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applications in computer vision. For example, the automatic control of
stone-breaking machines, which perform better if the sizes of the stones
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mentation in size inspection for almost round stones with high or low
texture. Although our experiments are focused on stones, the algorithm
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light sources at four different positions one at a time, to take four images.
Then we compute the image differences and binarize them to extract
edges. We explain, step by step, the photographing, the edge extraction,
the noise removal, and the edge gap filling. Experimental results are
presented.
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1 Introduction

1.1 Motivation

A typical stone-breaking machine has two rollers to squeeze
and break stones, as shown in Fig. 1. To use the machine,
we should adjust the space between the two rollers properly,
according to the sizes of the stones. On one hand, if large
stones come, we should adjust the space wider, or the lifetime
of the rollers will be shortened; on the other hand, if small
stones come, we should adjust the space narrower, or the
stones will slip through, and electricity will be wasted. Hence,
segmentation on stone images for size inspection is important

if we want automatic control of the machine.

1.2 Sun?fmry
If the stones have some high-contrast texture, a traditional
gradient edge detector will find many false edges. If the stones
have almost no texture, it will be hard for a stereo image
technique to match corresponding points.’ Similarly, a tra-
ditional gradient edge detector will fail to find the edges
between two stones with almost the same brightness. Thus
we use four light sources to the north, south, west, and east
of the camera, one at a time, to photograph images and then
use image differences to detect the shadows, which occur at
the edges, for edge extraction. The image differences are
computed for each pair of images with light sources at op-
posite sides, to extract edges in both north-south (N-S) and
east-west (E-W) directions.

Some related works on edge detection are Refs. 2,3. They
extract edges from a source image rather than from image
differences.
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Treating image differences as edge responses, we binarize
them to get binary edge images in both N-S and E-W direc-
tions. Usually, a single-threshold scheme cannot acquire
good edge images. We propose an original binarization
scheme using local and global thresholds.

After the binarization comes the edge imaging, imple-
mented as the binary OR of binary edge images in the N-S
and E-W directions. After the edges are extracted, we remove
the noise by connected-component analysis, to get a clearer
edge image.

Due to some inevitable problems explained later, the ex-
trdcted edges will not all be linked. General edge-linking
techniques seem unable to solve the problem. A snake
algorithrn5 or front propagation algorithm may fill the gaps
but will fall into local minima, as shown in Fig. 2. We detect
the terminals of edge pieces by a corner detector using a K-
cosine algorithm,7’8 and we propose a terminal extension
algorithm to fill the edge gaps. Some related proposals for
corner detection are in Refs. 9 to 12. They may be chosen
to improve performance in certain cases of segmentation, but
we choose the original K-cosine algorithm for simplicity, and
it suffices.

2 Setup for Photographing

We are to take four images with four light sources to the
north, south, east, and west of the camera, one at a time.
Figure 3 shows the setup with the light source to the east (E)
of the camera. The other light source positions are similar,
and to the north (N), south (S), and west (W), respectively.
The four source images are shown in Fig. 4, which was taken
with a CCD camera with lens of focal length 25 mm. The
resolution is 479H X 632W, and the distance between lens
and the stones is about 62 cm. Each light source is about 7
to 8 cm away from the center of the lens. In our experiments,
the sizes of the stones are about 5 X 5 X 2 to 8 X 6 X 5 cm.
The light source is a frosted 40-W light bu]b, which provides
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Fig. 1 Side view of the rollers of a stone-breaking machine

----- Possible snake contour: bad shortcut at bottom-left comer.

Fig. 2 Snake algorithm will fall into local minima in some cases.

equal illuminance in all directions. Light bulbs of clear glass
will generate uncontrollable patterned light and degrade the
subsequent processing of image differences.

3 Algorithm and Experimental Results

3.1 Absolute Image Difference

Let the four source images be N, S, E, and W, corresponding
to the images with light sources to the north, south, east, and
west of the camera, respectively. We can see that the major
differences between the four images are in the positions of
the shadows. We compute the absolute image differences,
IIN– Sl[ and /1.E– W]/, where 11.]1stands for absolute value, to
extract edges from the shadows.

As we can expect, the absolute image difference IIN– Sll
will have larger values at the horizontal edges of the stones,
but smaller values at edges in other directions and non-edge
pixels, since the shadows will differ at horizontal edges. Sim-
ilarly, IIE – W1/has the same effect at vertical edges. Figure 5
shows the histogram equalized absolute image differences
for viewing.

3.2 Local and Global Thresholding

To get binary edge images in both N-S and E-W directions,
we binarize the absolute image differences. Using a single
global threshold will result in edge images with large gaps
between broken edge segments. Thus we combine local
thresholding and global thresholding to extract edges and get
edge images with small gaps.

For local thresholding, we define a local thresholding con-
dition, to test if a pixel has its intensity a% higher than the
average intensity of its local 13 X 13 window area or not.
Those that pass the local thresholding condition will be
nCamera

~t!!) Light source
\

‘l\

Fig. 3 Global view of the camera setup.

marked as white; the others as black. Applying local thresh-
olding to IIN– S]1and IIE– W1/, we get two images, LTHRn,
and LTHRCW, as shown in Fig. 6. The percentage @ is set to
20 in our experiments.

For global thresholding, we binarize images, with thresh-
old at a little higher percentage (~%) than the expected per-
centage (y70) of edge pixels. The percentage y is typically
about 15, and ~ is set to 22 in our experiment. That is, the
brightest 22% of pixels will pass the global threshold con-
dition and be marked as white, and the others as black. Ap-
plying global thresholding to IIN – Sll and (IE– Wll, we get
two images, GTHRnS and GTHRCW, as shown in Fig. 7.

To combine local thresholding and globa[ thresholding,
we compute THRns and THR.W, as shown in Fig. 8, by the
following equations:

THRI,, = LTHRn, AND GTHRns ,

THRCW= LTHR=W AND GTHR,W

Here AND denotes the binary AND operator.
To gather edge information on both the N-S and E-W di-

rections, we compute the combined edge image, THRCo~billed,
as shown in Fig. 9, by the following equations:

THRCo~bined= THRn, OR THRC,V .

Here OR denotes the binary OR operator.
We do not set the global threshold value at the exact

percentage of edge pixels, not only because it is hard to know
the exact percentage, but aIso because we rely highly on local
thresholding, which extracts edges more effectively. Global
thresholding only helps us to eliminate the false edges ex-
tracted by local thresholding at pixels of small intensities.
Thus a somewhat loose condition for globaI thresholding will
allow more edge pixels, and aIso noise pixels, to pass the
threshold, and leave them to be distinguished by local thresh-
olding. Local thresholding is unstable at pixels of small in-
tensities, since when the intensity is small, a little change in
intensity will make a large change in percentage, and our
local thresholding is based on relative intensity. In the local-
thresholding results (Fig. 6), we can see many false edge
OPTICAL ENGINEERING /January 1996 /Vol. 35 No. 1 / 263
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(b)

(d)

Fig. 4 Source images with light sources to four directions (a) N, (b) S, (c) E, and (d) W to the camera
The resolution is 479H x 632W
pixels at the locations with low intensities in image dif’fer-
~nces (Fig. 5). However, the false edge pixels cannot paSS

the global threshold (Fig. 7) in either the N-S or the E-W
direction.

Stones generally are very Lambertian. but not perfectly
Lambertian. IIiurninating an object that is not Lambertian
will result in bright spots in the image, caused by direct
reflection of the light source. The positions of the bright spots
change as the positions of the light sources change. Thus we
will get significant image differences at the bright spot areas,
and obtain false edges, if only a single global threshold is
adopted. Because stones are very Lambertian, the intensity
of pixels in bright spot areas will change smoothly. Thus
pixels in bright spot areas cannot pass the local thresholding
condition, and will be marked as non-edge pixels. We can
see many false edge pixels in globa[ threshokling results
(Fig. 7) in bright spot areas of the source images (Fig. 4).
However, the false edge pixels cannot pass local threshold
(Fig. 6) in either the N-S or the E-W direction.

For choosing the parameter CX,the stronger the contrast
between shadows and stones in the source image is, the better
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the edge image will be, and the higher the value at which u
can be set. Specifically, what we want to distinguish in the
thresholding is the edge pixels and the non-edge pixels. In
the absolute image differences, edge pixels come from dif-
ferences in brightness between shadows and stones, while
non-edge pixels come from differences in brightness between
stones illuminated by light sources at different positions. Thus
the parameter CLdepends on the contrast of the two differ-
ences, while the two differences themselves depend only on
the illumination, including the gray levels of the stones and
the brightness of the light source. Thus the darker the stones
are, the smaller the difference of the two differences will be,
the worse the edge image will be, and ~he lower the value at
which a can be set.

The parameter @can be set to a percentage a little higher
than the expected percentage of edge pixels, and /3 has little
effect, because global thresholding only helps local thresh-
olding at the pixels of low intensity in image difference.

The window size for local thresholding depends on the
thickness of the shadows, which depends on the thickness of
the stones and the distance between the light source and the
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(a)

(b)

Fig. 5 Histogram-equalized absolute image differences for viewing:
(a) Hist (IIN- S11). (b) Hist(llE- Wll). Hist (.) stands for histogram
equalization.
stones. The thicker the stones are and the shorter the distance
between the light source and stones, the thicker the shadows
will be, and the larger the window size should be set. In our
experimental results, a window size of 7 X 7 is good, and can
filter out much of the noise. For demonstrating possible noise
spots, and some typical bad cases, we use a window size of
13X13.

3.3 Noise Removal for the Edge Image

After the thresholding, the edge image has small spots of
noise. For noise removal, we use the connected component
algorithm on THRCon,bi,,.d to filter out small white compo-
nents less than 40 pixels and small black components less
than 400 pixels. The result image, EDGE, is shown in Fig. 10.
We assumed that stones whose areas are smaller than 400
pixels do not exist. In practice, stones of such small sizes are
unimportant and thus ignorable. Some noise components ex-
ceeding 40 pixels may exist. This problem can be solved by
a convex hull algorithm after the segmentation. We discuss
it in Section 4.2.
Fig. 6 Local thresholding: Pixels 20% brighter than average bright-
ness in the local 13x 13 area will pass the threshold and be marked
as white. (a) LTHRns = LThr20.,d(IN– SI ), and (b) LTHR,W
= LThr20.,o(IE– WI), where LThr20.,o () stands for our local thresh-
olding with a =20.
3.4 Smoothing the Edge Boundaries and Using a
K-Cosine Algorithm to Extract Edge Terminals

The edge image has many gaps. Figure I I shows one of the
reasons why edge gaps form. We trace the edge boundaries
and find the edge terminals to fill the edge gaps.

For smoothness, we dilate each edge pixel in EDGE to
all its eight neighbors, called EDGEtl,,C~,as shown in Fig. 12.
This results in a little less accurate edge image; however, it
provides more accurate K-cosine values for later processing.

Figure 13 shows the boundaries of edges. For each pixel
along the boundaries, we compute the K-cosine values by
tracing the boundary counterclockwise. Each edge pixel is
classified as a left turn or right turn, according to the angle
used to compute the K-cosine value. By thresholding K-
cosine values we can find corners, at which we select the
right-turn pieces to be the terminal pieces of the edges, as
shown in Fig. 14.
OPTICAL ENGINEERING / January 1996/ Vol. 35 No. 1 / 265
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3.5 Terminal Extension to Fill Gaps

Let the two end points of the terminal pieces be PI and P2,
the midpoint of the piece be Pmid, the midpoint of PI and P2

be P,,,,,,,,, and the vector V be Prnca,,P,,,i~ Let the two unit
vectors U and W have angle + between each of them and
V. We search the triangle spanned by SU and sW, where s
is a scalar, to fill the gaps, as explained in Fig. 15. If a white
pixel that is not locally connected to P,,,id is found in the
triangle, we decide the space between the white pixel and
P,,,i,i is the gap, and directly link the white pixel to Prnid by
a straight line segment. Contrarily, if no white pixels are
found in the triangle, we draw a white line segment from
P,,,id to the midpoint of the other side of the triangle, that is,
the altitude of the triangle from Pn,id. The result is shown in
Fig. 16. The parameter + is set to 35 deg, ands is set so that
the altitude of the triangle described above is 30, that is, s = 30

see+ =30 sec (35 deg)=36.6. Note that if a gap of length 50
is encountered, and the gap has two terminal pieces detected
266 / OPTICAL ENGINEERING/ January 1996 /Vol. 35 No. 1
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Fig. 10 EDGE, noise-removed edge image: White connected com-
ponents less than 40 pixels and black connected components less

than 400 Pixels in THR.omtxned are filtered out.

Light sourcel Light source2

“’;$$ .?. -,.”...

,..

Tan~ent line Tangent line

Fig. 11 No shadow exists under each of the two light sources at the
same sides of both tangent lines, so no significant difference is on
the pointed edge. Thus some edge pixels will not be detected, and
edge gaps form,

Fig. 12 Dilation of edge image to smooth edge boundaries
by our aIgorithm, then the terlminal extension algorithm will
extend the first terminal piece by 30, since the search for
edge pixels fails. On the second terminal piece, the algorithm
will search for and find the extension part of the first terminal,
and then link them by a line segment, since the gap will be
reduced to about 20 after the first extension. Thus the two
line segments fill the gaps.

We can expect that the best chosen @ is independent of
stone size, and a little dependent on gap size. In experiments,
we find that @ is not sensitive to noise, stone size, or gap size,
and can be set to a constant. The parameters depends on gap
size. The larger the gaps are, the higher the value at which s
should be set.

3.6 Removal of Un wanted Filling Line Segments

Some line segments for gap filling may be false. The un-
wanted line segments are all thin, and the pixels on the thin
line will have less white pixels in their neighborhood than
OPTICAL ENGINEERING / January 1996/ Vol. 35 No. 1 / 267
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normal thick boundary pixels, as illustrated in Fig. 16. Thus
we can detect the pixels on the thin lines, and eliminate the
ones that are not separators of any two or more regions.
Figure 17 shows the result, and we complete the whole seg-
mentation.

3.7 Biased Estimation

It should be noted that this method is a biased estimation, as
shown in Fig. 18. Ordinarily, stones will not be perfectly
round, so our object model consists of two arcs and two
straight lines. The object model will shrink to a ball when L
equals zero. The part of the object to the right of the tangent
line L, will be in shadow under light source 1 but will be
bright under light source 2. This part will be detected as edges.
Similarly, the part to the left of Lz will be detected as edges.
268 / OPTICAL ENGINEERING/ January 1996/ Vol. 35 No. 1
Fig. 17 The complete segmentation result unwanted line segments
removed from the gap filling result.
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Fig. 18 Geometrical and radiometric model.

Thus the size of the part of the object between the two tangent
lines L] and Lz will be the measured object size (MOS). Since
only the part of object between the tangent lines L3 and L4
can be viewed by a perspective camera, the size of this part
will be the best measurable object size (BMOS). The exact
object size (EOS) is 2L + 2R, The relations are as follows:

[(d, +L)2+Zfz-Rz][’1 sin+l=lt cos$l+L+dl , (1)

[(d2 + L)2 +H2 –R*]’” sin@2=R cosr$2 + L+ d2 , (2)

MOS=R COS$, +R COS4Z+2L , (3)

[(d– L)z+H2– Rz]”z sinal =R Cosa.l +L–d , (4)



IMAGE SEGMENTATION TO INSPECT 3-D OBJECT SIZES
[(d+ L)2+H2– R2]1n sina2=R Cosaz +L+d , (5)

BMOS=R COSCJ., +R COS(12 -t-2L , (6)

d] – d2
d=—

2“
(7)

In some cases other than that in the figure, when the related
positions of the camera, the light, and the object differ, the
formulas may differ in certain signs (plus or minus) for some
certain terms. The relations are a little complex. Some typical
parameters for the bias are listed in Table 1.

3.8 Performance

The algorithm above is implemented on a Sun SPARCstation
10 machine. Although the program is not optimized, it can
still complete the work in 50 s. In fact, it should be done in
7 s, including the computation of the stone size, which is not
included in this paper. The time can be shortened still further
by better hardware, an optimized program, or perhaps a par-
allel program on a parallel computer. More experimental
results are shown in Figs. 19 to 23.

4 Conclusion and Future Work

4.1 Conclusion

We have proposed an algorithm, including picture photo-
graphing, edge extraction, noise removal, and edge gap fill-
ing, for stone image segmentation. Our key idea is to use
image differences to be able to process typical stones with
both high and low texture. For edge gap filling, we make use
of a K-cosine algorithm to find edge terminal pieces.

Black stones whose brightness is very similar to that of
the shadows cannot be processed successfully by this algo-
rithm, since we use the image difference between brightness
of stones and shadows to detect edges. Similarly, it is also
hard to detect edges of black stones with human eyes. The
stones to be broken are usually brown or gray in the real
world. Another application is to break stone-shaped concrete
pieces, which are not black either.
Table 1 Typical parameters versus error rates: the B rate stands for (MOS – BMOS)/BMOS, and the
E rate stands for (MOS – EMOS)/EMOS.

Free Variable Constrained Variable Error Rate

H L R dl dz d rjl ~~ al ct~ Mos BA40S EOS B Rate E Rate

62 1.5 1 8 8 0 0.168 0.168 0.040 0.040 4.972 4.998 5.000 -0.5% -0.5%

62 1.5 1 9 7 1 0.184 0.152 0.024 0.056 4.971 4.998 5.000 -0.5% -0.6%

62 0.5 2.5 8 8 0 0.151 0.151 0.024 0.024 5.941 5.999 6.000 -0.9% -1.0%

62 0.5 2.5 10 6 2 0.182 0.119 -0.008 0.056 5.941 5.996 6.000 -0.99?0 -1.0%

62 0.5 2.5 18 -2 10 0.301 -0.008 -0.137 0.182 5.887 5.935 6.000 -0.8’?ZO -1.9’%0
OPTICAL ENGINEERING /January 1996 /Vol. 35 No. 1 /269
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the results only slightly, and is less critical. For estimating
a automatically, the discussion of the principles for its choice
in Section 3.2 may be helpful.

To estimate sizes of stones, which is one direction for
future work, we should first estimate the missing edges and
occluding edges. Although the line segments for gap filling
cannot represent the true edges of the stones, we can retrace
the edges of the stones after the segmentation, and use the
resulting edge information, except the line segments, to es-
timate the missing edges, including the improper line seg-
ments and the occluded edges. The analysis of these edges
will help to eliminate the small noise spots of size exceeding
40 pixels mentioned in Sec. 3.3. After all this, sizes of the
stones can easily be estimated.
270 / OPTICAL ENGINEERING/ January 1996/ Vol. 35 No. 1
(a)

(b)

Fig. 21 Experiment 3: (a) one of the four source images; (b) the
segmentation result.
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(a)
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Fig. 22 Experiment 4: (a) one of the four source images; (b) the
segmentation result.
(a)

(b)

Fig. 23 Experiment 5: (a) one of the four source images; (b) the
segmentation result.
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