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For parallel algorithms, their execution time consists of two parts: the computation time and the communication time. The 
execution time reaches a minimum when the other two are balanced. In this paper, we propose a strategy to reduce the 
execution time when it is dominated by the communication rime. The strategy is to use fewer processors to decrease the 
communication time and therefore reduce the execution time. Based on this strategy, we have successfully reduced time 
complexities of semigroup computations. To be more precise, any parallel algorithm performing semigroup computations of N 
data items can be improved if it uses N processors (each holds one data item) and has time complexity O(Nrlog’N). q > 0 

and r > 0 (both are not zero). The improved algorithm is designed on the same parallel architecture as the original one, but 
using only N”(r+‘)/log’N processors; the time complexity is O(N q’(q+‘)log’N), which achieves the optimal speedup. Some 

previous algorithms can be improved using this strategy, although they were declared to be optimal. Also, our result 
generalizes both Carlson’s and Miller and Stout’s results, which are alI restricted to 2-dimensional mesh-connected computers. 
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1. Introduction 

A semigroup computation can be described by 
a tuple (*, S), where * is an associative operator 
and S= (ui, Us,..., ahr} is a set of data items. 
The problem is to compute a, * a2 * . . . * uN. 
Some well-known semigroup computation prob- 
lems are to compute the sum, product, maximum, 
and minimum of N data items. Recently, drastic 
advances in hardware technology have made it 
possible to design various parallel architectures. 
As a result, many parallel algorithms have been 
proposed to perform semigroup computations of 
N data items (1,4,5,7,8] (see Table 1). These al- 
gorithms are designed on some specific parallel 
architectures and need N processors, each holding 
one data item. Moreover, they were declared to be 

optimal with respect to the number of processors 
used on the designated parallel architectures. 

For parallel algorithms, their execution time 
consists of two parts: the computation time and 
the communication time. Often, the communica- 
tion time dominates the execution time. To de- 
crease the communication time, one possible way 
is to reduce the machine size, that is, to use fewer 
processors. However, the computation time will be 
increased at the same time. Consequently, if the 
communication time and the computation time 
are not balanced, we can then adjust the number 
of processors used to reduce the execution time. 

Many researchers have shown that by using 
fewer processors the execution time does not in- 
crease [2,11] or even does decrease [3,6]. In this 
paper, we show that by using fewer processors the 
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Table 1 

Previous results about semigroup computations 

Parallel Architectures Number of Execution Time 

Processors Required 
Used 

Ring Structure N 

Broadcasting Protocol 
Multiprocessor N 

(BPM) 

K-dimensional Array 
Processor N 

K-dimensionai Array 
Processor With A 
Global Bus N 

K-dimensional Array 
Processor With 

Multiple Broadcasting N 

Tree Machine N 

Hypercube Machine N 

O(N) 

average O(log N) 
worst O(N) 

O( N”x) 

O(N’/‘K+” ) 

O(N 
I,K(K+ 1, 

o(log N) 

o(log N) 

time complexities of semigroup computations can 
be reduced. Our result generalizes both Carlson’s 
and Miller and Stout’s results [3,6], which are all 
restricted to 2-dimensional mesh-connected com- 
puters. Based on our result, some previous al- 
gorithms [1,7,8] can be improved accordingly. The 
improved algorithms also achieve the optimal 
speedup. The remainder of this paper is organized 
as follows. In Section 2, we describe a strategy to 
reduce the execution time of semigroup computa- 
tions. Then, in Section 3, the relationship between 
the execution time and the number of processors 
used are discussed. In Section 4, we give some 
improved parallel algorithms for semigroup com- 
putations. Finally, in Section 5, concluding re- 
marks are given. 

2. A strategy to reduce time complexities of semi- 
group computations 

There exist several parallel algorithms [1,7,8] 
for performing semigroup computations. In these 
algorithms, the communication time dominates the 
execution time. Besides, the communication time 
decreases quite a little when fewer processors are 

used (therefore need more memory in every 
processor). For such algorithms, we have a method 
to reduce the execution time. This method can be 
stated formally as follows. 

Theorem 1. Assume that there exists an algorithm 
performing semigroup computations. If this al- 
gorithm uses N processors (every processor ho& 
one data item) and takes 0( Nq) time, q > 0, to 
perform a semigroup computation of N data items, 
then this algorithm can be improved. The improved 
algorithm uses only N’/(q+ ‘) processors and re- 
quires 0( Nq/(q+‘) ) time, which achieves the opti- 
mal speedup. 

Proof. We prove this theorem by proposing a new 
algorithm. The new algorithm uses p (p -C N) 
processors (and therefore N/p data items are 
placed into every processor) and consists of the 
following two steps. 

Step 1. Perform a semigroup computation of 
N/p data items in every processor. This step takes 
0( N/p) time. After Step 1 is completed, an inter- 
mediate result is obtained in every processor. 

Step 2. Use the original algorithm to perform a 
semigroup computation of the p intermediate re- 
sults. This step takes 0( pq) time. 

The time complexity of the new algorithm is 
O(max( N/p, p’}), which is a function of p. The 
minimum occurs when 0( N/p) = 0( pq). Thus, 
the new algorithm has the minimum execution 
time 0( Nq/(q+ ‘)) when p = N’/(q+ ‘) processors 
are used. 0 

There exist other parallel algorithms perfor- 
ming semigroup computations. In these al- 
gorithms, the communication time still dominates 
the execution time. But the communication time 
decreases just a little, while the computation time 
increases quite a lot, when fewer processors are 
used. Thus, the execution time can hardly be 
reduced, although the number of processors can 
be reduced. However, the optimal speedup can 
still be achieved. This fact can be stated formally 
as follows. 

Theorem 2. Assume that there exists an algorithm 
performing semigroup computations. If this al- 
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gorithm uses N processors (every processor holds 

one data item) and takes O(log’N) time, r > 0, to 

perform a semigroup computation of N data items, 

then this algorithm can be improved. The improved 

algorithm uses only N/log’N processors and re- 

quires the same time, which achieves the optimal 

speedup. 

The proof of Theorem 2 is almost the same as 
that of Theorem 1. So it is omitted. Tang and Lee 
[ll] have a similar result for r = 1, but their result 
is restricted to the shared-memory computer. 
Combining the two theorems, we have the follow- 
ing corollary. 

Corollary. Assume that there exists an algorithm 

performing semigroup computations. If this al- 

gorithm uses N processors (every processor holds 

one data item) and takes 0( Nqlog’N) time, q >, 0 

and r > 0 (both are not zero), to perform a semi- 

group computation of N data items, then this al- 

gorithm can be improved. The improved algorithm 

uses onIy N v(~+” / Iog’N processors and requires 

0( Nq/(q+‘)logrN) time, which achieves the optimal 

speedup. 

From the above discussion, we conclude that 
“more processors” is not always favorable for 
parallel computations. 

3. Discussion 

From the proof of Theorem 1, it is known that 
the execution time of the new algorithm depends 
on the number of processors used (therefore de- 
pends on the memory size required in every 
processor). In this section, we discuss their rela- 
tionships. For easy discussion, we define the fol- 
lowing notations: 

P: the number of processors used; 
M: the memory size required in every processor; 
T: the execution time required. 

It is clear that the new algorithm proposed in 
the proof of Theorem 1 has 

P =p, M= N/p, 

and 

(19 2) 

T= o(max{ N/p, pq}). (3) 

It is not difficult to derive the following equations 

N 

Nq 

Nq’(q+‘) 

T = 0 (max {N/P, P‘J }) 
A 

Fig. 1. The relationship between T and P. 
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T = 0 (max { hl, (N/M)4 }) 

I Nq/(q+‘) 

Fig. 2. The relationship between T and M. 

for P and T (see Fig. 1): 

PT= N for1 <P < N’/(q+“, (4) 

T=Pq for N”(q+“,< P < N. (5) 

When P is smaller than N’/(q+‘), the computa- 
tion time dominates the execution time. If P in- 
creases gradually, then more parallelism can be 
obtained. So, the computation time decreases, 
which results in less execution time. Since the 
increased processor can fully share the computa- 
tion loads, the optimal speedup can be achieved. 
When P increases to N”(q+l), the computation 
time is balanced with the communication time. 
Thus, the minimum execution time is attained. 
When P is greater than N’/(q+l), the communica- 
tion time dominates the execution time. Therefore, 
increasing P will result in more execution time, as 
a consequence of increasing communication time. 

Moreover, it is clear that M and P have the 
following relationship: 

MP=N. (6) 

Substituting N/M for P, (4) and (5) become 

T=M for Nq/(q+l)g Mg N, (7) 

and 

MqT = Nq for 1 < Ma Nq/(q+l) (f-3) 
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respectively. Equations (7) and (8) represent the 
relationship between T and M which is also shown 
in Fig. 2. 

4. Examples 

In this section, we consider two parallel al- 
gorithms which have been proposed for perfor- 
ming semigroup computations. Both algorithms 
use N processors, where N is the number of 
data items. Initially, every processor holds one 
data item. The first algorithm [8] was designed 
on a k-dimensional mesh-connected computer 
(k-MCC) with single broadcasting. It takes 

O(N ‘/(k+l)) time to complete the execution, which 
has been proved to be optimal [9]. The second 
algorithm [7] was also designed on a k-MCC, but 
with multiple broadcasting. It takes 0( N’/k(k+lJ) 
time to complete the execution, which was also 
proved to be optimal [7]. 

Using the proposed method, we can improve 
these two algorithms. For the first algorithm, we 
use only N(k+l)/(k+Z) processors, each holding 
N’/(k+2) data items. First, each processor per- 
forms the semigroup operations on their own 
N’/(k+2) data items. This step takes 0( N’/(kt2)) 
time. After this step is completed, an intermediate 
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result is held in every processor. Then, the final 
result can be obtained by applying the original 
algorithm to the N (k+‘)/(k+2) intermediate results. 
This step takes O(N ‘/(k+2)) time. So, the total 
execution time required for the improved al- 
gorithm is 

O(max{ N L’(k+*), N’/‘k+*‘}) = 0( Ni/(k+*)). 

Following the same way, the second algorithm can 
be improved to O(N’/(k(k+l)+l)) time, while 
Nkfkt’)/(k(k+‘)+l) processors are used. Both the 
two improved algorithms achieve the optimal 
speedup. 

Besides, on a k-MCC without broadcasting, a 
semigroup computation of N data items can be 
performed in O(N’/k) time [S]. Similarly, this 
result can be further improved to O(N’/(kC1)) 
time using Nk/(k+‘) processors. The optimal 
speedup is also achieved for this example. 

5. Concluding remarks 

In this paper, we have shown that by using 
fewer processors the time complexities of semi- 
group computations can be reduced. At the same 
time, we extend both Carlson’s, and Miller and 
Stout’s results. We also discussed the relationship 
between the execution time and the number of 
processors used. It can be seen that several previ- 
ous algorithms are improved using the proposed 
method, although they were declared to be opti- 
mal. All the improved algorithms achieve the opti- 

mal speedup. One possible research problem is to 
prove that the execution time for the improved 
algorithms is minimal when N or fewer processors 
are used. We strongly believe that this is true. 
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