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Abstract. We have proposed a new method for quantitative structure-activity re-
lationship (QSAR) analysis. This tool, termed GEMPLS, combines a genetic 
evolutionary method with partial least squares (PLS). We designed a new genetic 
operator and used Mahalanobis distance to improve predicted accuracy and 
speed up a solution for QSAR. The number of latent variables (lv) was encoded 
into the chromosome of GA, instead of scanning the best lv for PLS. We applied 
GEMPLS on a comparative binding energy (COMBINE) analysis system of 48 
inhibitors of the HIV-1 protease. Using GEMPLS, the cross-validated correlation 
coefficient (q2) is 0.9053 and external SDEP (SDEPex) is 0.61. The results indi-
cate that GEMPLS is very comparative to GAPLS and GEMPLS is faster than 
GAPLS for this data set. GEMPLS yielded the QSAR models, in which selected 
residues are consistent with some experimental evidences. 

1   Introduction 

QSAR techniques are commonly regarded as a key role to computational molecular 
design. The major goal of QSAR is to formulate mathematical relationships between 
physicochemical properties of compounds and their experimentally determined in vi-
tro biological activities. Thus the derived QSAR model can be subsequently used to 
predict the biological activities of new derivatives. A good QSAR model both en-
hances our understanding of the specifics of drug action and provides a theoretical 
foundation for lead optimization 1. 

Many QSAR methodologies have been studied, such as comparative molecular 
field analysis (CoMFA) 2, the partial least square (PLS) 3, comparative molecular 
binding energy analysis (COMBINE) 4,5. Among those methodologies, the PLS analy-
sis is able to deal with strongly collinear input data and make no restriction on the 
number of variables used. Unfortunately, the predictive performance of PLS model 
drops and the PLS model becomes complicated when the number of features in-
creases.  Several feature selection methods for PLS have been proposed, in which ge-
netic algorithm (GA) combined with PLS approach (GAPLS) has demonstrated the 
improvement on the prediction and interpretation of model 6. The essence of GA is to 
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mimics the metaphor of natural biological evolution. GA operates on a population of 
potential solutions applying the principle of survival of the fittest to produce succes-
sively better approximations to optimum solution. Hasegawa et al. 7 examined a set of 
48 human immunodeficiency virus type I (HIV-1) protease inhibitors by applying 
GAPLS to the variables derived from COMBINE. Several improved GAPLS models 
with significantly better predictability than the original study were formulated 5,7,8. 

However, the accuracy of GAPLS was still blemished by many features especially 
deriving from CoMFA or COMBINE. The numerous noise features, which GAPLS 
did not eliminated completely, were interfered with the significant features strongly 
correlating with biological activity. Besides, with regard to each possibly select fea-
ture set GAPLS needed to spend additional time to decide the optimum number of la-
tent variables (lv) through PLS.   

Here, we have developed an efficient method for evolving QSAR models by intro-
ducing a number of successive refinements which can be summarized as follows: 1) 
An extra bit lv, representing the number of latent variables, was appended to the 
chromosome of GA and expected to efficiently solve the problem of the optimum 
number of latent variables though evolutionary process; 2) Mahalanobis distance was 
adopted to select significant features from numerous features from COMBINE; 3) A 
new genetic operator, called biased mutation, was designed to lead the evolution of 
GA toward significant feature set and to reduce the interference of noise features. In 
this paper, we proposed a new QSAR method by integrating a generic evolutionary 
method, modified and enhanced from our previous works 9,10 and above issues, and 
PLS (GEMPLS). GEMPLS is general able to evolve the relationship between biologi-
cal activities and compound features generated by other methods, such as CoMFA 
and COMBINE. Here we applied GEMPLS to evolve the QSAR models according to 
the interaction energy features generated by the COMBINE method on 48 HIV-1 pro-
tease inhibitors. Experiments show that GEMPLS is able to improve the predictability 
and efficiency, at the same time, the selected residues in the yielded QSAR model are 
consistent with some experimental evidences. 

2   Material and Methods 

Fig. 1 shows the main steps of applying GEMPLS in the COMBINE analysis: 1) pre-
pare the inhibitor set and model protein-inhibitor complexes; 2) refine protein-
inhibitor complexes and calculate features (i.e., energy interactions); 3) select impor-
tant features by Mahalanobis distance; 4) select features and evolve QSAR models. 
Each step is described in the following subsections. 

2.1   COMBINE: Feature Extraction 

The COMBINE analysis is the use of structural information about ligand-receptor 
complexes 4,5. When the three-dimensional structure of macromolecule is available, 
ligand-receptor interaction energies could be calculated as features, which are sub-
jected to statistical analysis in COMBINE. A subset of these features will be account 
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for the ligand affinity. The critical interaction patterns between ligands and the recep-
tor could be identified and be used to derive the correlation of binding affinities. 

Step 1: Prepare data set and model 
protein-inhibitor complex

Step 2: Refine docked conformation 
and calculate features (interactions)

Step 3: GEM selects a feature set (X) Step 4: PLS builds the relationship 
between feature set (X) and activity
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Fig. 1. The framework and steps of GEMPLS applied in the COMBINE analysis 

2.1.1   Prepare Data Sets and Model Protein-Inhibitor Complexes 
Here, we have chosen 48 inhibitors of human immunodeficiency virus type I (HIV-1) 
protease studied in previous works 5,7,8. The chemical structures of HIV-1 protease in-
hibitors and the 48 complexes were modeled on the crystallographic structure of the 
complex of HIV-1 protease with L-689,502 solved at 2.25A resolution 11 using the in-
teractive graphics program Insight II. All crystallographic waters were removed with 
the exception, which is involved in hydrogen bonding with the NH's of the flap resi-
dues IleA50 and IleB50 and the oxygen of the inhibitors 12. All inhibitors were built 
using L-689, 502 as a template except for the more differential inhibitors 39-45, 
which employed the inhibitor saquinavir from the HIV-1 protease complex (protein 
data bank is 1c6z) as a template.  

2.1.2   Refine Protein-Inhibitor Complexes and Calculate Features (Interactions) 
Each complex model was performed a mild and progressive refinement. The flexibil-
ity of each inhibitor was manually explored as necessary to obtain a satisfactory con-
formation in the enzyme active site, which also corresponded to a low energy con-
former. The docked conformation of an inhibitor was energy minimized in the three 
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stages using the consistent valence force field, CVFF 13. In the first stage, the hydro-
gen atoms of each complex were allowed reorient. Then the geometry of the inhibitor 
was optimized while the atoms of both the protein and the water were held fixed. Fi-
nally, the whole complex was energy minimized but the protein atoms were restrained 
to their crystallographic positions. Atom-centered charges for all the inhibitors were 
derived by fitting the molecular electrostatic potential calculated with the AM1 Ham-
iltonian 14 to a monopole-monopole expression 15. 

The calculated ligand-receptor interaction energies in the refined complexes were 
partitioned on a per residue basis. Since HIV-1 protease has two protein subunits 
(subunit A and subunit B) of 99 amino acids, and two energy contributions (van der 
Waals and electrostatic) are considered for each residue. There are 396 features were 
yielded to characterize each protein-inhibitor complex. A data matrix was built with 
396 columns representing each of the interaction energy features and with 48 rows 
representing each inhibitor in the data set. 

2.2   GEMPLS: QSAR Model Evolution  

PLS has played a critical role in the derivation of QSAR in CoMFA or COMBINE 
studies. Recently, more and more people recognize the benefits of feature selection 
before PLS regression. GAPLS has been shown as a practical solution. But when the 
number of features becomes large, GAPLS still has difficulty in driving out noises. 
And scanning for best lv is too inefficient and time consuming. Here, we introduce a 
number of successive enhancements, which are described in the following paragraphs, 
to construct our model GEMPLS to overcome the drawbacks of GAPLS.  

The general idea of PLS is to try to extract these latent variables, accounting for as 
much of the manifest feature variation as possible while modeling the inhibitory ac-
tivities well. To decide both the optimum number of latent variables and prediction 
error of a QSAR model, we defined the weighted standard deviation error of the pre-
dictions (WSDEP) as the scoring function of our GEMPLS: 

( )2

, 100

1 95

lv

i pred i
y y

WSDEP
N lv

−
=

− −
⎛ ⎞⎜ ⎟⎝ ⎠

∑  , (1) 

where yi and ypred,i are the observed and predicted inhibitory activities belong to in-
hibitor i, N is the total number of samples, and lv is the number of latent variables in 
the current model. In order to improve on the efficiency, we append an extra bit lv, 
representing the number of latent variables, to the original chromosome and expect 
GEMPLS model to efficiently solve the problem of the optimum number of latent 
variables though evolutionary process. 

2.2.1   Select Features by Mahalanobis Distance  
Mahalanobis distance is able be used to measure the deviation of a sample from the 
mean of the distribution in multivariable calculus. Therefore, the Mahalanobis dis-
tance is adopted to identify significant features from all of those. 

( ) ( )2 1M v vµ µ−′= − ∑ −  . (2) 
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M is the Mahalanobis distance from the feature vector v (column vector of data matrix 
here) to the mean vector µ , where Σ is the covariance matrix of the features. 

2.2.2   Feature Selections and QSAR Models Evolution 
The inhibitory activity usually correlates with few important interaction energy fea-
tures, that is, most of interaction energy features are meaningless or not apparently 
distinct from each other. GEM was applied to find out the significant interaction en-
ergy features and PLS was used to build the QSAR models based on these selected 
features. WSDEP was used as the objective function to provide a measure of how the 
internal predictability with respect to the selected features. The fittest individual will 
have the lowest WSDEP. 

GEM, modified and enhanced from our previous works 9,10, consists of five steps 
briefly described in the following:  

(1) Initiation and evaluation of the initial population (Gt=0). Each chromosome 
is composed by an array of feature set and an lv value. For example, a chromosome 
has n+3 bits if the number of candidate feature is n and three bits for lv value. The ini-
tial population (Gt=1) of population size (Np) is created by setting feature bits (0 de-
note the absence of corresponding feature, and 1 denote its presence) and an lv value 
(denote the number of latent variables and range in [1~5]) of each chromosome to 
random values and one, respectively. Then PLS is used to build a quasi-QSAR model, 
and evaluated by the scoring function (WSDEP), for each chromosome.  

(2) Selection of the reproductive population. The chromosomes of reproductive 
population (PsGt) are selected from the population (Gt) with a fixed proportion (Ps) 
according to the stochastic universal sampling 16.  

(3) Crossover and mutate the reproductive population (PsGt). The offspring 
population (Goff) is generated by uniform crossover with a probability (crossover rate: 
Pc) and mutation operators, including uniform and biased mutation operators, with a 
probability (mutation rate: Pm).  

(4) Evaluation of the offspring population (Goff). PLS is then used to build a 
quasi-QSAR model, evaluated by WSDEP, for each chromosome in the offspring 
population.  

(5) Reinsertion of the child population. To form the population of the next gen-
eration (Gnext), the chromosomes of the current population (Gt) with lower objectives 
in the preceding (1- Ps) proportion are protected to the next generation, while the oth-
ers are replaced with better ones from the offspring population (Goff).  Let t = t+1 and 
Gt = Gnext. 

(6) The cycle of above four steps (from step 2 to 5) is repeated until the number of 
generation reaches to the maximum number of generations (Nmax). The values of em-
pirical parameters are defined as follows: Np = 100, Nmax = 200, Ps = 0.9, Pc = 0.6, and 
Pm = 0.05. 

Biased Mutation. The uniform mutation may incur a risk of local convergence and 
slow evolution because plenty of features will raise the combinatorial complexity of 
feature space. To reduce the phenomena, the uniform mutation was cooperated with 
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biased mutation to lead the evolution of GA toward significant feature set and to re-
duce the interference of noise features. 

( ) ( )
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F x MIN MAX MIN

N

−
= + − ×

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 , (3) 

where F(xi) is the probability of selection of feature i; xi is the rank of feature i in the 
descending order of Mahalanobis distance of all features, MIN and MAX are the lower 
and upper bounds, respectively, of probability of biased mutation; Nf is the number of 
significant features. The value of F(xi) is derived from xi only when xi is ahead of Nf, 
otherwise F(xi) is set to MIN. The meaning of F(xi) is that the more significant fea-
ture, the more higher probability of selection. In this study, MAX=0.8, MIN=0.2 and 
Nf =39. 

2.3   Performance Evaluation 

The predictability of QSAR model was assessed by the conventional correlation coef-
ficient (r2), the cross-validated correlation coefficient (q2), the cross-validated SDEP 
(SDEPcv), and external SDEP (SDEPex): 
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where yi and ypred,i are the observed and predicted activity of inhibitor i, ypred,i, respec-
tively, y  is the average activity value of the inhibitor set, and N is the total number of 
inhibitors. The model with more remarkable predictability can provide the higher cor-
relation coefficient (r2, q2) and the lower SDEP between the observed and predicted 
inhibitory activities. 

3   Results and Discussion 

To evaluate the performance of PLS, GAPLS, and GEMPLS, 48 compounds shown in 
Table A (see appendix) were randomly divided into 6 subsets, and a six-fold cross 
validation was performed. For each round, one subset (8 compounds) was used as 
evaluation set, and other subsets (40 compounds) were used to train a QSAR model 
by Leave-One-Out method to optimize WSDEP. Table 1 shows the results, which 
were the average values of the six-fold cross validation. Five filter conditions (M>0, 
M>1, M>5, M>10, and M>15) of Mahalanobis distance of features were used to pre-
screen candidate features before GA feature selection steps. That is, there were five 
kinds of data matrices (48-by-396 (M>0), 48-by-188 (M>1), 48-by-85 (M>5), 48-by-
59 (M>10), and 48-by-39 (M>15)) to be examined on those QSAR models according 
to these five conditions.  
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Table 1 shows the execution times, the numbers of selected features, and the values 
of lv of PLS, GAPLS and GEMPLS with five different Mahalanobis distance criteria. 
Several widely used performance measures, correlation coefficient (r2), cross-
validated correlation coefficient (q2), cross-validated SDEP (SDEPcv), external corre-
lation coefficient (r2

ex), and external SDEP (SDEPex), were also summarized in Table 
1. With the increasing of the degree of filter criteria, the better results were obtained 
for GEMPLS when the Mahalanobis distance threshold is less than 10. The highest 
SDEPex (0.6080) was obtained by GEMPLS with Mahalanobis distance threshold 10. 
These results reveal that the usage of Mahalanobis distance could successfully dis-
criminate significant features and reduce the ill effect of numerous features generated 
by the COMBINE method. But when the Mahalanobis distance threshold get higher, 
the performance degraded due to some important features were filtered out. The ad-
justment of proper amount of significant features would further improve the predict-
ability and interpretation of QSAR models.  

Table 1. The average predictive accuracies of PLS as well as GAPLS and GEMPLS with five 
different Mahalanobis distances for the HIV-1 protease by six-fold cross validation 

 a  GEMPLS-M0, M1, M5, M10, M15 mean that GEMPLS analysis performed with feature sets 
filtered by different Mahalanobis distance thresholds (i.e., 0, 1, 5, 10, and 15). 

 b  The executing time is measured on a single-processor of 1.4GHz/PentiumIV PC in seconds. 
 c  The number of candidate features is selected by the Mahalanobis distance. 
 d  The number of selected features is finally selected by GEMPLS and Mahalanobis distance. 

The COMBINE method essentially generates numerous interaction energy features 
and the usage of Mahalanobis distance is able to reduce the number of these features. 
One of the evolutionary forces of GEMPLS is come from Mahalanobis distance be-
tween a wide distribution of features. At the same time, GEMPLS could decide the 
optimum number of latent variables for each chromosome though evolutionary proc-
ess since the lv bit was encoded in the chromosome. Table 1 shows that GEMPLS is 
much faster than GAPLS and slightly better than GAPLS on this data set. Both 
GEMPLS and GAPLS outperform PLS.  

Modela Time(s)b M-Featuresc Featuresd lv r2 q2 SDEPcv r2
ex SDEPex 

PLS 0.047 396 396 3 0.9177 0.8576 0.6031 0.7433 0.7454 

GAPLS 11233.5 396 117.8 1 0.9107 0.9045 0.4718 0.6958 0.6582 

GEMPLS-M0 1471.1 396 98.8 1 0.9091 0.9029 0.4754 0.7944 0.6464 

GEMPLS-M1 766.7 188 42.3 1 0.9101 0.9040 0.4722 0.8030 0.6231 

GEMPLS-M5 649.1 85 21.5 1 0.9110 0.9053 0.4691 0.8107 0.6115 

GEMPLS-M10 485.3 59 19 1 0.9109 0.9046 0.4708 0.8126 0.6080 

GEMPLS-M15 427.7 39 16.7 1 0.9084 0.9027 0.4757 0.7994 0.6284 
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Figure 2 shows a typical QSAR model yielded by GEMPLS. This model reveals 
some experimental evidences. Figure 2(b) shows the features selected by GEMPLS 
and Figure 2(a) indicates the pseudo coefficients of the QSAR model evolved by PLS 
according to these selected features. This evolved QSAR model reflects some 
important residues of HIV-1 protease shown in Figure 2(c).  Residues Asp25, Thr26, 
and Gly27 are highly conserved catalytic triad and Asp25 is essential to both catalyti-
cally and structurally. Residues Ala28 and Asp30 located at subsite S2. The mobile 
flap, residues 46-54, contains three characteristic regions: side chains that extend out-
ward (Met46, Phe53), hydrophobic chains extending inward (Ile47, Ile54), and a gly-
cine rich region. Residues Pro81, Val82, and Ile84 form the binding pocket. Residues 
Arg8 and Asp29 at the subsite S3, potentially bind polar residues. These results show 
that our QSAR model is able to yield many biological meanings. 
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Fig. 2. GEMPLS evolves a typical QSAR model of the HIV-1 protease. a) The pseudo coeffi-
cients of QSAR model, b) features selected by GEMPLS, and c) the important residues of the 
QSAR model are consistent with some experimental evidences 

4   Conclusions 

In summary, we have developed an evolutionary method with a novel scoring func-
tion for evolving QSAR models. By integrating a number of genetic operators, each 
having a unique search mechanism, GEMPLS blends the local and global searches so 
that they work cooperatively. Our scoring function is indeed able to enhance the pre-
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diction accuracy. GEMPLS not only increases the predictability and interpretation of 
a QSAR model, but also improves the performance and efficiency for feature selec-
tion. Our results demonstrate the applicability and adaptability of GEMPLS for 
QSAR models. 
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Appendix: 

Table A. HIV-1 protease inhibitors used in training set (1-32) and test set (33-48), and their 
corresponding observed inhibitory activities (pIC50) 

No. Chemical Structure pIC50 No. Chemical Structure pIC50 No. Chemical Structure pIC50 
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8.11 3 
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No. Chemical Structure pIC50 No. Chemical Structure pIC50 No. Chemical Structure pIC50 
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