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Distributed processing has been a subject of recent interest due to the availability of computer networks. Over the past few 
years it has led to the identification of several challenging problems. One of these is the problem of optimally distributing 

program modules over a distributed processing system. In this paper we present an LC (Leas Cost) branch-and-bound 
algorithm to fiid an optimal assignment that minimizes the sum of execution costs and communication costs. Experimental 
results show that, for over half of the randomly generated instances, the saving rates exceed 99%. Moreover, it appears that the 

saving rates rise as the size of the instances increases. Finally, we also introduce two reduction rules to improve the efficiency 
of the algorithm for some special cases. 
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1. Introduction 

Distributed processing has been a subject of recent interest due to the availability of computer 
networks. Over past few years it has led to the identification of several challenging problems. One of these 
is the module assignment problem. Briefly, the problem can be stated as follows. Given a set of m 
program modules to be executed on a distributed system of n processors, to which processor should each 
module be assigned? The problem for more than three processors is known to be NP-hard [4]. The 
program modules may be viewed as program segments or subroutines, and control is transferred between 
program modules through subroutine calls. Two costs are considered in the problem: execution cost and 
communication cost. The execution cost is the cost of executing program modules; the communication cost 
is the cost of communication among processors. The communication cost is actually caused due to the 
necessary data transmission among program modules. If a program module is not executable on a 
particular processor, the corresponding running cost is taken to be infinity. 

The module assignment problem has been studied extensively for various models, for example see 
(3,5-7,9-11,13,14,16], and polynomial-time solutions have been obtained for some restricted cases, such as 
two processors [1,12,15], tree structure of interconnection pattern of program modules [1,4], and fixed 
communication cost [2]. In this paper, we consider a general model where the number of processors may 
be any value, the interconnection pattern of program modules may be any structure, and, more important, 
various constraints such as storage constraint and load constraint may be included. We then present an LC 
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(Least Cost) branch-and-bound algorithm to find an optimal assignment that minimizes the sum of 
execution costs and communication costs. The effectiveness of the algorithm is shown by experimental 
results. Moreover, we introduce two reduction rules to improve the efficiency of the algorithm for some 
special cases. 

2. The model 

The model we consider for the module assignment problem is as follows. 
(i) There are m program modules M,, Mz,. . . , Mm to be executed. 

(ii) There are n processors P,, Pz,. . . , P,, available. 
(iii) E(M,, P,) is the cost of executing program module h4, on processor P,. 
(iv) T( M,, M,, P,, P,) is the communication cost that is incurred by program modules M, and Mj when 

they are assigned to processor P, and P, respectively. If Mi and Mj are assigned to the same 
processor, the communication cost between them is assumed to be 0. 

(v) The objective is to minimize the sum of the execution costs and communication costs. 
(vi) There are the following constraints: 

(1) 

(2) 

(3) 
(4) 

Storage constraint: The available storage provided by a processor is limited. Let SUB( P,) denote the 
storage limit for processor P, and STOR(M,,) denote the amount of storage occupied by program 
module M,,. If M,,, Mt2, . . . , M, are all assigned to P,, then STOR( M,,) + STOR( MJ 
+ . . . + STOR(MJ must not exceed SUB( P,). 

Load constraint: The available computational load provided by a processor has an upper bound. Let 
LUB( P,) denote the computational load upper bound for processor P, and LOAD( M,,) denote the 
computational load required by program module M,,. If M,,, M,,, , . . , M,, are all assigned to P,, then 
LOAD( M,,) + LOAD( MJ + . . . + LOAD( MJ must not exceed LUB( P,). 

Some subsets of program modules are restricted to the same processor. 
Some program modules are restricted to some specific processors. 

More constraints can be included in the model if necessary. Based on the model, the problem can be 
mathematically formulated as follows. Let M denote the set of program modules, P the set of processors, 
and let + be a mapping from M to P, i.e., 4 : M + P. The problem is to minimize 

igrE(M., G(W))+ ZE 2 T(M,, 4, 4(W)* ICI(y)) over all feasible mappings 4. 
i-l j-i+1 

3. A branch-and-bound algorithm 

Since a tree structure is a convenient representation of the execution of the branch-and-bound 
algorithm, we will describe the branch-and-bound algorithm through the generation of the branch-and- 
bound tree. Each edge in the branch-and-bound tree represents an assignment of a program module to 
some processor. The nodes at the lowest (m th) level represent complete solutions and all the other nodes 
represent partial solutions. A node is infeasible if it does not satisfy the constraints, and an assignment of a 
program module to some processor is infeasible if it leads to an infeasible node. It is clear that if a node is 
infeasible, then all of its descendants are infeasible. This suggests that whenever an infeasible node is 
detected, it may be fathomed, thereby preventing the generation of its subtree. For each node, a pair of 
values Qj and D,j are estimated for all free (not yet assigned) program modules M, and all processors Pj. 
vi is the minimum increasing cost that is expected for all the free program modules, given that M, is to be 
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assigned to P!. Let S denote the set of program modules that are included in the corresponding partial 
solution. qj is estimated as follows: 

+ c min 
t 

E(My, P,) + C T(M,, M., P,, P+cz,) 

MyQS+(M,J M,ES 

+T(M,. M,, P,, P,) IKE (1, 2 ,..., n} and M_y+ P, is feasible 
) 

, 

where P+cx, and P+(,, are the respective processors to which M, and Mz were assigned. q, is set to 
infinity if M, + Pi is infeasible or M,, ---) P, is infeasible for all processors P,. On the other hand, D,, is the 
minimum increasing cost that is expected for all the free program modules, given that M, is not to be 
assigned to P,. 4, is estimated as follows: 

D,j=min{&lkE {1,2 ,..., n}, k#j}. 

In addition to Q, and D,,, two costs, current cost (CC) and expected cost (EC), are computed for each 
node. The current cost is the cost of the partial solution (complete solution, if the node is at the lowest 
level) that is represented by the node. Initially, CC = 0 for the root node. For a nonroot node, if the edge 
to it from its parent node represents the assignment of M, to P,, the current cost is computed by the 
following equation: 

CC=CC,++f,, p,)+ 1 T(M,, M,, p,, P+(k,), 
MkES 

where CCP denotes the current cost of the parent node, S denotes the set of program modules that are 
included in the partial solution represented by the parent node, and P+ck, is the processor to which Mk 
was assigned. Note that for each feasible node at the lowest level, CC is the cost of the corresponding 
complete solution. On the other hand, the expected cost is the minimum increasing cost that is expected 
for all the free program modules. It is computed as follows: 

EC = min{ lJj tall free program modules M, and all processors P, } . 

Thus, for each node, CC + EC is a lower bound on the costs of the complete solutions that will appear in 
its subtree. 

The generation of the branch-and-bound tree starts at the root and follows the LC (Least Cost) strategy 
[8]. The nodes that wait to be branched are called live nodes. The live node that has a minimum value of 
CC + CE is selected to be branched next. If a tie exists, break any. When a node is branched, the program 
module M, that satisfies EC = Uij for some processor P, will be assigned to all processors (see Fig. 1). An 
upper bound cost (UC) is along with the branch-and-bound algorithm and it represents an upper bound 
on the optimal cost. UC is set to be infinity intially and is updated to be min{ UC, CC} whenever a 
feasible node at the lowest level is reached. If a node satisfies CC + EC >, UC, then it is fathomed, since 
further branching from it will not lead to better solutions. If a node satisfies CC + U,j > UC for some free 
program module M, and some processor P,, then it is impossible to get better solutions if Mi is to be 
assigned to Pj. This implies that M, should not be assigned to P, (denoted by M, ++ P,). Thus a node can 
be fathomed if it satisfies CC + q, 2 UC for some free program module M, and all processors P,. 
Similarly, if a node satisfies CC + Dij 2 UC for some free program module M, and some processor P,, 
then M, is restricted to P, (denoted by M, --) P,). These restrictions will cause more nodes to be fathomed. 
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Fig. 1. The branching of a node. 

Finally, when the branch-and-bound algorithm terminates, the value of UC is the optimal cost and the 
optimal solutions will be generated at the nodes with CC = UC. 

The branch-and-bound algorithm is as follows. 

Branch-and-hound algorithm 

(1) 
(2) 
(3) 
(4) 

(5) 
(6) 
(7) 

(8) (9) 
(10) (11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) (18) 
(19) (20) 

(21) 

(22) 

set live-node-list to be empty; {live-node-list is a priority queue storing live nodes} 
put root node into live-node-list and compute IL!,, Dl,, EC. and CC for root node; 
set UC to be infinity; 
while live-node-list is not empty do 
begin 

choose a node OL with minimum value of CC + EC from live-node-list; 
if a has CC + EC > UC or CC + qj > UC for some free M, and all P,, j = 1, 2,. . . , n 
then remove (2 from live-node-list 
else begin 

if CC + Qj > UC for some free M, and some P, then a restriction “M, * Pj” is added; 
if CC + Dij 2 UC for some free M, and some P, then a restriction “M, - Pj” is added; 
branch a (assign M, that satisfies EC = y, for some P, to all processors); 
for each (assume p) of newly generated nodes do 

if /I is feasible then begin 
compute qj, Di,, EC, and CC; 
if /3 is at the lowest level 
then if CC < UC then replace UC with CC 
else if CC + EC < UC then insert 8 into live-node-list 

end; 
remove a from live-node-list 

end 
end; 
output UC and the nodes (at the lowest level) with CC = UC. 

4. Experimental results 

In this section we provide experimental results to show the effectiveness of the branch-and-bound 
algorithm. The criterion we adopt to evaluate the performance of the algorithm is the saving rate, which is 
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Table 1 
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Saving rates for randomly generated instances 

n - 

2 

- 

3 

- 

4 

- 

5 

- 

6 

m 

4 

i 

5 
10 

- 

4" 

6" 

5 

r 
[O.lOl 

p-o.2 P-O.5 P-O.8 

COMMUNCATION COSTS 

IO.501 

0.96047 0.94524 0.94011 0.95107 0.93072 0.91115 
0.97087 0.95992 0.94584 0.93919 0.91964 0.94701 
0.98114 0.96668 0.92447 0.92701 0.95789 0.97743 
0.98539 0.97152 0.96683 0.95228 0.97015 0.98432 
0.99313 0.98723 0.98151 0.98244 0.97384 0.98986 
0.98985 0.98431 0.96492 0.97630 0.98292 0.99671 
0.99552 0.98761 0.96805 0.97910 0.98860 0.99511 
0.99419 0.98428 0.98315 0.98531 0.99272 0.99681 
0.99732 0.98750 0.97985 0.98997 0.99576 0.99841 
0.99773 0.98429 0.98527 0.99602 0.99685 0.99922 
0.99713 0.99446 0.99496 0.98682 0.99847 0.99935 
0.99862 0.99207 0.98996 0.99391 0.99868 0.99983 
0.99888 0.99738 0.99420 0.99533 0.99934 0.99986 

0.95109 0.95109 0.94285 
0.97767 0.96669 0.96614 
0.98615 0.98414 0.97298 
0.99489 0.99325 0.99325 
0.99830 0.99634 0.99271 
0.99867 0.99789 0.99525 
0.99956 0.99802 0.99744 
0.99970 0.99765 0.99676 
0.99955 0.99896 0.99710 

0.93461 
0.96120 

FJ:K 

::m 

8:E 
0.99990 

0.94780 0.94780 0.9454’: 0.94310 0.90557 0.93372 
0.98344 0.97289 0.97465 0.97992 0.97875 0.97172 
0.99454 0.99i76 0.99088 0.98736 0.98443 0.98472 
0.99775 0.99574 0.99515 0.99453 0.99003 0.99090 
0.99923 0.99789 0.99750 0.99347 0.99165 0.99828 
0.99957 0.99904 0.99871 0.99827 0.99671 0.99753 
0.99982 0.99957 0.99883 0.99852 0.99736 0.99933 

0.89743 0.89743 0.8910: 0.88461 0.87820 0.87820 0.89743 0.89743 0.8974? 
0.97055 0.96414 0.9654; 0.96927 0.96670 0.95390 0.96414 0.96158 0.9500E 
0.99078 0.99052 0.9882: 0.99180 0.98259 0.97380 0.98899 0.97772 0.9074: 
0.99790 0.99703 0.9927t 0.99170 0.98709 0.98540 0.99441 0.99139 0.99267 
0.99894 0.99858 0.9981' 0.99751 0.99183 0.99298 0.99543 0.99145 0.99798 
0.99981 0.99955 0.9986; 0.99832 0.99833 0.99725 0.99943 0.99675 0.99875 
0.99993 0.99971 0.9988! 0.99901 0.99835 0.99924 0.99849 0.99898 0.9997s 

0.92664 0.92664 0.92664 0.92200 0.92664 0.92200 0.92200 0.92664 0.92200 
0.98083 0.98392 0.97851 0.98315 0.97543 0.96540 0.97852 0.97389 0.96308 
0.99629 0.99372 0.9953s 0.99217 0.98883 0.98626 0.99320 0.98844 0.99191 
0.99921 0.99820 0.99794 0.99440 0.99460 0.99631 0.99625 0.99610 0.99687 
0.99937 0.99864 0.99886 0.99763 0.99801 0.99620 0.99867 0.99860 0.99838 
0.99992 0.99961 0.99885 0.99962 0.99788 0.99926 0.99960 0.99811 0.99975 

p-o.2 p-o.5 psO.8 

IO.1 001 

p-o.5 

0.92681 
0.94819 
0.96844 

E%tF4 
0.99298 
0.99705 

%E 

::E 

8:Ei 

D-O.0 

0.95655 
0.97204 

:::z;‘: 
0.99499 

%:%I 
:%I1 
EE 
0.99992 
0.99995 

0.91483 0.92802 0.93626 
0.94309 0.95846 0.96669 
0.98634 0.96969 0.98908 
0.98343 0.98252 0.99410 
0.98442 0.99100 0.99734 
0.99087 0.99728 0.99915 
0.99384 0.99787 0.99946 
0.99334 0.99900 0.99987 
0.99918 0.99950 0.99992 

0.94310 0.93137 0.94545 
0.97113 0.96058 0.95882 
0.99102 0.97462 0.98209 
0.99398 0.99043 0.99306 
0.99217 0.99622 0.99752 
0.99495 0.99564 0.99951 
0.99869 0.99912 0.99971 

defined to be 1 - (N(n - l)/(nm+r - l)), where N is the number of nodes that are actually generated by 
the branch-and-bound algorithm and (nmf ’ - l)/(n - 1) is the number of nodes in the complete 
(unbounded) tree. Since the constraints introduced in the model have a great influence on the saving rate, 
we do not take them into account in the experiment (it is clear that we would get higher saving rates if the 
constraints were considered). We make the following assumptions in the experiment: 

(1) Execution costs are given randomly from [O,lOO]. 
(2) Communication costs are given randomly from [O,lO], [0,50], and [O,lOO]. 
(3) Any two program modules have the same probability p to communicate with each other during 

program execution. p = 0.2, 0.5, 0.8 are considered. 
(4) Five instances are run for each case and the average saving rate is computed. 

Table 1 shows the resulting saving rates. For over half of the generated instances the saving rates exceed 
99%, and it appears that the saving rates will be higher for larger-size instances. 
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Besides, we also compare optimal costs with those obtained by the random assignment method. The 
random assignment method randomly assigns each program module to a processor. We assume that 
execution costs and communication costs are given randomly from [O,lOO] and [OSO] respectively. There is 
a load constraint on each processor. The LOAD( Mi)‘s are given randomly from (0,501 and each processor 
has the same value of 

LUB= $ * f LOAD( 
i-l 

Table 2 

Comparison of optimal costs with costs obtained by random assignment method 

m=4 

m=5 

m=6 

m=7 

m=8 

m=9 

m=lO 

Optimal 

cost 

172 

161 

115 

108 

89 

183 

147 

119 

173 

172 

193 

202 

130 

147 

45 

208 

164 

149 

110 

215 

260 

175 

207 

150 

287 

260 

272 

222 

253 

106 

296 

73 

220 

339 

375 

Random assignment method 

Number of Greatest 

successes cost 

38 482 

34 574 

31 415 

21 370 

23 425 

37 628 

37 476 

23 722 

32 560 

38 621 

36 678 

25 547 

20 589 

32 646 

31 581 

35 871 

34 803 

29 733 

24 497 

34 813 

35 993 

22 899 

36 985 

32 885 

31 1255 

38 1158 
19 1042 

28 1105 

39 1126 

31 1010 

35 1255 

24 1289 

32 1250 

31 1478 

33 1619 

Least Average 

cost cost 

185 370 

192 366 

131 212 

119 258 

188 298 

196 397 

167 330 

144 471 

217 411 

259 440 

335 471 

255 419 

319 452 

283 495 

282 410 

351 618 

298 558 

290 491 

225 389 

375 564 

531 798 

397 544 

460 687 

370 655 

665 937 

561 867 

629 849 

506 749 

451 851 

388 688 

691 951 

458 924 

642 977 

869 1103 

927 1266 



Volume 32, Number 2 INFORMATION PROCESSING LE-ITERS 24 July 1989 

The experiment is performed for n = 4, m = 4, 5,. . . , 10, and p = 0.5. Five instances are randomly 
generated for each value of m, and 50 random assignments are made for each instance. Among the 50 
random assignments, the number of successful (feasible) assignments is computed, and the greatest cost, 
the least cost, and the average cost are given for the successful assignments. Table 2 shows the 
experimental results. 

5. Two reduction rules 

If constraints do not cause interference among program modules (for example, the first three con- 
straints in the model cause interference among program modules), the following two reduction rules can be 
implemented for fathoming more nodes. Let C,, denote the maximum communication cost that is incurred 
by M,, given that M, is to be assigned to Pi. That is, 

C,i= 5 max{T(M,. M,, P,, P,)Ir=l,2 ,..., n}. 
r-l.r+-i 

We then have the following property. 

Property 1. Zf E(M,, Pk)aE(Mi,P,)+C,j for k=l,2 ,_._, j-l,j+l,._., n, then there exists an 
optimal assignment in which M, is assigned to P,. 

Proof. Suppose that J/* is an optimal assignment in which M, is assigned to P, (u #j). Then we can 
construct an assignment +’ from $* by changing the assignment of M, from PO to Pi. Let A* be the total 
cost of $* and A’ be the total cost of $‘. We have 

d-A* = E(M,, p,) + f T(M,, M,, p,, +‘(M,)) 
r--l,r#i 

-E(M,, P,)-- f T(M,, 4, P,v 4*( 
r-1,rti 

Q E(M,, p,) -Et& P,) -+ 

r-1,rfi 

<E(M,, Pj)-E(M,, P”)+C,j<O. 

So, #’ is an optimal assignment. 0 

Suppose that M, only communicates with Mu. Let SS,,,, denote the maximum total cost that is 
incurred by the set {M,, Mu }, given that M, and Mu are to be assigned to the same processor, and SR,, 
denote the minimum total cost that is incurred by the set {M,, Mu}, given that M, and Mu are to be 
assigned to different processors. That is, 

ss,, = m={E(M,, P,)+E(M,, P,)lj=1,2 ,..., n}, 

SR mm =fin{E(M,,P,)+E(M,,P,)+T(M,,M,,P,, P,)lj,u~{1,2 ,..., n}and j+o}. 

We then have the following property. 
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Property 2. If M, only communicates with MU and SS,,, < SR,,, then there exists an optimal assignment in 
which both M, and MU are assigned to the same processor. 

Proof. Suppose that $* is an optimal assignment in which M, and MU are assigned to P, and P,, j + u, 
respectively. Then we can construct an assignment +’ from q* by changing the assignment of M, from P, 
to P,. Let A* be the total cost of IJJ* and A’ be the total cost of $‘. We have 

A’-A* = E(M,, P,) - [E(M,, p,) + T(M,, M,, p,, P”,] 

=[E(Mi* Pu)+E(Mu, pu)]-[~(M,, P,)+E(Mu, P,_*)+T(M,. Mu, P,, PO)] 

<SS_-SR,,<O 

So, 4’ is an optimal assignment. 0 

6. Concluding remarks 

Sinclair [14] has proposed a branch-and-bound algorithm for solving the module assignment problem 
with the same model except that no constraints are included. In his algorithm a maximal set of 
independent modules (that do not communicate with one another) is first found and these modules will be 
assigned after other modules. The lower bound is estimated under the assumption that there is no 
communication among free modules. Thus it is unnecessary to expand a node if the free modules on the 
node are independent of one another. Unfortunately, this is not true if constraints are taken into 
consideration. In this paper, using a different branch-and-bound algorithm, we have solved the module 
assignment problem with constraints. The experimental results show that the algorithm has an accurate 
estimation of the lower bound. 
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Appendix: An example 

Suppose that there are five program modules M,, M2,. . . , MS and their interconnection pattern is 
shown in Fig. 2, where Mj-Mj means that M, communicates with M, during execution. There are three 
processors P,, Pz and P3 available. The execution costs and communication costs are shown in Table 3 
and Table 4 respectively. There are storage constraints and load constraints imposed on processors. The 
values of STOR and LOAD for each program module are shown in Table 5 and the values of SUB and 
LUB for each processor are shown in Table 6. M, and M, are restricted to the same processor, M, is 
restricted to P, and P2, and M4 is restricted to P3. To have the illustration simpler, we assume that an 
initial feasible solution M, --f P,, M, - P,, M3 + Pz, M4 --) P3, M, + P,, whose cost is 110, is obtained by 
heuristics. The branch-and-bound tree is shown in Fig. 3, where “M, ---) Pj” in each node means “assign 
program module M, to processor P,“. But, “M, + P,” on an edge represents the restriction that program 
module M, is restricted to processor P, and “M, + Pj” on an edge represents the restriction that program 
module M, is not allowed to be assigned to processor P,. The numbers in parentheses represent the 
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/M’\ 
/M2\ /M3 

M4 M5 

Fig. 2. Interconnection pattern of M,. M,. . , M,. 

Table 3 
Execution costs 

Table 4 

Communication costs 

Table 5 
The values of STOR and LOAD 

M, Mz M, J% M, 

STOR 16 9 18 24 12 

LOAD 13 8 11 16 9 

Table 6 
The values of SUE and LUB 

PI 

SUB 40 

LUB 35 

p2 

50 

40 

PI 

40 

30 

sequence in which the nodes are generated. The values of CC and EC are also shown in Fig. 3. Tracing 
Fig. 3, we can find that the optimal solution is M, + P2, ii-f, -+ Pz, M3 + Pz, M4 + P3, kf, -B P,, the cost 
of which is 104. 
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cc=0 
EC = U,: = 59 

UC= 110 

(I) 
cc=21 

fathomed 
EC=Ur, =66 

(3 
cc= 9 

EC=U,: =54 
infeasible 

(CC + U,, > UC, k = I, 2, 3) 

(4) 
M, - P, 

infeasible 

Mz - P, 

(5) 

Ml -.P, cc=15 
EC = U,, = 68 

I (6) 
hl, _ P, 

infeasible 

I 
(8) 

infeasible 
dI (9) 

MI . ..p. CC=45 
EC = u,, = 73 

fathomed __ 

(CC + EC 2 UC) 

(10) (12) 

infeasible 

infeasible infeasible 

Fig. 3. The branch-and-bound tree. 
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