
Computational Linguistics and Chinese Language Processing
vol. 2, no. 2, August 1997. pp. 1-24.
 Computational Linguistics Society of R. O. C.

Building a Bracketed Corpus Using φ2 Statistics

Yue-Shi Lee * Hsin-Hsi Chen +

Abstract
Research based on treebanks is ongoing for many natural language applications.

However, the work involved in building a large-scale treebank is laborious and

time-consuming. Thus, speeding up the process of building a treebank has become an

important task. This paper proposes two versions of probabilistic chunkers to aid the

development of a bracketed corpus. The basic version partitions part-of-speech

sequences into chunk sequences, which form a partially bracketed corpus. Applying

the chunking action recursively, the recursive version generates a fully bracketed

corpus. Rather than using a treebank as a training corpus, a corpus, which is tagged

with part-of-speech information only, is used. The experimental results show that the

probabilistic chunker has a correct rate of more than 94% in producing a partially

bracketed corpus and also gives very encouraging results in generating a fully

bracketed corpus. These two versions of chunkers are simple but effective and can

also be applied to many natural language applications.

Keywords: Bracketed Corpus, Probabilistic Chunkers, Treebank, φ2 Statistics

1. Introduction

Research based on treebanks is ongoing for many natural language applications. Chen

and Lee [1995a] introduced a Constrained Grammar extracted from the Lancaster Parsed

Corpus and applied it in a linear-time partial parser. Chen and Chen [1994] proposed a

probabilistic chunker to decide the implicit boundaries of constituents and utilized the

linguistic knowledge to extract the noun phrases by means of a finite state mechanism.n

this study, the Susanne Corpus is used as a training corpus. Framis [1994] presented

amethodology to learn selectional restrictions at a variable level of abstraction from the

Wall Street Journal. Bod [1993] used the ATIS Spoken language corpus as a stochastic

*Dept. of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan,
ROC. E-mail: leeys@nlg.csie.ntu.edu.tw
+ Dept. of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan,
ROC. To whom all the correspondence should be sent.

1

grammar for data-oriented parsing. Pocock and Atwell [1993] applied statistical

grammars extracted from Spoken English Corpus to find the grammatically optimal path

through a word lattice. All these applications profit from different treebanks and have

shown satisfactory results.

However, the work involved in building a large-scale treebank is labor-intensive

and tedious. Very few large-scale treebanks are currently available especially for

languages other than English. Thus, it is worth while to study a method for developing

a bracketed corpus using statistical information extracted from corpora without syntactic

structures. This paper proposes two versions of probabilistic chunkers to achieve this a

goal. The basic version partitions a part-of-speech sequence into chunks, which is a

bracketed sequence. By applying the chunking action recursively, the recursive version
generates a fully bracketed corpus. Rather than using a treebank as a training corpus, a

corpus, which is tagged with part-of-speech information only, is used.

In the following sections, we first introduce the experimental framework of our

model. In this framework, the Lancaster-Oslo/Bergen (LOB) Corpus and Lancaster

Parsed Corpus (LPC)1 are adopted as the training and the testing corpus, respectively.

Then, the basic version of a probabilistic chunker and its extension (recursive version) is

described. Before concluding, experimental results are presented.

2. Experimental Framework

In our scheme, the input to the probabilistic chunker is a part-of-speech sequence. The
basic chunker partitions this sequence into chunks. That is, each chunk contains one or

more parts-of-speech. In the recursive version, a binary tree is generated. Consider an

example: "Attorneys for the mayor said that an amicable property settlement has been

agreed upon ." The corresponding part-of-speech sequence is listed below:

NNS IN ATI NPT VBD CS AT JJ NN NN HVZ BEN VBN IN .

Then, the basic chunker partitions it into chunks, shown as follows:

[NNS] [IN] [ATI NPT] [VBD] [CS] [AT JJ NN NN] [HVZ BEN VBN] [IN]

. [.]

Finally, a binary tree is generated by the recursive chunker as shown below:

1. A brief introduction to these two corpora is given in Appendix A.

2 Yue-Shi Lee, Hsin-Hsi Chen

Tag Mapper

Basic
Chunker

Performance
Evaluation

LPC
Corpus

T

Ps

Pl

C
LOB

Tagging
Set

LPC
Tagging

Set

Recursive
Chunker

Pl
B

LOB Corpus

φ2

[[[[NNS] [[IN] [[ATI] [NPT]]]] [[VBD] [[CS] [[[AT] [[JJ] [[NN]

[NN]]]] [[[[HVZ] [BEN]] [VBN]] [IN]]]]]] [.]]

To evaluate the performance of the chunkers, the LPC Corpus is adopted. However, the

tagging sets [Chen and Lee, 1995a; Johansson, 1986] of the LPC Corpus (our testing

corpus) and LOB Corpus (our training corpus) are different. The tagging set of the

former is extended and modified from the latter.2 To map a LPC tag sequence into a

LOB tag sequence manually is a tedious task. Thus, an automatic tag mapping algorithm

is used [Chen and Lee, 1995b]. In summary, the experimental framework is shown in

Figure 1.

Figure 1 Experimental Framework

In our experiments, the test sentence P
s

came from the LPC Corpus. It is a

part-of-speech sequence. The corresponding syntactic structure T sent to the perfor-

mance evaluation model is regarded as an evaluation criterion for the two probabilistic

chunkers. Using the tag mapper, P
s

is converted into P
1
. Then, P

1
is input to the

chunkers, and two kinds of bracketed results, i.e., partial (C) and full (B) results, are

produced. Finally, the performance evaluation model reports the evaluation results

according to C (B) and T.

2. In some cases, many LPC tags may be mapped into one LOB tag. For example, three LPC tags, i.e., INF
(For as Preposition), INO (Of as Preposition), and INW (With as Prosposition), may be mapped into one
LOB tag, i.e., IN (Preposition).

Building a Bracketed Corpus Using Statistic 3

3. The Basic Version of a Probabilistic Chunker

Gale and Church [1991] proposed φ2, a X2-like statistic, to measure the association

between two words. Table 1 illustrates a two-by-two contingency table for words w
1

and

w
2
.

Word w1

Word w2 a b

c d

Table 1. A Two-by-Two Contingency Table for Words w
1

and w
2.

Cell a counts the number of sentences that contain both w
1

and w
2
. Cell b (c) counts the

number of sentences that contain w
2
(w

1
) but not w

1
(w

2
). Cell d counts the number of

sentences that do not contain both w
1

and w
2
. That is, if N is the total number of sen-

tences, d=N-a-b-c. Based on this contingency table, φ2 is defined as follows:

φ2 =
(a*d+b*c)2

(a+b)*(a+c)*(b+d)*(c+d)

where φ2 is bounded between 0 and 1. For different applications, there are different

definitions for the contingency table. Instead of using the above definition, a modified

version is shown below.

Definition 1: (For Two Parts-of-Speech)
a=F(p

1
,p

2
)

b=F(p
2
)-F(p

1
,p

2
)

c=F(p
1
)-F(p

1
,p

2
)

d=N-a-b-c,

where p
i
denotes part-of-speech i,

F(p
1
,p

2
) is the frequency with which p

2
follows p

1
,

F(p
1
) and F(p

2
) are the frequencies of p

1
and p

2
, and

N is the corpus size in terms of the number of words in the training corpus.

4 Yue-Shi Lee, Hsin-Hsi Chen

φ2

Based on this definition and the φ2 measure, consider the sentence "The Fulton County

Grand Jury said Friday an investigation of Atlanta recent primary election produced no

evidence that any irregularities took place .", which has the tag sequence "ATI NP NPL

JJ NN VBD NR AT NN IN NP$ JJ JJ NN VBD ATI NN CS DTI NNS VBD NN ." Part

of its syntactic structure for the first seven words is shown in Figure 2.

JJ

Grand

NN

Jury

VND

said

NR

Friday

ATI

The

NP

Fulton

NPL

Country

...

...

...

Figure 2 The Syntactic Structure for the First Seven Words

The φ2 distribution for these parts-of-speech is shown in Figure 3. Position i (x axis) is

the location between parts-of-speech p
i
and p

i+1
.

1

10

100

1000

10000

100000

1 2 3 4 5 6 7
ATI NP NPL JJ NN VND NR

Position

2
φ *1000000

Figure 3 The φ 2 Distribution for the First Seven Words

Figure 3 shows that there are four local minimal positions, i.e., positions 1, 3, 5 and

6. They can be regarded as the boundaries of chunks. That is, ATI and NP belong to

different chunks. (NPL and JJ), (NN and VND) and (VND and NR) have similar

interpretations. Let us discuss these concepts formally. For a probabilistic chunker, a

generalized contingency table is defined as follows.

Building a Bracketed Corpus Using Statistic 5

Definition 2: (For Two Chunks)
a=F(c

1
,c

2
)

b=F(c
2
)-F(c

1
,c

2
)

c=F(c
1
)-F(c

1
,c

2
)

d=N-a-b-c,

where c
i
denotes chunk i,

F(c
1
,c

2
) is the frequency with which the instance of c

2
follows c

1
,

F(c
1
) and F(c

2
) are the frequencies of c

1
and c

2
, and

N is the corpus size in terms of the number of words in the training corpus.

Let the part-of-speech sequence P be p
1
, p

2
, ..., p

n
. Assume there are two possible

chunked results. The first is composed of two chunks, i.e., [p
1
, p

2
, ..., p

i
] and [p

i+1
, p

i+2
,

..., p
n
], and is regarded as a correct result. The second is also composed of two chunks,

i.e., [p
1
, p

2
, ..., p

i-1
] and [p

i
, p

i+1
, ..., p

n
], but is regarded as a wrong result. Since [p

1
, p

2
,

..., p
i
] is a chunk, [p

1
, p

2
, ..., p

i-1
] is very likely to be followed by p

i
. In other words,

F([p
1
, p

2
, ..., p

i-1
]) » F([p

1
, p

2
, ..., p

i
]) .. (1)

Similarly,

F([p
i+1

, p
i+2

, ..., p
n
]) » F([p

i+2
, p

i+3
, ..., p

n
]).

Because p
i
and p

i+1
are in two different chunks,

F([p
i
, p

i+1
, ..., p

n
]) << F([p

i+1
, p

i+2
, ..., p

n
])..(2)

Similarly,

F([p
1
, p

2
, ..., p

i+1
]) << F([p

1
, p

2
, ..., p

i
]).

For the first chunked result, we can obtain the following contingency table:

a# = F([p
1
, p

2
, ..., p

i
],[p

i+1
, p

i+2
, ..., p

n
])

b# = F([p
1
, p

2
, ..., p

i
]) - F([p

1
, p

2
, ..., p

i
],[p

i+1
, p

i+2
, ..., p

n
])

c#= F([p
i+1

, p
i+2

, ..., p
n
]) - F([p

1
, p

2
, ..., p

i
],[p

i+1
, p

i+2
, ..., p

n
])

d# = N - a# - b#- c#.

Similarly, the following contingency table is obtained for the second chunked result:

a& = F([p
1
, p

2
, ..., p

i-1
],[p

i
, p

i+1
, ..., p

n
])

6 Yue-Shi Lee, Hsin-Hsi Chen

φ2

b& = F([p
1
, p

2
, ..., p

i-1
]) - F([p

1
, p

2
, ..., p

i-1
],[p

i
, p

i+1
, ..., p

n
])

c& = F([p
i
, p

i+1
, ..., p

n
]) - F([p

1
, p

2
, ..., p

i-1
],[p

i
, p

i+1
, ..., p

n
])

d& = N -a& - b& - c&.

It is obvious that a# = a&. By formula (1), we know that b# » b&. By formula (2), we can

derive c# >> c&. Since N >> a, b and c, d# » d&. Therefore,

(a# * d# - b# * c#) << (a& * d& - b& * c&)

(a# + b#) » (a& + b&)

(a# + c#) >> (a& + c&)

(b# + d#) » (b& + d&)

(c# + d#) » (c& + d&)

and

φ2 ([p
1
, p

2
, ...p

i
],[p

i+1
, p

i+2
, ...p

n
])

=
(a#*d#-b#*c#)2

(a#+b#)*(a#+c#)*(b#+d#)*(c#+d#)

<<
(a&*d&-b&*c&)2

(a&+b&)*(a&+c&)*(b&+d&)*(c&+d&)

= φ2 ([p
1
, p

2
, ...p

i
],[p

i+1
, p

i+2
, ...p

n
])

The above derivation tells us the following: the local minimums of the φ2 distribution are

highly correlated to syntactic boundaries between chunks. To reduce the parameters in

Definition 2, Definitions 3 and 4 are formulated. In training, only the cases of two

parts-of-speech and three parts-of-speech are considered.

Definition 3: (For Two Parts-of-Speech)
a = F([p

i
],[p

i+1
])

b = F([p
i
]) - F([p

i
],[p

i+1
])

c = F([p
i+1

]) - F([p
i
],[p

i+1
])

Building a Bracketed Corpus Using Statistic 7

d = N - a - b - c,

where p
i
denotes part-of-speech i,

F([p
i
],[p

i+1
]) is the frequency with which the instance of p

i+1
follows p

i,

F([p
i
]) and F([p

i+1
]) are the frequencies of p

i
and p

i+1
, respectively, and

N is thcorpus size in terms of the number of words in the training corpus.

BasicChunker1(A_Part_of_Speech_Sequence)
Begin

Output("[");

P=1;

Calculate a
2φ of Position P By Definition 3;

P=P+1;

While (P < L)

Begin

Output(A_Part_of_Speech_Sequence[P-1]);

Calculate b
2φ of Position P By Definition 3;

If (a
2φ < b

2φ) Then Output("][");

a
2φ = b

2φ ;

P=P+1;

End

/* Output the Last Word (Part-Of-Speech) */

Output(A_Part_of_Speech_Sequence[L-1]);

Output("][");

/* Output the Final Punctuation Mark */

8 Yue-Shi Lee, Hsin-Hsi Chen

φ2

Output(A_Part_of_Speech_Sequence[L]);

Output("]");

End

It is clear that Definition 3 is the same as Definition 1. Based on Definition 3, the

probabilistic chunker, BasicChunker1, is presented above. Note that variable L is the

length of the part-of-speech sequence, and variable P denotes the current position. The

comments are given between the symbols "/*" and "*/".

Definition 4: (For Three Parts-of-Speech)
Left Chunk

a = F([p
i-1

, p
i
],[p

i+1
])

b = F([p
i-1

, p
i
]) - F([p

i-1
, p

i
],[p

i+1
])

c = F([p
i+1

]) - F([p
i-1

, p
i
],[p

i+1
])

d = N - a - b - c

Right Chunk

a = F([p
i
],[p

i+1
, p

i+2
])

b = F([p
i
]) - F([p

i
],[p

i+1
, p

i+2
])

c = F([p
i+1

, p
i+2

]) - F([p
i
],[p

i+1
, p

i+2
])

d = N - a - b - c,

where p
i
denotes part-of-speech i,

F([p
i-1

, p
i
],[p

i+1
]) is the frequency with which the instance of p

i
, p

i+1
follows p

i-1
,

F([p
i
],[p

i+1
, p

i+2
]) is the frequency with which the instance of p

i+1
, p

i+2
follows p

i
,

F([p
i+1

]) and F([p
i-1

, p
i
]) are the frequencies of p

i+1
and (p

i-1
, p

i
), respectively,

F([p
i
]) and F([p

i+1
, p

i+2
]) are the frequencies of p

i
and (p

i+1
, p

i+2
), respectively,

N is the corpus size in terms of the number of words in the training corpus.

Building a Bracketed Corpus Using Statistic 9

BasicChunker2(A_Part_of_Speech_Sequence)
Begin

Output("[");

P=1;

Calculate
a
2φ of Position P By the Right Chunk of Definition 4;

P=P+1;

While (P < L)

Begin
Output(A_Part_of_Speech_Sequence[P-1]);

Calculate l
2φ of Position P By the Left Chunk of Definition 4;

If (P == (L-1)) Then r
2φ =0;

Else Calculate
r
2φ of Position P By the Right Chunk of Definition 4;

b
2φ =max(l

2φ , r
2φ);

If (
a
2φ <

b
2φ) Then Output("][");

a
2φ = b

2φ ;

P=P+1;

End

Output(A_Part_of_Speech_Sequence[L-1]); /* Output the Last Part-Of-Speech */

Output("][");

Output(A_Part_of_Speech_Sequence[L]); /* Output the Final Punctuation Mark */

Output("]");

End

10 Yue-Shi Lee, Hsin-Hsi Chen

φ2

The probabilistic chunker, BasicChunker2, presented above is based on Definition

4. The probabilistic chunker based on Definition 3 concerns the φ2 distribution between

two parts-of-speech. In order to approximate Definition 2 more accurately, Definition 4

uses three parts-of-speech instead of two parts-of-speech. Based on Definition 4, there

are two possible φ2 measures for each position i. They are listed below:

l
2φ (for [p

i-1
, p

i
],[p

i+1
])

r
2φ (for [p

i
],[p

i+1
, p

i+2
]).

In BasicChunker2, we use the maximum of these two statistic measures, i.e.,max(
l
2φ

, r
2φ), as the φ2 measure of position i. Note that the last chunk produced by these two

chunkers is always a one-part-of-speech chunk (i.e., a punctuation mark).

4. The Recursive Version of a Probabilistic Chunker

The result produced by the basic chunker has only one level of brackets. Based on these

similar concepts, it can easily be extended to a recursive chunker shown below. This

chunker adopts Definition 3. In this algorithm, variable P denotes the current global

minimum position. Variables LT and RT record the left and the right indices of the
current part-of-speech sequence.

RecursiveChunker(LT, RT, A_Part_of_Speech_Sequence)

Begin
If (LT = RT) Then Output(A_Part_of_Speech_Sequence[LT]);

Else

Begin

Calculate min
2φ of Position LT By Definition 3;

P=LT;

For I = (LT+1), ..., (RT-1) Do

Begin

Building a Bracketed Corpus Using Statistic 11

Calculate new
2φ of Position I By Definition 3

If (
new
2φ < min

2φ) Then

Begin

min
2φ =

new
2φ ;

P=I

End

End

Output("[");

RecursiveChunker(LT, P, A_Part_of_Speech_Sequence);

Output("][");

RecursiveChunker(P+1, RT, A_Part_of_Speech_Sequence);

Output("]");

End

End

This chunker is triggered in the following way. Note that variable L is the length of

the part-of-speech sequence:

Output("[");

RecursiveChunker(1,L,A_Part_of_Speech_Sequence);

Output("]")

As mentioned above, the input of the recursive chunker is a part-of-speech sequence, and

the output is a binary tree. It first searches for the global minimum position of the φ2
distribution. Then, the current part-of-speech sequence is partitioned into two segments

according to this position. This procedure is repeated until the length of the remaining

part-of-speech sequence is equal to 1.

12 Yue-Shi Lee, Hsin-Hsi Chen

φ2

5. Experimental Results

In our experiments, the LOB Corpus and LPC Corpus as described in Appendix A

(Tables 10 and 11) were adopted as training data and testing data, respectively. To
evaluate the performance of the chunker, a criterion, crossing brackets [Black et al.

1991], was adopted. The definition is listed below:

Consider an example. Assume that the correct result is "[A B [[C D] E [F]] [G H I

] J]". The corresponding tree is shown in Figure 4.

C D

E

F

G H I

1

3 4

A B J2 5

Figure 4 A Correct Result

If the chunked result is "[A B] [C] [D E] [F] [G H] [I J]", then 2 chunks, i.e., [D

E] and [I J], are wrong. The chunk [D E] is wrong because it is dominated by two

non-terminal nodes, i.e., 3 and 2. Similarly, the chunk [I J] is wrong because it is also

dominated by two non-terminal nodes, i.e., 5 and 1. The other chunks, i.e., [A B], [C

], [F] and [G H], are correct because they are dominated by only one non-terminal node,

i.e., 1, 3, 4 and 5, respectively. Based on this criterion, the experimental results of the

chunkers for Definitions 3 and 4 are shown in Tables 2 and 3. In the experiments, only

four files (A01, G01, J01 and N01) randomly selected from the LPC corpus were

chunked.Experimental Results of the Chunker for Definition 3

Building a Bracketed Corpus Using Statistic 13

File
Total

Words

Total

Sent.

Total

Chunks

Correct

Chunks

Correct

Sent.

Chunk Correct Rate

for Def. 3

Sentence Correct

Rate for Def. 3

A01 8,241 655 4,628 3,733 239 80.66% 36.49%

G01 6,225 367 3,339 2,533 72 75.86% 19.62%

J01 8,270 498 4,497 3,274 107 72.80% 21.49%

N01 11,653 958 6,516 5,488 415 84.22% 43.32%

Average 34,389 2,478 18,980 15,028 833 79.18% 33.62%

Table 2. Experimental Results of the Chunker for Definition 3

File
Total

Words

Total

Sent.

Total

Chunks

Correct

Chunks

Correct

Sent.

Chunk Correct Rate

for Def. 4

Sentence Correct

Rate for Def. 4

A01 8,241 655 4,466 3,745 274 83.86% 41.83%

G01 6,225 367 3,303 2,653 86 80.32% 23.43%

J01 8,270 498 4,271 3,250 123 76.09% 24.70%

N01 11,653 958 6,363 5,579 491 87.68% 51.25%

Average 34,389 2,478 18,403 15,227 974 82.74% 39.31%

Table 3. Experimental Results of the Chunker for Definition 4

Tables 2 and 3 show the chunk correct rates and the sentence correct rates for Def-

initions 3 and 4. A chunked sentence is correct only if all the chunks in this sentence are

all correct. The experimental results demonstrate that Definition 4 (three

parts-of-speech) is more powerful than Definition 3 (two parts-of-speech). This is

because the former has a wider training window size than does the latter. Assume that the

chunk length is the number of parts-of-speech in a chunk. The distribution of the length

of the correct chunks is listed in Tables 4 and 5.

14 Yue-Shi Lee, Hsin-Hsi Chen

φ2

File\Length 1 2 3 4 5 6 7 8

A01
2,213

(47.82%)

1,534

(33.15%)

633

(13.68%)

195

(4.21%)

41

(0.89%)

9

(0.19%)

2

(0.04%)

1

(0.02%)

G01
1,471

(44.06%)

1,138

(34.08%)

517

(15.48%)

152

(4.55%)

48

(1.44%)

12

(0.36%)

1

(0.03%)

0

(0%)

J01
2,065

(45.92%)

1,460

(32.47%)

669

(14.88%)

249

(5.54%)

44

(0.98%)

8

(0.17%)

2

(0.04%)

0

(0%)

N01
3,064

(47.02%)

2,136

(32.78%)

1,014

(15.56%)

244

(3.74%)

49

(0.75%)

9

(0.14%)

1

(0.01%)

0

(0%)

Table 4. The Distribution of Chunk Length for Definition 3

File\Length 1 2 3 4 5 6 7 8

A01
2,100

(47.02%)

1,357

(30.39%)

716

(16.03%)

213

(4.77%)

59

(1.32%)

16

(0.36%)

4

(0.09%)

1

(0.02%)

G01
1,519

(45.99%)

981

(29.70%)

550

(16.65%)

193

(5.84%)

43

(1.30%)

12

(0.36%)

5

(0.16%)

0

(0%)

J01
1,950

(45.66%)

1,170

(27.39%)

741

(17.35%)

320

(7.49%)

68

(1.59%)

17

(0.40%)

5

(0.12%)

0

(0%)

N01
3,048

(47.90%)

1,848

(29.04%)

1,072

(16.85%)

300

(4.71%)

80

(1.26%)

13

(0.20%)

1

(0.02%)

1

(0.02%)

Table 5. The Distribution of Chunk Length for Definition 4

One-part-of-speech chunks cover about 46%. We further analyzed what grammatical

components constituted the one-part-of-speech chunks and found that most of these
chunks contain punctuation marks, nouns and verbs. This is because a proper name

forms the bare subject or object. A verb is presented in the form of third person and

singular, past tense, or base form. These three cases form about 68% of the

one-part-of-speech chunks.3 That shows our chunker is useful for segmenting the

part-of-speech sequence into significant chunks.

After analyzing the error chunked results, we find that many errors result from

conjunctions. For example, consider the following example:

3. The remaining 32% of the cases are randomly distributed.

Building a Bracketed Corpus Using Statistic 15

The BasicChunker will propose a wrong chunk due to the conjunction "and". This is

shown below:

Wrong Chunk : [in London and]

Furthermore, some parts-of-speech cannot be located at the end of chunks. Therefore, a

heuristic rule is applied to improve the performance. The parts-of-speech that cannot be

located at the end of chunks are partially listed as follows :4

(01) ABL (Pre-Qualifier) (02) ABX (Pre-Qualifier/Double Conj.)

(03) AT (Singular Article) (04) ATI (Singular or Plural Article)

(05) CC (Coordinating Conjunction) (06) CD-CD (Hyphenated Pair of Cardinals)

(07) CS (Subordinating Conjunction) (08) DOZ (does)

(09) OD (Ordinal) (10) QL (Qualifier)

(11) PP$ (Possessive Determiner) (12) TO (Infinitival to).

After application of this heuristic rule, Tables 6 and 7 show that the performance

increases 14.43% (11.72%) and 25.31% (24.75%) for the chunk and sentence correct

rates of Definition 3 (4), respectively.

File
Total

Words

Total

Sent.

Total

Chunks

Correct

Chunks

Correct

Sent.

Chunk Correct Rate

for Def. 3

Sentence Correct

Rate for Def. 3

A01 8,241 655 5,473 5,138 410 93.88% 62.60%

G01 6,225 367 4,100 3,794 178 92.54% 48.50%

J01 8,270 498 5,560 5,129 221 92.25% 44.38%

N01 11,653 958 7,612 7,231 658 94.99% 68.68%

Average 34,389 2,478 22,745 21,292 1,467 93.61% 59.20%

Table 6. Results of the Chunker after Applying the Heuristic Rule for Definition 3

4. These patterns were learned from the rest of the files in the LPC Corpus; i.e., A01, G01, J01 and N01 were
not included.

16 Yue-Shi Lee, Hsin-Hsi Chen

φ2

File
Total

Words

Total

Sent.

Total

Chunks

Correct

Chunks

Correct

Sent.

Chunk Correct Rate

for Def. 4

Sentence Correct

Rate for Def. 4

A01 8,241 655 5,191 4,920 442 94.78% 67.48%

G01 6,225 367 3,952 3,726 203 94.28% 55.31%

J01 8,270 498 5,146 4,746 232 92.23% 46.59%

N01 11,653 958 7,249 6,952 717 95.90% 74.84%

Average 34,389 2,478 21,538 20,344 1,594 94.46% 64.33%

Table 7. Results of the Chunker after Applying the Heuristic Rule for Definition 4

Next, the same criterion was adopted to calculate the precision rate and the recall

rate of the recursive chunker. The reason why we did not count how many bracket-pairs

produced by the RecursiveChunker exactly matched the bracket-pairs in the treebank is

that the RecursiveChunker produces binary trees as the parsed results, but the parsing

trees in the treebank are the n-ary trees as described in Figures 4 and 5. Thus, it is not

suitable to adopt such an evaluation criterion in the current situation. The reported

results, however, may be too optimistic.

Assume that the correct result T is the same as the above example (see Figure 4), and

that the chunked result B is "[[[A] [B]] [[C] [[[D] [E]] [[F] [[[G] [H]] [

[I] [J]]]]]]]" as shown in Figure 5. To compute the precision rate, the non-terminal

nodes in B are verified. That is, nodes 1-9 in B are verified. After verification, we find
that non-terminal nodes, 4, 5, 6 and 9, are wrong. This is because the terminal nodes, D,

E, F, G, H, I and J, are dominated by the non-terminal node 4 in B, but these terminal

nodes are dominated by three non-terminal nodes (i.e., 1, 2 and 3) in T. The other three

non-terminal nodes (i.e., 5, 6 and 9) in B have the similar interpretations. Thus, the

precision rate of the RecursiveChunker is 0.56 (5/9) in this case.

To compute the recall rate, the roles of B and T are reversed. In other words, B is

regarded as the correct answer, and the non-terminal nodes in T are verified. That is,

nodes 1-5 in T are verified. After verification, we find that non-terminal nodes, 2, 3 and

5, are wrong. This is because the terminal nodes, C, D, E and F, are dominated by the

non-terminal node 2 in T, but these terminal nodes are dominated by three non-terminal

nodes (i.e., 3, 4 and 6) in B. The other two non-terminal nodes (i.e., 3 and 5) in T have the

similar interpretations. Thus, the recall rate of the RecursiveChunker is 0.4 (2/5) in this
case.

Building a Bracketed Corpus Using Statistic 17

1

2 3

JI

4

6

7

9

HG

8
FED

5
CBA

Figure 5 A Chunked Result

Based on these two measures, the experimental results are shown in Tables 8 and 9.

These experiments were based on the Definition 4

File\Sentence Length 1-10 1-20 1-30 1-40

A01 83.30% 72.95% 68.45% 62.26%

G01 79.09% 71.28% 63.45% 60.17%

J01 77.52% 71.09% 61.14% 56.56%

N01 90.66% 76.20% 71.62% 69.14%

Average 86.14% 74.26% 65.96% 61.20%

Table 8. The Recall Rate of the Recursive Chunker

18 Yue-Shi Lee, Hsin-Hsi Chen

φ2

File\Sentence Length 1-10 1-20 1-30 1-40

A01 90.53% 84.91% 79.76% 77.92%

G01 89.59% 82.19% 78.26% 75.84%

J01 87.94% 81.78% 77.77% 75.38%

N01 94.59% 86.64% 81.41% 79.26%

Average 92.04% 83.58% 79.18% 76.89%

Table 9. Precision Rate of the Recursive Chunker

From Tables 8 and 9, the performance decreased with the length of the sentences. This

is because the longer the sentence is, the more complex the syntactic structure is. Also,

when the length of the chunks gets larger, the two/three parts-of-speech model will obtain

a worse approximation. Even so, the chunker is still a very useful tool when large-scale

treebanks are unavailable for grammar inference methods [Bod, 1993; Schabes et al.,

1993]. One feasible way to improve the performance of our chunker is to enlarge the

training corpus. Enlarging the training corpus will make a larger window size more

affordable. Thus, we can approximate Definition 2 more accurately. Corpus-sharing and

recent technologies such as automatic tagging [Church, 1988; Brill, 1992; Cutting et al.,

1992; Elworthy, 1994; Merialds, 1994; Tapanainen and Voutilainen, 1994] and tag

mapping [Chen and Lee, 1995b; Atwell et al., 1994] are suitable for a very large-scale

part-of-speech-tagged corpus, and so are part-of-speech-based chunkers.

6. Concluding Remarks

This paper has proposed two versions of probabilistic chunkers to develop different

levels of bracketed corpora. The basic chunker has a correct rate of more than 94% in

producing a partially bracketed corpus, and the recursive chunker also gives very

encouraging results in generating a fully bracketed corpus.

Besides being a milestone in the development of a treebank, this approach can be

applied to many natural language applications, such as extracting noun phrases [Chen

and Chen, 1994] and predicate-argument structures [Church, 1988; Church et al., 1989],

grouping words [Hindle, 1990] and gathering collocation [Smadja, 1993]. Because no

grammar rules are needed and part-of-speech-based corpora are much easier to get than
treebanks, the chunkers presented in this paper have potential for use in the future.

Building a Bracketed Corpus Using Statistic 19

Although these chunker algorithms performed well, some problems must be con-

sidered. For example, BasicChunker1 inserts a bracket at every position as the φ2 sta-

tistics keep increasing; thus, it tends to produce many false alarm errors. One feasible

way to solve this problem is to insert brackets only when their φ2 statistic measures fall

below a pre-set threshold. Otherwise, a bracket might be inserted at a particular point

even though the degree of coherence is high at that point, with the φ2 statistic measure

being only a little less than that of the next position. However, the pre-set threshold value

is also difficult to decide. This value depends on the corpus size and the domain of the

corpus. This is because different corpus sizes and domains may produce different

probability distributions. Thus, this threshold value is variant under these two conditions.

How to formulate this threshold value as a universal value by incorporating these two

features (corpus size and domain) must be investigated further.

Acknowledgments
We would like to express our gratitude to the reviewers for their valuable and constructive

comments.

References
Atwell, E. et al., "AMALGAM: Automatic Mapping Among Lexico-Grammatical Annotation

Models," Proceedings of the Balancing Act - Combining Symbolic and Statistical Approaches

to Language, 1994, pp. 11-20.

Black, E. et al., "A Procedure for Quantitatively Comparing the Syntactic Coverage of English

Grammars," Proceedings of DARPA Speech and Natural Language Workshop, 1991, pp.

206-311.

Bod, R., "Using an Annotated Corpus as a Stochastic Grammar," Proceedings of 6th European

Chapter of ACL, 1993, pp. 37-44.

Brill, E., "A Simple Rule-Based Part-of-Speech Tagger," Proceedings of Applied Natural

Language Processing, 1992, pp. 152-155.

Brill, E., "Automatic Grammar Induction and Parsing Free Text: A Transformation-Based

Approach," Proceedings of 33rd Annual Meeting of ACL, 1993, pp. 259-265.

Chen, K.H. and H.H. Chen, "Extracting Noun Phrases from Large-Scale Texts: A Hybrid

Approach and Its Automatic Evaluation," Proceedings of 34th Annual Meeting of ACL, 1994,

pp. 234-241.

Chen, H.H. and Y.S. Lee, "A Chunking-and-Raising Partial Parser," Proceedings of 4th

International Workshop on Parsing Technologies, 1995a, pp. 71-78.

20 Yue-Shi Lee, Hsin-Hsi Chen

φ2

Chen, H.H. and Y.S. Lee, "Development of a Partially Bracketed Corpus with Part-of-Speech

Information Only," Proceedings of 3rd Workshop on Very Large Corpora, 1995b, pp.

162-172.

Church, K.W., "A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text,"

Proceedings of Applied Natural Language Processing, 1988, pp. 136-143.

Church, K.W. et al., "Parsing, Word Association and Typical Predicate-Argument Relations,"

Proceedings of 1st International Workshop on Parsing Technologies, 1989, pp. 389-398.

Cutting, D. et al., "A Practical Part-of-Speech Tagger," Proceedings of Applied Natural Language

Processing, 1992, pp. 133-140.

Elworthy, D., "Does Baum-Welch Re-Estimation Help Taggers?" Proceedings of Applied Natural

Language Processing, 1994, pp. 53-58.

Framis, F.R., "An Experiment on Learning Appropriate Selectional Restrictions from a Parsed

Corpus," Proceedings of 15th International Conference on Computational Linguistics, 1994,

pp. 769-774.

Gale, W.A. and K.W. Church, "Identifying Word Correspondences in Parallel Texts," Proceed-

ings of DARPA Speech and Natural Language Workshop, 1991, pp. 152-157.

Hindle, D., "Noun Classification from Predicate-Argument Structures," Proceedings of 30th

Annual Meeting of ACL, 1990, pp. 268-275.

Johansson, S., The Tagged LOB Corpus: Users' Manual, Bergen: Norwegian Computing Center

for Humanities, 1986.

Merialds, B., "Tagging English Text with a Probabilistic Model," Computational Linguistics, Vol.

20.2(199): 155-171.

Pocock, R.J. and E.S. Atwell, "Treebank-Trained Probabilistic Parsing of Lattices," Technical

Report 93.30, School of Computer Studies, Leeds University, 1993.

Schabes, Y. et al., "Parsing the Wall Street Journal with the Inside-Outside Algorithm,"

Proceedings of 6th European Chapter of ACL, 1993, pp. 341-347.

Smadja, F., "Retrieving Collocations from Text: Xtract," Computational Linguistics, 19. 1(1993):

143-178.

Tapanainen, P. and A. Voutilainen, "Tagging Accurately - Do'nt Guess If You Know," Proceed-

ings of Applied Natural Language Processing, 1994, pp. 47-52.

�������� �� � �	��
 ���	������
 ��� �	��� ��� ��� �	���

The Lancaster-Oslo/Bergen (LOB) Corpus is a million-word collection of present-day

British English texts. It contains 500 text samples of approximately 2,000 words dis-

Building a Bracketed Corpus Using Statistic 21

tributed over 15 categories. In this corpus, each word is accompanied by a part-of-speech

tag. There is no syntactic bracketing. Table 10 gives an overview of the Lancaster Parsed

Corpus.

Category # of Words Category # of Words Category # of Words Category # of Words

A 89,139 E 76,916 J 161,907 N 59,390

B 54,447 F 89,094 K 59,205 P 59,382

C 34,321 G 155,342 L 49,145 R 18,203

D 34,388 H 60,769 M 12,120 Total 1,013,768

Table 10. An Overview of the LOB Corpus

The Lancaster Parsed Corpus is a modified and condensed version of the LOB Corpus.

It only contains one sixth of the LOB Corpus but involves more information than the

LOB Corpus. The corpus consists of fifteen kinds of texts (about 150,000 words). Each

category corresponds to one file. The following shows a snapshot of the Lancaster

Parsed Corpus.

A01 1

[S[P by_IN [N Trevor_NP Williams_NP N]P] ._. S]

A01 2

[S[N a_AT move_NN [Ti[Vi to_TO stop_VB Vi][N \0Mr_NPT Gaitskell_NP N][P from_IN

[Tg[Vg nominating_VBG Vg][N any_DTI more_AP labour_NN life_NN peers_NNS

N]Tg]P]Ti]N][V is_BEZ V][Ti[Vi to_TO be_BE made_VBN Vi][P at_IN [N a_AT

meeting_NN [Po of_INO [N labour_NN \0MPs_NPTS N]Po]N]P][N tomorrow_NR

N]Ti] ._. S]

A01 3

[S&[N \0Mr_NPT Michael_NP Foot_NP N][V has_HVZ put_VBN V][R down_RP R][N a_AT

resolution_NN [P on_IN [N the_ATI subject_NN N]P]N][S+ and_CC [Na he_PP3A Na][V

is_BEZ V][Ti[Vi to_TO be_BE backed_VBN Vi][P by_IN [N \0Mr_NPT Will_NP Griffiths_NP

,_, [N \0MP_NPT [P for_IN [N Manchester_NP Exchange_NP N]P]N]N]P]Ti]S+] ._. S&]

A01 4

[S[Fa though_CS [Na they_PP3AS Na][V may_MD gather_VB V][N some_DTI left-wing_JJB

22 Yue-Shi Lee, Hsin-Hsi Chen

φ2

support_NN N]Fa] ,_, [N a_AT large_JJ majority_NN [Po of_INO [N labour_NN \0MPs_NPTS

N]Po]N][V are_BER V][J likely_JJ J][Ti[Vi to_TO turn_VB Vi][R down_RP R][N the_ATI

Foot-Griffiths_NP resolution_NN N]Ti] ._. S]

A01 5

'_' [S[V abolish_VB V][N Lords_NPTS N] **'_**' ._. S]

These are extracted from the first five sentences of category A. Before each sentence, a

unique reference number, e.g., "A01 1", denotes its source. Each word is appended with

a lexical tag, e.g., "by_IN", "Trevor_NP". The syntactic tag is shown by means of

opening and closing brackets.

To indicate that phrases or clauses are coordinated, the symbols "&", "-" or "+" will

be used at the end of a phrase or a clause tag. An example is listed as follows:

[N& mothers_NNS,_,[N- children_NNS N-] [N+and _CC sick_JJ people_NNS N+]
N&]

The first coordinated phrase is not labeled with any tag. The second and the third

coordinated phrases are labeled N- and N+, respectively. This is because N- or N+ tends

to include an ellipsis. Table 11 gives an overview of the Lancaster Parsed Corpus. In our

experiments, those parsed sentences that did not begin with "[S" and end with "S]" were

removed from the corpus. Thus, "A01 5" was deleted.

Category # of Words Category # of Words Category # of Words Category # of Words

A 9,410 E 9,356 J 8,336 N 15,751

B 9,999 F 8,562 K 13,587 P 16,766

C 8,225 G 6,813 L 15,556 R 9,443

D 10,110 H 6,524 M 9,179 Total 157,617

Table 11. An Overview of the LPC Corpus

Building a Bracketed Corpus Using Statistic 23

24 Yue-Shi Lee, Hsin-Hsi Chen

