行政院國家科學委員會專題研究計畫 期中進度報告

平面圖之「簡潔編碼」與「簡潔呈現」演算法（2／3）期中進度報告（精簡版）

計 畫 類 別 ：個別型
計 畫 編 號 ：NSC 95－2221－E－002－077－
執行期間：95年08月01日至96年07月31日
執 行 單 位 ：國立臺灣大學資訊工程學系暨研究所

計畫主持人：呂學一

處 理 方 式 ：本計畫可公開查詢

中 華 民 國 96年12月16日

行政院國家科學委員會補助專題研究計畫

平面圖之「簡潔編碼」與「簡潔呈現」演算法（2／3）

計畫類別：\square 個別型計畫 \square 整合型計畫
計畫編號：NSC 95－2221－E－002－077
執行期間：2006年8月1日至2007年7月31日

計畫主持人：呂學一
共同主持人：
計畫參與人員：

成果報告類型（依經費核定清單規定繳交）：\square 精簡報告 \square 完整報告本成果報告包括以下應繳交之附件：
\square 赴國外出差或研習心得報告一份 \square 赴大陸地區出差或研習心得報告一份
\square 出席國際學術會議心得報告及發表之論文各一份
\square 國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫，提升產業技術及人才培育研究計畫，列管計畫及下列情形者外，得立即公開查詢
\square 涉及專利或其他智慧財產權，\square —年 \square 二年後可公開查詢

執行單位：國立台灣大學資訊工程學系

中華民國 96 年 12 月 16 日

中文摘要

本計畫研究如何以簡潔的方式呈現一張圖形，獲得目前四連通平面圖的可視性呈現中，高度最佳的表示法。

中文關鍵字

演算法，平面圖，簡潔呈現，可視性呈現

英文摘要

We investigate how to draw a four－connected planar graph using visibility representation．We obtain a drawing algorithm whose height is currently the best and achives the optimum．

英文關鍵字

algorithms，planar graphs，compact drawing，visibility representation．

研究成果自評

感謝國科會的經費支持，讓本計畫可以順利的進行，目前所獲得的研究成果，與當初當初計畫書當中所規劃的略有差異，原本希望利用 separator－based 的方法，在簡潔呈現上面獲得最佳的成果，不過後來發現可以使用新的工具，獲得本報告當中的結果，算是意外的驚喜。從報告的正文中，可以看到這個問題已經經過非常長時間的競爭，我們很幸運地能夠在激烈的競爭中得到最好的結果，覺得非常榮幸！

Reference	Plane Graph G	4-connected Plane Graph G
$[5][6]$	Width of VR $\leq 2 n-5$	Height of VR $\leq n-1$
$[2]$	Width of VR $\leq\left\lfloor\frac{3 n-6}{2}\right\rfloor$	
$[4]$	Width of VR $\leq\left\lfloor\frac{22 n-24}{15}\right\rfloor$	
$[3]$		Width of VR $\leq n-1$
$[7]$	Height of VR $\leq\left\lceil\frac{15 n}{16}\right\rceil$	
$[8]$	Width of VR $\leq\left\lfloor\frac{13 n-24}{9}\right\rfloor$	Height of VR $\leq\left\lceil\frac{3 n}{4}\right\rceil$
$[1]$	Width of VR $\leq \frac{3 n}{4}+2\lceil\sqrt{n}\rceil$, Height of VR $\leq \frac{2 n}{3}+2\left\lceil\sqrt{\frac{n}{2}}\right\rceil$	
$[11]$	Height of VR $\leq \frac{2 n}{3}+O(n)$	
ours		Height of VR $\leq\left\lceil\frac{n}{2}\right\rceil$

1 introduction

A visibility representation (VR for short) of a plane graph G is that the vertices of G are represented by non-overlapping horizontal line segments and the vertex segment must be visible vertically to each other for any two vertices that are adjacent in G. We summarize previous results as follows.

In this paper, we show that every 4 connected plane triangulation with n vertices has a VR with height at most $\frac{n}{2}+4$, which is obtainable in $\mathrm{O}(\mathrm{n})$ time. The remainder of the paper is organized as follows. Section 2 gives the preliminaries. Section 3 describes and analyzes our algorithm. Section 4 discusses the tightness of our algorithm.

2 preliminaries

Let $G=(V, E)$ be a 2 connected plane graph and (s, t) an external edge of G . An st numbering of G is a one-to-one mapping $\xi: \mathrm{V} \longrightarrow\{1,2, \ldots, n\}$, such that $\xi(s)=1, \xi(t)=n$, and each vertex $v \neq s, t$ has two neighbors u , w with $\xi(u)<\xi(v)<\xi(w)$, where u is called a smaller neighbor of v and w is called a bigger neighbor of v . Given an st numbering ξ of G , we can orient G by directing each edge in E from its lower numbered end vertex to its higher numbered end vertex. The resulting orientation is called the orientation derived from ξ which is an st-orientation of G. All directed path in G start with $\xi(s)=1$, which is called source. . All directed path in G end with $\xi(t)=n$, which is called sink. We denote the words "counterclockwise" and "clockwise" as ccw and cw.
G is a plane triangulation with three exterior vertices v_{1}, v_{2}, v_{n} in ccw order. A realizer R of G is a partition of the interior edges of G into three sets T_{1}, T_{2}, T_{n}. The edges in T_{1}, T_{2}, T_{n} are directed edges such that the following statements hold:

1. For each $i \in\{1,2, n\}$, the interior edges incident to v_{i} are in T_{i} and directed toward v_{i}.
2. For each interior vertex v of G, v has only one edge leaving v in each of T_{1}, T_{2}, T_{n}. The ccw order of the edges incident to v is: leaving in T_{1}, entering in T_{n}, leaving in T_{2}, entering in T_{1}, leaving in T_{n} and entering in T_{2}. Each entering block could be empty.

An ordered list O consisting of elements $a_{1}, a_{2}, \ldots, a_{k}$ is written as $O=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle$. The reverse of an ordered list O is $\left\langle a_{k}, \ldots, a_{2}, a_{1}\right\rangle$, which is denoted by O^{r}.
G is a 4-connected plane triangulation with three exterior vertices V_{N}, V_{W}, V_{E} in ccw order. We delete the edge (V_{W}, V_{E}), and G has a new exterior vertex V_{S}. This graph is called G^{\prime}. Let G^{\prime} be a plane graph with four vertices on its exterior face. A graph satisfying the following two conditions is a proper triangulated plane (PTP for short)[5]. Every interior face of G^{\prime} is a triangle and the exterior face of G^{\prime} is a quadrangle [6]; G^{\prime} has no separating triangles.

Fact 1 (see [5, 6]) Let G be a 2-connected plane graph with an st-orientation O. VR of G can be obtained from O and the height of the VR equals the length of the longest directed path in O, which can be obtainable in linear time.

Fact 2 (Theorem 3 of Zhang and He [11]) Let $G=(V, E)$ be a plane triangulation with n vertices. Let v_{1}, v_{2}, v_{n} be three external vertices in counterclockwise order. Let $R=\left\{T_{1}, T_{2}, T_{n}\right\}$ be a realizer of G. If there is a path in any of $T_{i}, i=1,2, n$ with length at least k, then G has an st orientation O, constructible in linear time with length $(O) \leq n-k+O(1)$.

Zhang and He [11] did not write ub this form. They proved that if there is a path in any of $T_{i}, i=1,2, n$ with length at least $\frac{n}{3}$, then G has an st-orientation O with length $(O) \leq \frac{2 n}{3}+O(1)$. By the proof Zhang and He [11], we can rewrite their theorem in this form.
G^{\prime} is a PTP. A regular edge labeling (REL for short), Zhang and He defined in [9], of G' is a partition of the interior edges into two subsets S_{1}, S_{2} of directed edges and the follows hold:

1. For each interior vertex v , the edges incident to v in ccw order around v as follows: a set of edges in S_{1} leaving v; a set of edges in S_{2} entering v; a set of edges in S_{1} entering v; a set of edges in S_{2} leaving v. All sets must be nonempty.
2. All interior edges incident to V_{N} are in S_{1} and the direction of edges is entering V_{N}. All interior edges incident to V_{W} are in S 2 and the direction of edges is leaving V_{W}. All interior edges incident to V_{S} are in S 1 and the direction of edges is leaving V_{S}. All interior edges incident to V_{E} are in S_{2} and the direction of edges is entering V_{E}. All blocks must be nonempty.
G_{1} is the directed subgraph of G' induced by S_{1} and four exterior edges directed as $V_{S} \longrightarrow$ $V_{W}, V_{W} \longrightarrow V_{N}, V_{S} \longrightarrow V_{E}, V_{E} \longrightarrow V_{N}$. Then G_{1} is an st-plane graph with source V_{S} and sink $V_{N} . G_{2}$ is the directed subgraph of G' induced by S_{2} and four exterior edges directed as $V_{W} \longrightarrow V_{S}, V_{S} \longrightarrow V_{E}, V_{W} \longrightarrow V_{N}, V_{N} \longrightarrow V E$. Then G_{2} is an st-plane graph with source V_{W} and sink V_{E}. Then we call G_{1} the S-N net and G_{2} the W-E net of G' derived from the REL $\left(S_{1}, S_{2}\right)$. G^{\prime} has a REL if and the only if G^{\prime} is a PTP. [9]

Property $1 G^{\prime}$ is a PTP. G^{\prime} has an REL separating G^{\prime} into two subgraphs G_{1} and G_{2}. We need a property of an st-numbering O_{p} for G^{\prime} in our algorithm. For all directed path p in G^{\prime} with an st-orientation $O p, p$ do not pass all paths in $G 1$ twice.

3 our algorithm

With fact 1 , we konw that we can find the height of VR of G by the way to find the longest path of an $s t$-orientation of G. Our algorithm is as follows. G^{\prime} is a PTP. First, we find an st-numbering
O_{p} of G^{\prime} with property 1 . Then, we compute the length of the longest path $P L$ of G^{\prime} with storientation O. If the length of $P L$ is more than $\frac{n}{2}$, we create a new st -numbering O to pass the vertices in $P L$ by only two vertices. If the length of $P L$ is no more than $\frac{n}{2}, O p$ is the $s t$-numbering we need.

Let G_{1} has k_{1} faces and G_{2} has k_{2} faces. For each edge in $G_{1}\left(G_{2}\right.$, resp.), left (e) denotes the face on the left of edge e in $G_{1}\left(G_{2}\right.$, resp.). Let $\operatorname{right}(e)$ denote the face on the right of edge e. We give each face of $G_{1}\left(G_{2}\right.$, resp.) a number. The left most face, with V_{S} at the bottom and V_{N} on the top, is numbered 0 . For each edge in $G_{1}\left(G_{2}\right.$, resp.), the left (e) is smaller than $\operatorname{right}(e)$. By the way, the right most face is k_{1} in G_{1} and the right most face is k_{2} in G_{2} with V_{S} at the bottom and V_{N} on the top. We define the i-th S-N separation path $S N_{i}$ to be the directed path, which the faces numbered by $0, \ldots, i-1$ are on its left and other faces are on its right, in G_{1}. And we define the i th W -E separation path $W E_{i}$ to be the directed path, which the faces numbered by $0, \ldots, i-1$ are on its left and other faces are on its right, in G_{2}.

Fact 3 (Zhang and He [9]) Let G^{\prime} be a PTP. Let $\left(S_{1}, S_{2}\right)$ be an REL of G^{\prime}. Let G_{1} be the $S-N$ net and let G_{2} be the W-E net derived from $\left(S_{1}, S_{2}\right)$. Then the following statements hold:

1. For each vertex $v \neq V_{N}, V_{S}$ in G_{1}, select an outgoing edge in G_{1}. For V_{S}, select an outgoing edge not leading to V_{W} or V_{E}. Then the set T_{1} of the selected edges is a tree of G.
2. For each vertex $v \neq V_{W}, V_{E}$ in G_{2}, select an outgoing edge in G_{2}. For V_{W}, select the edge $\left(V_{W}, V_{E}\right)$. Then the set T_{2} of the selected edges is a tree of G.

Lemma $1 G^{\prime}$ is a PTP with n vertices in $G^{\prime} . G^{\prime}$ has four exterior nodes $V_{N}, V_{W}, V_{S}, V_{E}$ in ccw order. If there is a path PL with property 1 and there are k vertices in $P L, G^{\prime}$ has an st-Orientation O and the longest path with O is at most $n-k+4$.
proof.
This lemma is similar to Fact 2. The proof is modified from the lemma of $4[11]$. First, we separate G^{\prime} into three parts. The area at the left of $P L$ is part A. Path $P L$ is part B. The area at the right of $P L$ is part C. Let the REL of G^{\prime} that separates G^{\prime} into G_{1} and G_{2}. We reverse the direction of all edges in G_{1} and called the reversed graph G_{3}. We select edges in G_{1} by Fact 2 to build a tree, which is called T_{n}, with root $V_{N} \cdot T_{e}$ is a tree with root V_{E} in G_{2} by t Fact 2 . And we select T_{s} from G_{3} with root V_{S}, by Fact 2 . For all $K \in\{A, C\}, T_{i K}$ is the subtree of T_{i} at area K.
V_{N} is numbered 1 in $O . V_{S}$ is numbered n in $O . V_{N}$ is in area A. For all vertices in area A, O_{a} is the cw postordering for $T_{N A}$ with V_{N} being the root of $T_{N A}$. For the vertices in B, they are all in path $P L$ besides V_{W}, V_{S}, V_{E} and V_{N}. Then we travel the path from V_{W} to the node before V_{N},or the node before V_{S},or the node before V_{E} by inserting the first vertex to the very end, and the second vertex to the very front. Recursively, insert the remaining vertices into the next available end or next available front of the ordered list until all nodes in $P L$, besides V_{W}, V_{S}, V_{E} and V_{N}, has been numbered. Denote this order by O_{b}. V_{S} is in area C. All of the vertices in area C, let O_{c} be the ccw postordering from $T_{S C}$. The numbering O in G^{\prime} is $\left(O_{a}\right)^{r} O_{b} O_{c}$. (see Fig1., Fig2. and Fig.3)

We prove that O is an $s t$-orientation. V_{N} is the first vertex in O, and V_{S} is the last vertex in O. For any vertex $v \neq V_{N}$ in A, the parent of v in $T_{N A}$ precedes v in O. The parent u in T_{e} precedes v in the cw postordering in $T_{N A}$. If u in $T_{N A}, u$ precedes v in O_{a}. Thus, u succeeds v in $\left(O_{a}\right)^{r}$.

And u succeeds v in O, too. On the other hand, if u is not in $T_{N A}$, then u is either in area B or area C. Whether u is in area B or area C, u succeeds v in O. For any vertex v in B, the parent of v is u_{N} in T_{n} at area A. And u_{N} precedes v in O. The parent is u_{S} in T_{s} at area C. And u_{S} succeeds v in O. For any vertex $v \neq V_{E}$ and V_{S} in C, the parent of v in $T_{S C}$ succeeds v in O. The parent u in T_{e} precedes v in the ccw postordering in T_{s}. If u in $T_{S C}, u$ precedes v in O_{c}. Thus, u precedes v in O_{c}, and hence in O. On the other hand, if u is not in $T_{S C}, u$ is in area A or area B. Whether u is in area B or area C, u precedes v in $O . V_{W}$ precedes V_{N}, and V_{E} succeeds V_{N}. V_{W} precedes V_{S}, and V_{E} succeeds $V_{S} . O$ is an $s t$-orientation for G^{\prime}. In O, the increasing path can only pass area B at most two nodes. There are $k-2$ nodes in area B. Thus, the length of the longest path in G^{\prime} with O is at most $n-k+4$.

Lemma 2 The time complexity of our algorithm is $O(n)$.

proof.

We construct the numbering O_{p} of the nodes in G^{\prime} with property 1 . First, we number the nodes in $W E_{\left\lceil\frac{k_{2}+1}{2}\right\rceil}$ path, we number from V_{W} to the node before V_{E} by $1,2, \ldots, j-1$, if there are j nodes in $W E_{\left\lceil\frac{k_{2}+1}{2}\right\rceil}$ path. We number the paths on the area at left of $W E_{\left\lceil\frac{k_{2}+1}{2}\right\rceil}$ path and separate by $W E_{\left[\frac{k_{2}+1}{2}\right\rceil}$ path, first. We number the unnumbered nodes by path in the order $S N_{2}, S N_{3}, \ldots, S N_{k_{1}-1}$ and with increasing order from the node near $W E_{\left\lceil\frac{k_{2}+1}{2}\right\rceil}$ path to the node near V_{N} in G_{1}. Then we number the other unnumbered nodes in the order $S^{2} N_{2}, S N_{3}, \ldots, S N_{k_{1}-1}$ and with increasing order from the node near $W E_{\left\lceil\frac{k_{2}+1}{2}\right\rceil}$ path to the node near V_{S} in G_{1}. At last, we number V_{S} to be $(n-2), V_{N}$ to be $(n-1)$, and V_{E} to be n. We prove O_{p} is an st-orientation as follow.

For all nodes v in $W E_{\left\lceil\frac{k_{2}+1}{2}\right\rceil}$ path, the nodes at the right or left of $W E_{\left\lceil\frac{k_{2}+1}{2}\right\rceil}$ path succeed v in O_{p}. For all nodes $v \neq V_{W}$ in $W E_{\left\lceil\frac{k_{2}+1}{2}\right\rceil}$ path, the node directing to v precedes v in O_{p}. For all other nodes $v \neq V_{N}, V_{W}, V_{S}$, and V_{E}, the node connecting v near $W E_{\left\lceil\frac{k_{2}+1}{2}\right\rceil}$ path in G_{1} precedes v. If v connects $W E_{\left\lceil\frac{k_{2}+1}{2}\right\rceil}$ path, the node in $W E_{\left\lceil\frac{k_{2}+1}{2}\right\rceil}$ path precedes v. For the other nodes v at the area at left of $W E_{\left\lceil\frac{k_{2}+1}{2}\right\rceil}^{2}$ path and $v \neq V_{N}$, the node which v directing to in G_{1} succeeds v in O_{p}. For the other nodes $\stackrel{v}{2} \neq V_{S}$, and at the area at right of $W E_{\left[\frac{k_{2}+1}{2}\right\rceil}$ path, the node directing to v in G_{1} succeeds v in O_{p}. And V_{W} precedes V_{N} and $V_{S} . V_{E}$ succeeds V_{N} and $V_{S} . V_{W}$ is 1 , and V_{E} is n. Thus, O_{p} is an $s t$-orientation.

This numbering $O p$ can be finished in linear time. The orientation derived from O_{p} of G^{\prime} is a directed acyclic graph. Finding the longest path in directed acyclic graph takes linear time. If the length of he longest path is more than $\frac{n}{2}$, we create a new $s t$-numbering O. And we take linear time to create a new $s t$-numbering. We can find the height of $\mathrm{VR} \leq \frac{n}{2}$ in linear time by our algorithm.

Theorem 1 Let $G=(V, E)$ be a 4-connected plane triangulation with n vertices. There exists a $V R$ of G with height no more than $\frac{n}{2}+4$, which is obtainable in $O(n)$ time.

proof.

In algorithm 1, if the length of $P L$ is more than $\frac{n}{2}$, we create a new $s t$-numbering O to pass the vertices in $P L$ by only two vertices. Thus, the length of the longest path with st-orientation O in G^{\prime} is no more than $\frac{n}{2}+4$ by Lemma 1. If the length of $P L$ is no more than $\frac{n}{2}, O p$ is the $s t$-orientation
we want to make the height of VR no more than $\frac{n}{2}$ by Fact 1. Algorithm 1 can be done in $O(n)$ time by Lemma 2. Thus, the theorem is proved.

4 nearly tightness

Zhang, and X. He [10] and Lin, Lu, and Sun [4] used nested triangles to find the bound of the height and width of VR in 2-connected plane triangulation. We use similar techniques to find the bound of the height of VR in 4-connected plane triangulation. Let G_{k} be k nested 4 -connected triangulation with $n=4 k$. We want to show that VR of G_{k} requires a height of $\frac{n}{2}=2 k$.

1 . When $k=1$, the height of VR of G_{1} is no less than 2 .
2. Assume that it is true when $k=t$. It means that the height of VR of G_{t} no less than $2 t$.
3. Then we consider the case of $k=t+1$. Each time G has one more nested level, the height of VR increases by two units. When $k=t+1$, the height of VR is $2 t+2=2(t+1)$. (See Fig 4.)

Thus, the VR for 4 -connected plane triangulation requires a size of height tat least $\frac{n}{2}$.

References

[1] X. He and H. Zhang. Nearly optimal visibility representations of plane graph.
[2] G. Kant. A more compact visibility representation. International Journal of Computational Geometry and Applications, 7:197-210, 1997.
[3] G. Kant and X. He. Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoretical Computer Science, 172:175-193, 1997.
[4] Ching-Chi Lin, Hsueh-I Lu, and I-Fan Sun. Improved compact visibility representation of planar graph via schnyder's realizer. SIAM Journal on Discrete Mathematics, 18(1):19-29, 2004.
[5] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Computational Geometry, 1:343-353, 1986.
[6] R. Tamassia and I. G. Tollis. An unified approach to visibility representations of planar graphs. Discrete Computational Geometry, 1:321-341, 1986.
[7] H. Zhang and X. He. Compact visibility representation and straight-line grid embedding of plane graph. In Proceedings Workshop on Algorithms and Data Structures, volume Lecture Notes in Computer Science 2748, pages 407-418, 2003.
[8] H. Zhang and X. He. On visibility representation of plane graph. In Proceedings International Symposium on Theoretical Aspects of Computer Science, volume Lecture Notes in Computer Science 2996, pages 477-488, 2004.
[9] H. Zhang and X. He. Canonical ordering tree and their applications in graph drawing. Discrete Computational Geometry, 33:321-344, 2005.
[10] H. Zhang and X. He. Visibility representation of plane graphs via canonical ordering tree. Information Processing Letters, 96:41-48, 2005.
[11] H. Zhang and X. He. Optimal st-orientations for plane triangulations. The Third International Conference on Algorithmic Aspects in Information and Management LNCS, 4508:396-305, 2007.

