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We investigate how to draw a four-connected planar graph using visibility

representation. We obtain a drawing algorithm whose height is currently the
best and achives the optimum.
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Reference | Plane Graph G 4-connected Plane Graph G

[5][6] Width of VR < 2n —5 Height of VR <n —1
2] Width of VR< 226 |

4] Width of VR< | 22024 |

3] Width of VR <n —1
[7] Height of VR <[22
8 Width of VR< |13n=24 Height of VR < [32

9 !

1] Width of VR < 32 4 2[\/n], Height of VR < 2 4 2(\/@

[11] Height of VR < %n +O(n)

ours Height of VR < [§]

1 introduction

A visibility representation (VR for short) of a plane graph G is that the vertices of G are represented
by non-overlapping horizontal line segments and the vertex segment must be visible vertically to
each other for any two vertices that are adjacent in G. We summarize previous results as follows.

In this paper, we show that every 4 connected plane triangulation with n vertices has a VR with
height at most# +4 , which is obtainable in O(n) time. The remainder of the paper is organized as
follows. Section 2 gives the preliminaries. Section 3 describes and analyzes our algorithm. Section
4 discusses the tightness of our algorithm.

2 preliminaries

Let G = (V,E) be a 2 connected plane graph and (s, t) an external edge of G. An st numbering
of G is a one-to-one mapping £ : V — {1,2,...,n}, such that {(s) = 1,£(¢) = n, and each vertex
v # s,t has two neighbors u, w with £(u) < {(v) < £(w), where u is called a smaller neighbor
of v and w is called a bigger neighbor of v. Given an st numbering £ of G, we can orient G by
directing each edge in E from its lower numbered end vertex to its higher numbered end vertex.
The resulting orientation is called the orientation derived from & which is an st-orientation of G.
All directed path in G start with &(s) = 1, which is called source. . All directed path in G end
with £(t) = n, which is called sink. We denote the words ”counterclockwise” and ”clockwise” as
ccw and cw.

G is a plane triangulation with three exterior vertices vy, vo, v, in ccw order. A realizer R of
G is a partition of the interior edges of GG into three sets T1,75,T,. The edges in T1,75,T,, are
directed edges such that the following statements hold:

1. For each i € {1,2,n}, the interior edges incident to v; are in T; and directed toward v;.

2. For each interior vertex v of G, v has only one edge leaving v in each of 11,75, T,. The ccw
order of the edges incident to v is: leaving in 77, entering in 7}, leaving in 715, entering in 717,
leaving in T;, and entering in 75. Each entering block could be empty.



An ordered list O consisting of elements a1, aq,...,a; is written as O = (ay,aq,...,a;). The
reverse of an ordered list O is (ag, ..., a2, a1), which is denoted by O".

G is a 4-connected plane triangulation with three exterior vertices Vi, Viy, Vg in ccw order. We
delete the edge (Viy, V), and G has a new exterior vertex Vg. This graph is called G'. Let G’ be a
plane graph with four vertices on its exterior face. A graph satisfying the following two conditions
is a proper triangulated plane (PTP for short)[5]. Every interior face of G’ is a triangle and the
exterior face of G’ is a quadrangle [6]; G’ has no separating triangles.

Fact 1 (see [5, 6]) Let G be a 2-connected plane graph with an st-orientation O. VR of G can be
obtained from O and the height of the VR equals the length of the longest directed path in O, which
can be obtainable in linear time.

Fact 2 (Theorem 3 of Zhang and He [11]) Let G = (V, E) be a plane triangulation with n
vertices. Let vi,v9,v, be three external vertices in counterclockwise order. Let R = {T1,T»,T,} be
a realizer of G. If there is a path in any of T;,i = 1,2,n with length at least k, then G has an st
orientation O, constructible in linear time with length(O)< n —k+ O(1).

Zhang and He [11] did not write ub this form. They proved that if there is a path in any of
T;,i = 1,2,n with length at least %, then G has an st-orientation O with length(O) < %" + O(1).
By the proof Zhang and He [11], we can rewrite their theorem in this form.

G’ is a PTP. A regular edge labeling (REL for short), Zhang and He defined in [9], of G’ is a
partition of the interior edges into two subsets 571, S2 of directed edges and the follows hold:

1. For each interior vertex v, the edges incident to v in ccw order around v as follows: a set of
edges in S leaving v; a set of edges in Sy entering v; a set of edges in Sy entering v; a set of
edges in Ss leaving v. All sets must be nonempty.

2. All interior edges incident to Vi are in S and the direction of edges is entering V. All interior
edges incident to Vi are in S2 and the direction of edges is leaving V. All interior edges
incident to Vg are in S1 and the direction of edges is leaving Vg. All interior edges incident
to Vg are in Sy and the direction of edges is entering Vg. All blocks must be nonempty.

(G1 is the directed subgraph of G’ induced by S; and four exterior edges directed as Vg —
Vw,Vw — Vn,Vg — Vg,V — Vx. Then G; is an st-plane graph with source Vg and
sink V. Gsg is the directed subgraph of G’ induced by S2 and four exterior edges directed as
Vw — Vg,Vg — Vi, Viy — VN, Vy — V E. Then (> is an st-plane graph with source Vj and
sink Vg. Then we call G; the S-N net and G2 the W-E net of G’ derived from the REL (S, S3).G’
has a REL if and the only if G’ is a PTP. [9]

Property 1 G’ is a PTP. G' has an REL separating G' into two subgraphs G1 and Go. We need
a property of an st-numbering O, for G' in our algorithm. For all directed path p in G' with an
st-orientation Op, p do not pass all paths in G1 twice.

3 our algorithm

With fact 1, we konw that we can find the height of VR of G by the way to find the longest path
of an st-orientation of G. Our algorithm is as follows. G’ is a PTP. First, we find an st-numbering



O, of G’ with property 1. Then, we compute the length of the longest path PL of G’ with st-
orientation O. If the length of PL is more than &, we create a new st -numbering O to pass the
vertices in PL by only two vertices. If the length of PL is no more than %, Op is the st-numbering
we need.

Let G has kj faces and Gy has ko faces. For each edge in Gy (Ga, resp.), left(e) denotes the
face on the left of edge e in G1(Gq, resp.). Let right(e) denote the face on the right of edge e. We
give each face of G; (Gg, resp.) a number. The left most face ,with Vg at the bottom and Vi on
the top, is numbered 0. For each edge in G; (G2, resp.), the left(e) is smaller than right(e). By
the way, the right most face is k1 in G1 and the right most face is k9 in G with Vg at the bottom
and Vi on the top. We define the i-th S-N separation path SN; to be the directed path,which the
faces numbered by 0,...,7 — 1 are on its left and other faces are on its right, in G;. And we define
the ith W-E separation path W E; to be the directed path, which the faces numbered by 0,...,7—1
are on its left and other faces are on its right, in G.

Fact 3 (Zhang and He [9]) Let G’ be a PTP. Let (S1,S52) be an REL of G'. Let Gy be the S-N
net and let Go be the W-E net derived from (S1,S2). Then the following statements hold:

1. For each vertex v # Vi, Vs in G1, select an outgoing edge in G1. For Vg, select an outgoing
edge not leading to Viy or Vg. Then the set T of the selected edges is a tree of G.

2. For each vertex v # Viy, Vi in Ga, select an outgoing edge in Go. For Vi, select the edge
(Viv, VE). Then the set Ty of the selected edges is a tree of G.

Lemma 1 G’ is a PTP with n vertices in G'. G’ has four exterior nodes Vi, Vi, Vs, Vg in ccw
order. If there is a path PL with property 1 and there are k vertices in PL, G’ has an st-Orientation
O and the longest path with O is at most n — k + 4.

proof.

This lemma is similar to Fact 2. The proof is modified from the lemma of 4[11]. First, we separate
G’ into three parts. The area at the left of PL is part A. Path PL is part B. The area at the right
of PL is part C. Let the REL of G’ that separates G’ into G1 and G5. We reverse the direction of
all edges in G and called the reversed graph G3. We select edges in G by Fact 2 to build a tree,
which is called T},, with root V.7, is a tree with root Vg in G5 by t Fact 2. And we select T from
G3 with root Vs , by Fact 2. For all K € {A,C}, T;k is the subtree of T; at area K.

Vi is numbered 1 in O. Vg is numbered n in O. Vy is in area A. For all vertices in area A, O,
is the cw postordering for T 4 with Vjy being the root of Ty 4. For the vertices in B, they are all in
path PL besides Vi, Vg, Vg and V. Then we travel the path from Vj to the node before Vi ,or
the node before Vg,or the node before Vg by inserting the first vertex to the very end, and the
second vertex to the very front. Recursively, insert the remaining vertices into the next available
end or next available front of the ordered list until all nodes in PL, besides Vi, Vg, Vg and Vi, has
been numbered. Denote this order by Op. Vg is in area C. All of the vertices in area C, let O, be
the cew postordering from Ts¢. The numbering O in G’ is (O,)" Oy O,.. (see Figl., Fig2. and Fig.3 )

We prove that O is an st-orientation. Vi is the first vertex in O, and Vg is the last vertex in O.
For any vertex v # Vi in A, the parent of v in T4 precedes v in O. The parent u in T, precedes
v in the cw postordering in T 4. If w in Ty 4, u precedes v in O,. Thus, u succeeds v in (O,)".



And u succeeds v in O, too. On the other hand, if w is not in T4 , then w is either in area B or
area C. Whether u is in area B or area C, u succeeds v in O. For any vertex v in B, the parent
of vis uy in T}, at area A. And uy precedes v in O. The parent is ug in Ty at area C. And ug
succeeds v in O. For any vertex v # Vg and Vg in C, the parent of v in Tis¢ succeeds v in O. The
parent u in T, precedes v in the ccw postordering in Ts. If w in Tgo, u precedes v in O.. Thus, u
precedes v in O, and hence in O. On the other hand, if u is not in Tg¢, u is in area A or area B.
Whether u is in area B or area C, u precedes v in O. Vyy precedes Vi, and Vg succeeds V. Viy
precedes Vg, and Vg succeeds Vs. O is an st-orientation for G’. In O, the increasing path can only
pass area B at most two nodes. There are k — 2 nodes in area B. Thus, the length of the longest
path in G’ with O is at most n — k + 4.

Lemma 2 The time complexity of our algorithm is O(n).

proof.

We construct the numbering O, of the nodes in G’ with property 1. First, we number the
nodes in VVE($1 path, we number from Vi to the node before Vg by 1,2,...,5 — 1, if there
are j nodes in VVE(;QQHW path. We number the paths on the area at left of WE{@;H path
kot path, first. We number the unnumbered nodes by path in the order
SNz, SN3, ..., SNk, —1 and with increasing order from the node near VVE(;QH1 path to the node

and separate by WE

2
near Vi in GG1. Then we number the other unnumbered nodes in the order SNa, SN3, ..., SNk, _1
and with increasing order from the node near T/VE[@HW path to the node near Vg in G1. At last,
2

we number Vg to be (n —2), Viy to be (n — 1), and Vg to be n. We prove O,, is an st-orientation
as follow.

For all nodes v in VVE(;QQHW path , the nodes at the right or left of WE(@H] path succeed v

in Op. For all nodes v # Vi in WE[
other nodes v # Vi, Vi, Vs, and Vg, the node connecting v near VVE(;CQH1 path in G precedes v.

k1 path, the node directing to v precedes v in Op. For all

If v connects VVE[;CZH1 path, the node in I/VE(@1 path precedes v. For the other nodes v at the

2 2
area at left of WE(;CQH] path and v # Vy , the node which v directing to in G1 succeeds v in O,,.
2
For the other nodes v # Vg, and at the area at right of I/VE[;QHW path, the node directing to v in

G succeeds v in Op. And Viy precedes Viy and Vg. Vg succeéds Vn and Vg. Viy is 1, and Vg is
n. Thus, O, is an st-orientation.

This numbering Op can be finished in linear time. The orientation derived from O, of G’ is a
directed acyclic graph. Finding the longest path in directed acyclic graph takes linear time. If the
length of he longest path is more thanz, we create a new st-numbering O. And we take linear time
to create a new st-numbering. We can find the height of VR < § in linear time by our algorithm.

Theorem 1 Let G = (V, E) be a 4-connected plane triangulation with n vertices. There exists a
VR of G with height no more than % + 4, which is obtainable in O(n) time.

proof.
In algorithm 1, if the length of PL is more than 5, we create a new st-numbering O to pass the
vertices in PL by only two vertices. Thus, the length of the longest path with st-orientation O in G’
is no more than § +4 by Lemma 1. If the length of PL is no more than &, Op is the st-orientation



we want to make the height of VR no more than % by Fact 1. Algorithm 1 can be done in O(n)
time by Lemma 2. Thus, the theorem is proved.

4 nearly tightness

Zhang, and X. He [10] and Lin, Lu, and Sun [4] used nested triangles to find the bound of the
height and width of VR in 2-connected plane triangulation. We use similar techniques to find the
bound of the height of VR in 4-connected plane triangulation. Let Gy be k nested 4-connected
triangulation with n = 4k. We want to show that VR of G requires a height of § = 2k.

1. When k = 1, the height of VR of G is no less than 2.
2. Assume that it is true when k& = ¢. It means that the height of VR of G no less than 2t¢.

3. Then we consider the case of k = ¢+ 1. Each time G has one more nested level, the height of
VR increases by two units. When k =t + 1, the height of VR is 2¢ +2 = 2(t + 1). (See Fig
4.)

Thus, the VR for 4-connected plane triangulation requires a size of height tat least 3.
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