
Information Processing Letters 32 (1989) 89-93
North-Holland

24 July 1989

USING FEWER PROCESSORS TO REDUCE TIME COMPLEXITIES
OF SEMIGROUP COMPUTATIONS

Y.C. CHEN and Z.C. YEH

Institute of Information Engineering, Totung Instirute of Technology, Taipei. Taiwan, Rep. Chino

G.H. CHEN

Deportment o/ Computer Science and Information Engineering, National Toiwon University, Taipei. Taiwan. Rep. Chino

Communicated by K. Ikeda
Received 6 January 1988

For parallel algorithms, their execution time consists of two parts: the computation time and the communication time. The
execution time reaches a minimum when the other two are balanced. In this paper, we propose a strategy to reduce the
execution time when it is dominated by the communication rime. The strategy is to use fewer processors to decrease the
communication time and therefore reduce the execution time. Based on this strategy, we have successfully reduced time
complexities of semigroup computations. To be more precise, any parallel algorithm performing semigroup computations of N
data items can be improved if it uses N processors (each holds one data item) and has time complexity O(Nrlog’N). q > 0

and r > 0 (both are not zero). The improved algorithm is designed on the same parallel architecture as the original one, but
using only N”(r+‘)/log’N processors; the time complexity is O(N q’(q+‘)log’N), which achieves the optimal speedup. Some

previous algorithms can be improved using this strategy, although they were declared to be optimal. Also, our result
generalizes both Carlson’s and Miller and Stout’s results, which are alI restricted to 2-dimensional mesh-connected computers.

Keywords: Parallel processing, computational complexity

1. Introduction

A semigroup computation can be described by
a tuple (*, S), where * is an associative operator
and S= (ui, Us,..., ahr} is a set of data items.
The problem is to compute a, * a2 * . . . * uN.
Some well-known semigroup computation prob-
lems are to compute the sum, product, maximum,
and minimum of N data items. Recently, drastic
advances in hardware technology have made it
possible to design various parallel architectures.
As a result, many parallel algorithms have been
proposed to perform semigroup computations of
N data items (1,4,5,7,8] (see Table 1). These al-
gorithms are designed on some specific parallel
architectures and need N processors, each holding
one data item. Moreover, they were declared to be

optimal with respect to the number of processors
used on the designated parallel architectures.

For parallel algorithms, their execution time
consists of two parts: the computation time and
the communication time. Often, the communica-
tion time dominates the execution time. To de-
crease the communication time, one possible way
is to reduce the machine size, that is, to use fewer
processors. However, the computation time will be
increased at the same time. Consequently, if the
communication time and the computation time
are not balanced, we can then adjust the number
of processors used to reduce the execution time.

Many researchers have shown that by using
fewer processors the execution time does not in-
crease [2,11] or even does decrease [3,6]. In this
paper, we show that by using fewer processors the

0020-0190/89/S3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland)
89

Volume 32, Number 2 INFORMATION PROCESSING LETTERS 24 July 1989

Table 1

Previous results about semigroup computations

Parallel Architectures Number of Execution Time

Processors Required
Used

Ring Structure N

Broadcasting Protocol
Multiprocessor N

(BPM)

K-dimensional Array
Processor N

K-dimensionai Array
Processor With A
Global Bus N

K-dimensional Array
Processor With

Multiple Broadcasting N

Tree Machine N

Hypercube Machine N

O(N)

average O(log N)
worst O(N)

O(N”x)

O(N’/‘K+”)

O(N
I,K(K+ 1,

o(log N)

o(log N)

time complexities of semigroup computations can
be reduced. Our result generalizes both Carlson’s
and Miller and Stout’s results [3,6], which are all
restricted to 2-dimensional mesh-connected com-
puters. Based on our result, some previous al-
gorithms [1,7,8] can be improved accordingly. The
improved algorithms also achieve the optimal
speedup. The remainder of this paper is organized
as follows. In Section 2, we describe a strategy to
reduce the execution time of semigroup computa-
tions. Then, in Section 3, the relationship between
the execution time and the number of processors
used are discussed. In Section 4, we give some
improved parallel algorithms for semigroup com-
putations. Finally, in Section 5, concluding re-
marks are given.

2. A strategy to reduce time complexities of semi-
group computations

There exist several parallel algorithms [1,7,8]
for performing semigroup computations. In these
algorithms, the communication time dominates the
execution time. Besides, the communication time
decreases quite a little when fewer processors are

used (therefore need more memory in every
processor). For such algorithms, we have a method
to reduce the execution time. This method can be
stated formally as follows.

Theorem 1. Assume that there exists an algorithm
performing semigroup computations. If this al-
gorithm uses N processors (every processor ho&
one data item) and takes 0(Nq) time, q > 0, to
perform a semigroup computation of N data items,
then this algorithm can be improved. The improved
algorithm uses only N’/(q+ ‘) processors and re-
quires 0(Nq/(q+‘)) time, which achieves the opti-
mal speedup.

Proof. We prove this theorem by proposing a new
algorithm. The new algorithm uses p (p -C N)
processors (and therefore N/p data items are
placed into every processor) and consists of the
following two steps.

Step 1. Perform a semigroup computation of
N/p data items in every processor. This step takes
0(N/p) time. After Step 1 is completed, an inter-
mediate result is obtained in every processor.

Step 2. Use the original algorithm to perform a
semigroup computation of the p intermediate re-
sults. This step takes 0(pq) time.

The time complexity of the new algorithm is
O(max(N/p, p’}), which is a function of p. The
minimum occurs when 0(N/p) = 0(pq). Thus,
the new algorithm has the minimum execution
time 0(Nq/(q+ ‘)) when p = N’/(q+ ‘) processors
are used. 0

There exist other parallel algorithms perfor-
ming semigroup computations. In these al-
gorithms, the communication time still dominates
the execution time. But the communication time
decreases just a little, while the computation time
increases quite a lot, when fewer processors are
used. Thus, the execution time can hardly be
reduced, although the number of processors can
be reduced. However, the optimal speedup can
still be achieved. This fact can be stated formally
as follows.

Theorem 2. Assume that there exists an algorithm
performing semigroup computations. If this al-

Volume 32, Number 2 INFORMATION PROCESSING LETTERS 24 July 1989

gorithm uses N processors (every processor holds

one data item) and takes O(log’N) time, r > 0, to

perform a semigroup computation of N data items,

then this algorithm can be improved. The improved

algorithm uses only N/log’N processors and re-

quires the same time, which achieves the optimal

speedup.

The proof of Theorem 2 is almost the same as
that of Theorem 1. So it is omitted. Tang and Lee
[ll] have a similar result for r = 1, but their result
is restricted to the shared-memory computer.
Combining the two theorems, we have the follow-
ing corollary.

Corollary. Assume that there exists an algorithm

performing semigroup computations. If this al-

gorithm uses N processors (every processor holds

one data item) and takes 0(Nqlog’N) time, q >, 0

and r > 0 (both are not zero), to perform a semi-

group computation of N data items, then this al-

gorithm can be improved. The improved algorithm

uses onIy N v(~+” / Iog’N processors and requires

0(Nq/(q+‘)logrN) time, which achieves the optimal

speedup.

From the above discussion, we conclude that
“more processors” is not always favorable for
parallel computations.

3. Discussion

From the proof of Theorem 1, it is known that
the execution time of the new algorithm depends
on the number of processors used (therefore de-
pends on the memory size required in every
processor). In this section, we discuss their rela-
tionships. For easy discussion, we define the fol-
lowing notations:

P: the number of processors used;
M: the memory size required in every processor;
T: the execution time required.

It is clear that the new algorithm proposed in
the proof of Theorem 1 has

P =p, M= N/p,

and

(19 2)

T= o(max{ N/p, pq}). (3)

It is not difficult to derive the following equations

N

Nq

Nq’(q+‘)

T = 0 (max {N/P, P‘J })
A

Fig. 1. The relationship between T and P.

91

Volume 32, Number 2

Nq

INFORMATION PROCESSING LETTERS 24 July 1989

T = 0 (max { hl, (N/M)4 })

I Nq/(q+‘)

Fig. 2. The relationship between T and M.

for P and T (see Fig. 1):

PT= N for1 <P < N’/(q+“, (4)

T=Pq for N”(q+“,< P < N. (5)

When P is smaller than N’/(q+‘), the computa-
tion time dominates the execution time. If P in-
creases gradually, then more parallelism can be
obtained. So, the computation time decreases,
which results in less execution time. Since the
increased processor can fully share the computa-
tion loads, the optimal speedup can be achieved.
When P increases to N”(q+l), the computation
time is balanced with the communication time.
Thus, the minimum execution time is attained.
When P is greater than N’/(q+l), the communica-
tion time dominates the execution time. Therefore,
increasing P will result in more execution time, as
a consequence of increasing communication time.

Moreover, it is clear that M and P have the
following relationship:

MP=N. (6)

Substituting N/M for P, (4) and (5) become

T=M for Nq/(q+l)g Mg N, (7)

and

MqT = Nq for 1 < Ma Nq/(q+l) (f-3)

92

respectively. Equations (7) and (8) represent the
relationship between T and M which is also shown
in Fig. 2.

4. Examples

In this section, we consider two parallel al-
gorithms which have been proposed for perfor-
ming semigroup computations. Both algorithms
use N processors, where N is the number of
data items. Initially, every processor holds one
data item. The first algorithm [8] was designed
on a k-dimensional mesh-connected computer
(k-MCC) with single broadcasting. It takes

O(N ‘/(k+l)) time to complete the execution, which
has been proved to be optimal [9]. The second
algorithm [7] was also designed on a k-MCC, but
with multiple broadcasting. It takes 0(N’/k(k+lJ)
time to complete the execution, which was also
proved to be optimal [7].

Using the proposed method, we can improve
these two algorithms. For the first algorithm, we
use only N(k+l)/(k+Z) processors, each holding
N’/(k+2) data items. First, each processor per-
forms the semigroup operations on their own
N’/(k+2) data items. This step takes 0(N’/(kt2))
time. After this step is completed, an intermediate

Volume 32. Number 2 INFORMATION PROCESSING LETTERS 24 July 1989

result is held in every processor. Then, the final
result can be obtained by applying the original
algorithm to the N (k+‘)/(k+2) intermediate results.
This step takes O(N ‘/(k+2)) time. So, the total
execution time required for the improved al-
gorithm is

O(max{ N L’(k+*), N’/‘k+*‘}) = 0(Ni/(k+*)).

Following the same way, the second algorithm can
be improved to O(N’/(k(k+l)+l)) time, while
Nkfkt’)/(k(k+‘)+l) processors are used. Both the
two improved algorithms achieve the optimal
speedup.

Besides, on a k-MCC without broadcasting, a
semigroup computation of N data items can be
performed in O(N’/k) time [S]. Similarly, this
result can be further improved to O(N’/(kC1))
time using Nk/(k+‘) processors. The optimal
speedup is also achieved for this example.

5. Concluding remarks

In this paper, we have shown that by using
fewer processors the time complexities of semi-
group computations can be reduced. At the same
time, we extend both Carlson’s, and Miller and
Stout’s results. We also discussed the relationship
between the execution time and the number of
processors used. It can be seen that several previ-
ous algorithms are improved using the proposed
method, although they were declared to be opti-
mal. All the improved algorithms achieve the opti-

mal speedup. One possible research problem is to
prove that the execution time for the improved
algorithms is minimal when N or fewer processors
are used. We strongly believe that this is true.

References

[l] S.H. Bokhari, Finding maximum on an array processor
with a global bus, IEEE Tmns. Comp. 33 (1984) 133-139.

[2] D.A. Carbon, Parallel processing of tree-like computa-
tions, in: Proc. 4rh Internat. Conf: on Distributed Comput-
ing Systems (1984) 192-200.

[3] D.A. Carlson, Performing tree and prefix computations
on modified mesh-connected parallel computers. in: Proc.
Internat. Conf. on Parallel Processing (1985) 715-718.

[4] S.P. Levitan. Algorithms for a broadcast protocol mul-
tiprocessor, in: Proc. 3rd Internat. ConfI on Distributed
Computing Systems (1982) 666-671.

[S] B. Lint and T. Agewala. Communication issues in the
design and analysis of parallel algorithms, IEEE Truns.

Sofrware Eng. 7 (1981) 174-188.
[6] R. Miller and Q.F. Stout, Varying diameter and problem

size on mesh-connected computers, in: Proc. Internat.
Con/. on Parallel Processing (1985) 697-699.

[7] V.K. Prasanna Kumar and C.S. Raghavendra, Array
processor with multiple broadcasting. J. Poraffel D&rib.
Comput. 4 (1987) 173-189.

[S] Q.F. Stout. Broadcasting in mesh-connected computers,
in: Proc. Conl: on Information Sciences and Systems (1982)

85-90.
[9] Q.F. Stout, Mesh-connected computers with broadcasting,

IEEE Trans. Comput. 32 (1983) 826-830.
[lo] Q.F. Stout, Meshes with multiple buses, in: Proc. 27th

IEEE Symp. on Foundations of Computer Science (1986)
264-273.

[ll] C.Y. Tang and R.C.T. Lee, Optimal speeding up of paral-
lel algorithms based upon the divide-and-conquer strategy,
Inform. Sri. 32 (1984) 173-186.

93

