accessing cost, or to minimize the total communication cost, etc.
Although these metrics are important in the overall system performance, they cannot meet the individual
requirement adequately. Grid computing infrastructure usually consists of various type of resources and
the performance of these resources are quite diverse. Moreover, different sites may have different service
quality requirements according to the system performance of the sites. Therefore, quality of service is an
important factor in addition to overall system performance.

An early work by Tang and Xu [16] considered the quality of service in addition to minimize the
storage and update cost. The distance between two nodes is used as a metric for quality assurance.
A request must be answered by a server within the distance specified by the request. Every request
knows the nearest server that has the replica and the request takes the shortest path to reach the server.
Their goal has been to find a replica placement that satisfies all requests without violating any range
constraint, and minimize the update and storage cost at the same time. They show that this QoS-aware
replica placement problem is NP-Complete for general graphs, and provide two heuristic algorithms –
l-Greedy-Insert and l-Greedy-Delete, for general graphs. A dynamic programming solution is given
for tree topology [16].

In this paper, we study the QoS-aware replica placement problem for general graphs; moreover,
we take the workload capacity limit of each replica server and the access cost of each data request into
consideration. When a data request is dispatched to a overloaded server, it will not get a response in time.
Therefore, we believe that quality of service and workload capacity should be considered simultaneously
for quality assurance. In addition, the data access cost has a profound influence on the overall system
performance, therefore the access cost must be taken into account to improve system performance. In
our model, each request must be serviced by a replica server within its quality requirement and without
violating the capacity limits of the replica server. We provide two heuristic algorithms to decide the
positions of the replicas to minimize the sum of update, storage and access costs, and satisfy the quality
requirements specified by the user and the capacity limit that each replica server can service. Our
algorithm computes near-optimal solutions efficiently, so that it can be deployed in various realistic
environments.
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2 Related Works

Optimal replica placement problem has been studied extensively in the literature. The same problem
has different names in different research areas. For example, it is refereed to as p-median problem in
operations research, or database location problem on Internet and file allocation problem in computer
science. Wolfson and Milo [20] proved that replica placement problem is NP-Complete for general graphs
when read and update cost are simultaneously considered. They also provide optimal solutions for special
topologies, including complete graph, tree, and ring. Tu et al. [17] study the secure data placement
problem in the same model and provide a heuristic algorithm for general graphs. Krick et al. [11]
consider read, update and storage cost simultaneously in general graph, and provide an polynomial time
approximation algorithm that has a constant competitive ratio. They also provide an optimal solution
for tree topology in the same paper. Kalpakis, Dasgupta and Wolfson [10] consider read, update and
storage cost under tree topology. Their algorithm could cope with the situations even when servers have
capacity limits. They describe an O(n3k2) dynamic programming algorithm for k replicas placed in n

incapacitated servers, and an O(n3k2∧2
max) algorithm for capacitated servers, where ∧max denotes the

maximum capacity among all servers. Unger and Cidon [18] provide a more efficient algorithm to find
the optimal placement under similar model, with only O(n2) time, where n is the number of servers.
However, the algorithm in [18] cannot deal with server capacity limits. There are other algorithms that
provide optimal solutions under simpler models for tree topology [9, 3].

Although there has been a lot of work studying the optimal replica placement problem, very few of
them concerns quality of service. The goal in these efforts is usually to minimize the total replication cost.
The replication cost may contain read, update and storage cost, depending on the system model. The
objective has usually been to improve the average system performance, without any quality-of-service
guarantees. An early effort by Tang and Xu [16] suggested a QoS-aware replica placement problem to
cope with the quality-of-service issues. Every edge uses the distance between the two end-points as a
cost function. The distance between two nodes is used as a metric for quality assurance. A request must
be answered by a server that is within the distance specified by the request. Every request knows the
nearest server that has the replica and the request takes the shortest path to reach the server. Their goal
has been to find a replica placement that satisfies all requests without violating any range constraint, and
minimizes the update and storage cost at the same time. They show that QoS-aware replica placement
problem is NP-Complete for general graphs, and provide two heuristic algorithms, called l-Greedy-Insert
and l-Greedy-Delete, for general graph, and a dynamic programming solution for tree topology.

l-Greedy-Insert starts with an empty replication set R, and inserts replicas into R until all servers’
QoS requirements are satisfied. In the first step, the algorithm selects (l + 1) replicas that maximize the
normalized benefits among all possible locations. Normalized benefits is defined as the increased number
of satisfied servers divided by the increased replication cost due to the selection. In each step, we examine
all possible replacement, each of them replaces l replicas with some (l + 1) replicas, and choose the one
that maximizes the normalized benefits. Note that the removed replicas and the inserted replicas can
overlap.

l-Greedy-Delete works the opposite way as the l-Greedy-Insert. We begin with having a replica in
every node, then it deletes replicas whose deletion maximizes the replication cost reduction until there
is no replica that can be deleted. In the first step, l-Greedy-Delete removes the (l + 1) replicas whose
deletion maximizes replication cost reduction without violating the QoS requirements. In each subsequent
step, the algorithm examines all possibilities of replacing (l +1) replicas with l replicas without violating
QoS requirements, and chooses the one that maximizes replication cost reduction. We repeat the process
until there is no possible alternative left.

The time complexity of l-Greedy-Insert and l-Greedy-Delete is O(|V |3) for l = 0 and O(|V |2l+2)
for any l > 0 [16]. The time complexity for the l = 0 case is due to shortest path computation. There
is a trade-off between the time complexity and the quality of solution on l value. Although the time
complexity is a polynomial function of the number of nodes, the execution time of these two algorithms
are very slow in practice even when l = 1.

Since l-Greedy-Insert starts by inserting replicas into a empty replica set, and l-Greedy-Delete
starts by deleting replicas from a full replica set, the execution time of these two algorithms depends
heavily on the number of replicas in the optimal solution. If the optimal solution has very few replicas,
l-Greedy-Insert becomes more efficient than l-Greedy-Delete. On the other hand, l-Greedy-Delete is
much more efficient when the optimal solution contains a lot of replicas.

Won, Indranil and Klara proposed a simpler formulation about QoS-aware replica placement prob-
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lem [8]. The model did not consider update cost and assumed that each server has identical storage cost.
The goal was to minimize the number of replicas in the system. They gave a proof of NP-Completeness
for this problem, which is a variation of set covering. Let A be the all-to-all shortest path matrix and
entry (i, j) of A denotes the shortest path distance between server i and server j. Let B be another
matrix and the entries in the i-th row indicate quality of service requirement of server i. We then con-
struct another matrix C according to A − B. If an entry of A − B is less than or equals to 0, we set set
the corresponding entry of C to 1. Otherwise, we set the entry to 0. The non-zero elements of the j-th
column of C represents the servers that are covered by server j. If we find a set of columns that cover
every row in matrix C, we find a replica placement that satisfies all requests within quality of service
requirement.

Won, Indranil and Klara proposed a simpler and quicker algorithm to find a reasonable good solution
for this problem. Every iteration in the algorithm, they select the column j (server j) that covers most
rows that not yet covered so far. This Greedy MSC (Greedy Minimum Set Covering) is compared with
our methods in our simulation testing.

Our model differs from the model in [16] because it considers not only site construction, update
overheads, quality of service, both the capacity constraint and the access costs. The capacity constraint
of each replica server is an important factor in the requsets response time, and the access cost of each
request has a great influence on system performance. We believe that these two factors should be taken
into consideration, along with site construction, update overheads, and quality of service. In this paper,
we propose two heuristic algorithms to find near optimal solutions, while all the constraints, including
capacity constraint and access costs, are considered.

3 System Model

This section describes our system model. The network is represented by an undirected graph G = (V, E),
where V is the set of servers, and E ⊆ V × V denotes the set of network links among the servers. Each
link (u, v) ∈ E is associated with a cost d(u, v) that denotes the communication cost of the link. We
assume that the graph is connected, so that one server can connect to any other server via a path. We
define the communication cost of a path as the sum of the communication cost of the links along the
path. Because we assume that a server knows where to find the replica that services it, we define d(u, v)
between two servers u, v to be the communication cost of the shortest path between them. Every server u

has a storage cost, S(u), that denotes the cost to put a replica on server u. The storage cost on different
nodes may be different. Figure 1 is an example of our model. The numbers in the circles are server
indices between 0 and n − 1, where n is the total number of servers. The number next to a server is its
storage cost. The number on a link is the communication cost of the link.
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Figure 1: An example of data replication in connected network.

Each server in the network services multiple clients, although we do not place clients into the network
graph. A client sends its requests to its associated server, then the server processes the requests. If the
client’s requests can be served by the server, i.e., the local server has the requested data, the requests will
be processed locally. Otherwise, the requests will be directed to a server that has the replica. As a result,
we assume that all requests are issued from the servers and there are only servers in the network graph.
In addition, because the communication cost from the clients to servers does not affect the replication
decision, we ignore the communication cost from clients to servers.

There is a special server r, called origin server, in the network graph. Without lose of generality, we
assume that server 0 is the origin server. Initially only the origin server has the data. A replica server is
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a server that has a copy of the original data.
A replication strategy has two parts: a replication server set R ⊆ V − {r}, and a service set function

SS. For each server u ∈ R ∪ {r}, we define a service set function SS(u) to be the set of servers that
u services. We assume that each server goes to only one server in R ∪ {r} for service, therefore for two
distinct servers u, v ∈ R ∪ {r}, the service sets of u and v are disjoint, i.e., SS(u) ∩ SS(v) = ∅. In other
words the service set function SS is a partition of all servers in V among R ∪ {r}

3.1 Replication Cost

We use replication cost to evaluate replication strategies. The replication cost T (R) of a replication
strategy is defined as the sum of the storage cost S(R), update cost U(R), and access cost A(R).

T (R) = S(R) + U(R) + A(R) (1)

Storage cost The storage cost of a replication strategy is the sum of all storage cost of the replica
servers in the replication server set R. Recall that S(v) is the storage cost to replica a data at server v.

S(R) =
∑

v∈R

S(v) (2)

Update cost In order to maintain data consistency, the origin server r issues update requests to every
replica server. The update frequency µ denotes the number of update requests issued by r per time
period. We assume that there is an update distribution tree T , which connects all the servers in the
network. For example, in our experiments, we use a shortest path tree rooted at the origin server as the
update distribution tree. As in Figure 1, we use bold lines to represent the edges of the shortest path
tree. The origin server r multicasts update requests through links on this tree until all the replica servers
in R receive the update requests. Every node receives update requests from its parent and relays these
requests to its children according to the update distribution tree.

Given the network, the update distribution tree, the update frequency µ, the update cost of a replica-
tion servers R is defined as follows. Let p(v) be the parent of node v in the update distribution tree, and
Tv be the subtree rooted at node v. If Tv ∩R 6= ∅, the link (v, p(v)) participates the update multicast. As
a result, the update cost is the sum of the communication costs from these links (v, p(v)). For example,
in Figure 1 if the update rate is 1 and the replication servers R is {1, 5, 6}, then the update cost is
11 + 13 + 9 = 33.

U(R) = µ ×
∑

v 6=r, Tv∩R6=∅

d(v, p(v)) (3)

Access cost The access cost of a replication strategy is defined as the following. Each server v has to
communicate with a replica server u when it wishes to access the data from u, where v ∈ SS(u). The
access cost of a replication strategy is the sum of the communication cost that each server v accesses the
data from its assigned replica server according to the service set function SS, as in the following equation.

A(R) =
∑

u∈R∪{r}

∑

v∈SS(u)

d(u, v) (4)

3.2 Service Quality Requirement

Every server u has a service quality requirement Q(u). The requirement mandates that all requests
generated by u will be serviced by a server within Q(u) communication cost. If requests from server u is
serviced by a replica server within distance Q(u) from u, server u is satisfied.

3.3 Workload Capacity Constraint

Each server u has a workload W(u) and workload capacity constraint C(u). The workload W(u) of a
server is defined as the number of requests generated by server u. For each server u, when we put a
replica on u, it has a workload capacity constraint, C(u), that denotes the amount of data requests that
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the replica server u can handle. The origin server also has its workload capacity constraint C(r). The
workload and workload capacity constraint on different server may be different. If the total workload
that a server u ∈ R∪{r} services is greater than its capacity constraint, i.e.,

∑
v∈SS(u) W(v) > C(u), the

server u is overloaded.

3.4 QoS-aware Replica Placement With Capacity Constraint

A replication strategy is feasible if all servers are satisfied, and none of the server u ∈ R∪{r} is overloaded.
The problem of QoS-aware replica placement with capacity constraint is to find a feasible replication server
set R and determine the service set function SS(u) for each server u ∈ R∪ {r}, such that the replciation
cost in Equation (1) is minimized.

4 Heuristic Algorithms

In this section we first propose two heuristic algorithms – Greedy-Remove and Greedy-Add for QoS-
aware replica placement with capacity constraint problem. Then, we analyze the time complexity of these
two algorithms.

4.1 QoS Satisfying Set

We define a QoS satisfying set SAT (u) of a server u to be the set of servers from which u is located
within their QoS distance Q. That means should u become a available replica server, it is able to satisfy
those nodes in SAT (u). Formally we have Equation 5.

SAT (u) = {v|d(u, v) ≤ Q(v)} (5)

Each server has its own QoS satisfying set. If there is a replica on server u, each server v ∈ SAT (u)
may be satisfied by u, if u will not be overloaded by doing so . For a feasible replication strategy,
the service set of each server u ∈ R ∪ {r} must be a subset of its QoS satisfying set SAT (u), that is,
SS(u) ⊆ SAT (u) for all u ∈ R ∪ {r}.

4.2 Greedy Remove

The algorithm Greedy-Remove starts with having a replica on every server. This replication strategy is
feasible since every server can serve itself locally so any QoS constraint is satisfied. Therefore the service
set of each server u ∈ R ∪ {r} has only itself. Greedy-Remove then repeatedly adjusts the service
sets SS of a pair of replica servers and try to remove replicas in order to reduce the replication cost
(Equation (1)). While removing replicas, Greedy-Remove must simultaneously maintain the feasibility
of the replication strategy.

We now describe our Greedy-Remove method in details. The Greedy-Remove method works in
rounds. Initially we put a replica on every server in V − {r}, so the replication server set R is V − {r}.
For each iteration Greedy-Remove examines each pair of servers u, v in R∪{r} and computes the cost
reduction function R(u, v). Then Greedy-Remove selects the maximum R(u, v) and adjust the service
sets of u and v accordingly. Greedy-Remove repeats this process until it is impossible to reduce the
total replication cost.

4.2.1 Time Complexity Analysis

We now analyze the time complexity of Greedy-Remove. The first part of the costs is a preprocessing
to find a shortest path between any two servers. That is, we must build all-pair shortest path to check if
one server is within the QoS requirement of another. This takes O(|V |3) time to calculate.

Given the servers u and v, it takes O(|V |) to find out the cost reduction of moving all servers from v

to u for the first case. For the second case it takes O(|V |log|V |) time to sort the servers, then examine
them one by one and move them from u to v if its distance to v is longer than the distance to u.

We first compute the cost reduction function R of each pair of replica servers. This takes O(|V |3log|V |)
time.

In each iteration, we choose the largest cost reduction R. If the corresponding case is the first case,
we need to consider two situations. The first is that there is no replica in the subtree rooted at v after
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removing the replica from v. We have to recompute the cost reduction function of v’s parent replica
server with the other replica servers. Because its reduced update cost in rm function has been changed.
The other situation is that there is only one replica in the subtree Tv after taking off the replica from v.
We have to recompute the cost reduction function of this replica server with the other replica servers.
This is because the reduced update cost of this replica server is increased. Hence if the corresponding
case is the first case, it needs O(|V |2) time. Otherwise, if the corresponding case is the second case, we
only need to recompute the cost reduction function of the two replica servers that we selected with the
other replica servers. This takes O(|V |2log|V |). Thus, each iteration needs O(|V |2log|V |) time.

In each iteration we remove a replica from a server or move at least one server from one service set
to another.

The number of replica removal is at most |V | since a replica can be removed at most once.
In addition, each server without placing the replica can be moved at most |V | times because it can

only be moved from a service set to another once, and there are |V | servers in the network system.
Therefore, there are O(|V |2) iterations. As a result, the time complexity of Greedy-Remove is

O(|V |3 + |V |3log|V | + |V |2 · |V |2log|V |) = O(|V |4log|V |).

4.3 Greedy Add

The Greedy-Add algorithm works the opposite way as Greedy-Remove does. It begins with an empty
replication server set R, and add replicas to R one at a time.

In the second stage, Greedy-Add repeatedly adds replica in order to decrease the access cost. This
stage works also in iterations. In each iteration, Greedy-Add examines all servers u ∈ V −R∪{r}, and
try to place a replica on a server u to determines whether this will reduce the replication cost.

When we put the replica on a server u ∈ V − R ∪ {r}, u has to serve itself and u must be put
into SS(u). Then we start selecting servers from SAT (u) and move them to SS(u). We select servers
v ∈ SAT (u) whose communication cost (d(v, u)) is less than the communication to its original server
(d(v, rep(v))). The selection starts from the server v with the largest largest d(v, rep(v)) − d(v, u), until
there is no available capacity on u, or no server left in SAT (u). We then recompute the replication cost.
After trying all servers in V − R ∪ {r}, Greedy-Add puts the next replica on a server that reduces the
replication cost most. Greedy-Add repeats the process until it is impossible to reduce the replication
cost.

4.3.1 Time Complexity Analysis

We analyze the time complexity of Greedy-Add. Similar to the analysis of Greedy-Remove, the first
part of the costs is a preprocessing to find a shortest path between any two servers, which takes O(|V |3)
time to calculate.

In the first stage, Greedy-Add inserts the replicas into the network iteratively until all servers are
served. In each iteration, Greedy-Add examines O(|V |) servers. If we put the replica on a server,
it takes O(|V |) time to determine the service set and to compute the normalized benefit. Thus each
iteration takes O(|V |2) time. In each iteration, Greedy-Add puts the replica on a server and there are
at most |V | servers in the network. Therefore, in the first stage, Greedy-Add requires O(|V |3) time to
determine a feasible replication strategy.

In the second stages, Greedy-Add inserts the replicas into the network to reduce the replication
cost until further reduction in replication cost is not possible. In each iteration, Greedy-Add examines
O(|V |) servers. It takes O(|V |log|V |) time to determine the service set and O(|V |) time to recompute
the replication cost. Since there are |V | servers in the network, the second stage of Greedy-Add takes
O(|V |3log|V |) time to finish. As a result, the overall complexity of Greedy-Add is O(|V |3log|V |).

4.4 Random

We randomly insert the replica into the network until all servers are served. The servers in a QoS
satisfying set SAT (u) are sorted according to their communication cost to u. When we put the replica on
a server u, u has to serve itself first. Then we select servers from SAT (u) to form SS(u). The selection
starts from the first server v in SAT (u) that has not been served by any server in R ∪ {r} until there is
no workload capacity available on u, or every server in SAT (u) have already been served by R ∪ {r}.
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5 Conclusion

Data replication is an important technique to speed up data access in Data Grid. Grid computing
infrastructure usually consists of various type of resources and the performance of these resources are
quite diverse. So to provide quality assurance for different data access requirements is more and more
important. This replica placement problem become more complex when the storage for replica on servers
is limited. We believe that quality of service and workload capacity should be considered simultaneously
for quality assurance, and the access cost must also be taken into account for system performance.

In this paper, we consider QoS requirement, workload capacity restriction and access cost on replica
placement problems. We believe that all the key issuers, including storage cost, quality of service, server
capacity constraint, access costs, and update costs should be consider. Our proposed algorithms consider
all these key issues, and is very simple and easy to adapt to variant environments. Experiment results
indicate that Greedy-Remove and Greedy-Add can find near-optimal solutions in all parameter
combinations.
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一、參加會議經過

This a report about attending the 7th IEEE/ACM International Conference on Grid Computing,
Barcelona, Spain, September 28th-29th 2006. This conference is probably the only grid computing
conference sponsored by both ACM and IEEE. It is an annual international meeting that brings together
a community of researchers, developers, practitioners, and users involved with Grid technology. This year the
acceptance rate is 18%.

I presented my paper in session 3B Data Resource Allocation during the first day. The title of my paper is“A
QoS-Aware HeuristicAlgorithm for Replica Placement”. This is a joint work with Dr. Jan-Jan Wu from the
institute of Information Science, Academia Sinica, and my student Hsing-Kai.Wang from National Taiwan
University. Several interesting questions were raised after my talk and I think future extension is possible.

二、與會心得

One of the most impressive keynote speech was delivered by Dr. Malcom Atkinson, who described the current
status of grid computing environment in U.K. The current status of e-Science in U.K. is also covered in his talk.
I personally feel that Europeans have put much more resources in grid computing than Americans do. I also
believe that this is money well spent, since the performance index of European e-science is measured in the
number of Nobel’s prizes and the number of articles in Science and Nature. Grid computing provides a virtual
platform so that researchers in different disciplines can work seamlessly together. I think this is the most
important goal in grid computing.


