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中文摘要 
 

本計畫研究如何以簡潔的方式呈現一張圖形，獲得目前四連通平面圖的

可視性呈現中，高度最佳的表示法。 

 
中文關鍵字 
演算法，平面圖，簡潔呈現，可視性呈現 

 
 
英文摘要 
We investigate how to draw a four-connected planar graph using visibility 
representation. We obtain a drawing algorithm whose height is currently the 
best and achives the optimum. 
 
 
英文關鍵字 
algorithms, planar graphs, compact drawing, visibility representation. 
 
 
研究成果自評 
感謝國科會的經費支持，讓本計畫可以順利的進行，目前所獲得的研究

成果，與當初當初計畫書當中所規劃的略有差異，原本希望利用

separator-based 的方法，在簡潔呈現上面獲得最佳的成果，不過後來發

現可以使用新的工具，獲得本報告當中的結果，算是意外的驚喜。從報

告的正文中，可以看到這個問題已經經過非常長時間的競爭，我們很幸

運地能夠在激烈的競爭中得到最好的結果，覺得非常榮幸！ 
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1 introduction

A visibility representation (VR for short) of a plane graph G is that the vertices of G are represented
by non-overlapping horizontal line segments and the vertex segment must be visible vertically to
each other for any two vertices that are adjacent in G. We summarize previous results as follows.

In this paper, we show that every 4 connected plane triangulation with n vertices has a VR with
height at mostn

2 +4 , which is obtainable in O(n) time. The remainder of the paper is organized as
follows. Section 2 gives the preliminaries. Section 3 describes and analyzes our algorithm. Section
4 discusses the tightness of our algorithm.

2 preliminaries

Let G = (V, E) be a 2 connected plane graph and (s, t) an external edge of G. An st numbering
of G is a one-to-one mapping ξ : V −→ {1, 2, . . . , n}, such that ξ(s) = 1, ξ(t) = n, and each vertex
v 6= s, t has two neighbors u, w with ξ(u) < ξ(v) < ξ(w), where u is called a smaller neighbor
of v and w is called a bigger neighbor of v. Given an st numbering ξ of G, we can orient G by
directing each edge in E from its lower numbered end vertex to its higher numbered end vertex.
The resulting orientation is called the orientation derived from ξ which is an st-orientation of G.
All directed path in G start with ξ(s) = 1, which is called source. . All directed path in G end
with ξ(t) = n, which is called sink. We denote the words ”counterclockwise” and ”clockwise” as
ccw and cw.

G is a plane triangulation with three exterior vertices v1, v2, vn in ccw order. A realizer R of
G is a partition of the interior edges of G into three sets T1, T2, Tn. The edges in T1, T2, Tn are
directed edges such that the following statements hold:

1. For each i ∈ {1, 2, n}, the interior edges incident to vi are in Ti and directed toward vi.

2. For each interior vertex v of G, v has only one edge leaving v in each of T1, T2, Tn. The ccw
order of the edges incident to v is: leaving in T1, entering in Tn, leaving in T2, entering in T1,
leaving in Tn and entering in T2. Each entering block could be empty.
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An ordered list O consisting of elements a1, a2, . . . , ak is written as O = 〈a1, a2, . . . , ak〉. The
reverse of an ordered list O is 〈ak, . . . , a2, a1〉, which is denoted by Or.

G is a 4-connected plane triangulation with three exterior vertices VN , VW , VE in ccw order. We
delete the edge (VW , VE), and G has a new exterior vertex VS . This graph is called G′. Let G′ be a
plane graph with four vertices on its exterior face. A graph satisfying the following two conditions
is a proper triangulated plane (PTP for short)[5]. Every interior face of G′ is a triangle and the
exterior face of G′ is a quadrangle [6]; G’ has no separating triangles.

Fact 1 (see [5, 6]) Let G be a 2-connected plane graph with an st-orientation O. VR of G can be
obtained from O and the height of the VR equals the length of the longest directed path in O, which
can be obtainable in linear time.

Fact 2 (Theorem 3 of Zhang and He [11]) Let G = (V,E) be a plane triangulation with n
vertices. Let v1, v2, vn be three external vertices in counterclockwise order. Let R = {T1, T2, Tn} be
a realizer of G. If there is a path in any of Ti, i = 1, 2, n with length at least k, then G has an st
orientation O, constructible in linear time with length(O)≤ n− k + O(1).

Zhang and He [11] did not write ub this form. They proved that if there is a path in any of
Ti, i = 1, 2, n with length at least n

3 , then G has an st-orientation O with length(O) ≤ 2n
3 + O(1).

By the proof Zhang and He [11], we can rewrite their theorem in this form.

G’ is a PTP. A regular edge labeling (REL for short), Zhang and He defined in [9], of G’ is a
partition of the interior edges into two subsets S1, S2 of directed edges and the follows hold:

1. For each interior vertex v, the edges incident to v in ccw order around v as follows: a set of
edges in S1 leaving v; a set of edges in S2 entering v; a set of edges in S1 entering v; a set of
edges in S2 leaving v. All sets must be nonempty.

2. All interior edges incident to VN are in S1 and the direction of edges is entering VN . All interior
edges incident to VW are in S2 and the direction of edges is leaving VW . All interior edges
incident to VS are in S1 and the direction of edges is leaving VS . All interior edges incident
to VE are in S2 and the direction of edges is entering VE . All blocks must be nonempty.

G1 is the directed subgraph of G’ induced by S1 and four exterior edges directed as VS −→
VW , VW −→ VN , VS −→ VE , VE −→ VN . Then G1 is an st-plane graph with source VS and
sink VN . G2 is the directed subgraph of G’ induced by S2 and four exterior edges directed as
VW −→ VS , VS −→ VE , VW −→ VN , VN −→ V E. Then G2 is an st-plane graph with source VW and
sink VE . Then we call G1 the S-N net and G2 the W-E net of G’ derived from the REL (S1, S2).G′

has a REL if and the only if G′ is a PTP. [9]

Property 1 G′ is a PTP. G′ has an REL separating G′ into two subgraphs G1 and G2. We need
a property of an st-numbering Op for G′ in our algorithm. For all directed path p in G′ with an
st-orientation Op, p do not pass all paths in G1 twice.

3 our algorithm

With fact 1, we konw that we can find the height of VR of G by the way to find the longest path
of an st-orientation of G. Our algorithm is as follows. G′ is a PTP. First, we find an st-numbering
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Op of G′ with property 1. Then, we compute the length of the longest path PL of G′ with st-
orientation O. If the length of PL is more than n

2 , we create a new st -numbering O to pass the
vertices in PL by only two vertices. If the length of PL is no more than n

2 , Op is the st-numbering
we need.

Let G1 has k1 faces and G2 has k2 faces. For each edge in G1 (G2, resp.), left(e) denotes the
face on the left of edge e in G1(G2, resp.). Let right(e) denote the face on the right of edge e. We
give each face of G1 (G2, resp.) a number. The left most face ,with VS at the bottom and VN on
the top, is numbered 0. For each edge in G1 (G2, resp.), the left(e) is smaller than right(e). By
the way, the right most face is k1 in G1 and the right most face is k2 in G2 with VS at the bottom
and VN on the top. We define the i-th S-N separation path SNi to be the directed path,which the
faces numbered by 0, . . . , i− 1 are on its left and other faces are on its right, in G1. And we define
the ith W-E separation path WEi to be the directed path, which the faces numbered by 0, . . . , i−1
are on its left and other faces are on its right, in G2.

Fact 3 (Zhang and He [9]) Let G′ be a PTP. Let (S1, S2) be an REL of G′. Let G1 be the S-N
net and let G2 be the W-E net derived from (S1, S2). Then the following statements hold:

1. For each vertex v 6= VN , VS in G1, select an outgoing edge in G1. For VS, select an outgoing
edge not leading to VW or VE. Then the set T1 of the selected edges is a tree of G.

2. For each vertex v 6= VW , VE in G2, select an outgoing edge in G2. For VW , select the edge
(VW , VE). Then the set T2 of the selected edges is a tree of G.

Lemma 1 G′ is a PTP with n vertices in G′. G′ has four exterior nodes VN , VW , VS , VE in ccw
order. If there is a path PL with property 1 and there are k vertices in PL, G′ has an st-Orientation
O and the longest path with O is at most n− k + 4.

proof.
This lemma is similar to Fact 2. The proof is modified from the lemma of 4[11]. First, we separate
G′ into three parts. The area at the left of PL is part A. Path PL is part B. The area at the right
of PL is part C. Let the REL of G′ that separates G′ into G1 and G2. We reverse the direction of
all edges in G1 and called the reversed graph G3. We select edges in G1 by Fact 2 to build a tree,
which is called Tn, with root VN .Te is a tree with root VE in G2 by t Fact 2. And we select Ts from
G3 with root VS , by Fact 2. For all K ∈ {A,C}, TiK is the subtree of Ti at area K.

VN is numbered 1 in O. VS is numbered n in O. VN is in area A. For all vertices in area A, Oa

is the cw postordering for TNA with VN being the root of TNA. For the vertices in B, they are all in
path PL besides VW , VS , VE and VN . Then we travel the path from VW to the node before VN ,or
the node before VS ,or the node before VE by inserting the first vertex to the very end, and the
second vertex to the very front. Recursively, insert the remaining vertices into the next available
end or next available front of the ordered list until all nodes in PL, besides VW , VS , VE and VN , has
been numbered. Denote this order by Ob. VS is in area C. All of the vertices in area C, let Oc be
the ccw postordering from TSC . The numbering O in G′ is (Oa)r Ob Oc. (see Fig1., Fig2. and Fig.3 )

We prove that O is an st-orientation. VN is the first vertex in O, and VS is the last vertex in O.
For any vertex v 6= VN in A, the parent of v in TNA precedes v in O. The parent u in Te precedes
v in the cw postordering in TNA. If u in TNA, u precedes v in Oa. Thus, u succeeds v in (Oa)

r.
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And u succeeds v in O, too. On the other hand, if u is not in TNA , then u is either in area B or
area C. Whether u is in area B or area C, u succeeds v in O. For any vertex v in B, the parent
of v is uN in Tn at area A. And uN precedes v in O. The parent is uS in Ts at area C. And uS

succeeds v in O. For any vertex v 6= VE and VS in C, the parent of v in TSC succeeds v in O. The
parent u in Te precedes v in the ccw postordering in Ts. If u in TSC , u precedes v in Oc. Thus, u
precedes v in Oc, and hence in O. On the other hand, if u is not in TSC , u is in area A or area B.
Whether u is in area B or area C, u precedes v in O. VW precedes VN , and VE succeeds VN . VW

precedes VS , and VE succeeds VS . O is an st-orientation for G′. In O, the increasing path can only
pass area B at most two nodes. There are k − 2 nodes in area B. Thus, the length of the longest
path in G′ with O is at most n− k + 4.

Lemma 2 The time complexity of our algorithm is O(n).

proof.

We construct the numbering Op of the nodes in G′ with property 1. First, we number the
nodes in WEd k2+1

2
e path, we number from VW to the node before VE by 1, 2, . . . , j − 1, if there

are j nodes in WEd k2+1

2
e path. We number the paths on the area at left of WEd k2+1

2
e path

and separate by WEd k2+1

2
e path, first. We number the unnumbered nodes by path in the order

SN2, SN3, . . . , SNk1−1 and with increasing order from the node near WEd k2+1

2
e path to the node

near VN in G1. Then we number the other unnumbered nodes in the order SN2, SN3, . . . , SNk1−1

and with increasing order from the node near WEd k2+1

2
e path to the node near VS in G1. At last,

we number VS to be (n− 2), VN to be (n− 1), and VE to be n. We prove Op is an st-orientation
as follow.

For all nodes v in WEd k2+1

2
e path , the nodes at the right or left of WEd k2+1

2
e path succeed v

in Op. For all nodes v 6= VW in WEd k2+1

2
e path, the node directing to v precedes v in Op. For all

other nodes v 6= VN , VW , VS , and VE , the node connecting v near WEd k2+1

2
e path in G1 precedes v.

If v connects WEd k2+1

2
e path, the node in WEd k2+1

2
e path precedes v. For the other nodes v at the

area at left of WEd k2+1

2
e path and v 6= VN , the node which v directing to in G1 succeeds v in Op.

For the other nodes v 6= VS , and at the area at right of WEd k2+1

2
e path, the node directing to v in

G1 succeeds v in Op. And VW precedes VN and VS . VE succeeds VN and VS . VW is 1, and VE is
n. Thus, Op is an st-orientation.

This numbering Op can be finished in linear time. The orientation derived from Op of G′ is a
directed acyclic graph. Finding the longest path in directed acyclic graph takes linear time. If the
length of he longest path is more thann

2 , we create a new st-numbering O. And we take linear time
to create a new st-numbering. We can find the height of VR ≤ n

2 in linear time by our algorithm.

Theorem 1 Let G = (V, E) be a 4-connected plane triangulation with n vertices. There exists a
VR of G with height no more than n

2 + 4, which is obtainable in O(n) time.

proof.
In algorithm 1, if the length of PL is more than n

2 , we create a new st-numbering O to pass the
vertices in PL by only two vertices. Thus, the length of the longest path with st-orientation O in G′

is no more than n
2 +4 by Lemma 1. If the length of PL is no more than n

2 , Op is the st-orientation
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we want to make the height of VR no more than n
2 by Fact 1. Algorithm 1 can be done in O(n)

time by Lemma 2. Thus, the theorem is proved.

4 nearly tightness

Zhang, and X. He [10] and Lin, Lu, and Sun [4] used nested triangles to find the bound of the
height and width of VR in 2-connected plane triangulation. We use similar techniques to find the
bound of the height of VR in 4-connected plane triangulation. Let Gk be k nested 4-connected
triangulation with n = 4k. We want to show that VR of Gk requires a height of n

2 = 2k.

1. When k = 1, the height of VR of G1 is no less than 2.

2. Assume that it is true when k = t. It means that the height of VR of Gt no less than 2t.

3. Then we consider the case of k = t + 1. Each time G has one more nested level, the height of
VR increases by two units. When k = t + 1, the height of VR is 2t + 2 = 2(t + 1). (See Fig
4.)

Thus, the VR for 4-connected plane triangulation requires a size of height tat least n
2 .
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