
Information Processing Letters 32 (1989) 61-71

North-Holland

24 July 1989

AN LC BRANCH-AND-BOUND ALGORITHM FOR THE MODULE
ASSIGNMENT PROBLEM

Maw-Sheng CHERN

Department of Industrial Engineering National Tsing Htu Universiry, Hsinchu, Taiwan, Rep. China

G.H. CHEN and Pangfeng LIU

Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, Rep. China

Communicated by K. Ikeda
Received 20 July 1988
Revised 10 March 1989

Distributed processing has been a subject of recent interest due to the availability of computer networks. Over the past few
years it has led to the identification of several challenging problems. One of these is the problem of optimally distributing

program modules over a distributed processing system. In this paper we present an LC (Leas Cost) branch-and-bound
algorithm to fiid an optimal assignment that minimizes the sum of execution costs and communication costs. Experimental
results show that, for over half of the randomly generated instances, the saving rates exceed 99%. Moreover, it appears that the

saving rates rise as the size of the instances increases. Finally, we also introduce two reduction rules to improve the efficiency
of the algorithm for some special cases.

Keywordr: Branch-and-bound algorithms, module assignment problem, distributed processing system

1. Introduction

Distributed processing has been a subject of recent interest due to the availability of computer
networks. Over past few years it has led to the identification of several challenging problems. One of these
is the module assignment problem. Briefly, the problem can be stated as follows. Given a set of m
program modules to be executed on a distributed system of n processors, to which processor should each
module be assigned? The problem for more than three processors is known to be NP-hard [4]. The
program modules may be viewed as program segments or subroutines, and control is transferred between
program modules through subroutine calls. Two costs are considered in the problem: execution cost and
communication cost. The execution cost is the cost of executing program modules; the communication cost
is the cost of communication among processors. The communication cost is actually caused due to the
necessary data transmission among program modules. If a program module is not executable on a
particular processor, the corresponding running cost is taken to be infinity.

The module assignment problem has been studied extensively for various models, for example see
(3,5-7,9-11,13,14,16], and polynomial-time solutions have been obtained for some restricted cases, such as
two processors [1,12,15], tree structure of interconnection pattern of program modules [1,4], and fixed
communication cost [2]. In this paper, we consider a general model where the number of processors may
be any value, the interconnection pattern of program modules may be any structure, and, more important,
various constraints such as storage constraint and load constraint may be included. We then present an LC

0020-0190/89/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland) 61

Volume 32, Number 2 INFORMATION PROCESSING LETTERS 24 July 1989

(Least Cost) branch-and-bound algorithm to find an optimal assignment that minimizes the sum of
execution costs and communication costs. The effectiveness of the algorithm is shown by experimental
results. Moreover, we introduce two reduction rules to improve the efficiency of the algorithm for some
special cases.

2. The model

The model we consider for the module assignment problem is as follows.
(i) There are m program modules M,, Mz,. . . , Mm to be executed.

(ii) There are n processors P,, Pz,. . . , P,, available.
(iii) E(M,, P,) is the cost of executing program module h4, on processor P,.
(iv) T(M,, M,, P,, P,) is the communication cost that is incurred by program modules M, and Mj when

they are assigned to processor P, and P, respectively. If Mi and Mj are assigned to the same
processor, the communication cost between them is assumed to be 0.

(v) The objective is to minimize the sum of the execution costs and communication costs.
(vi) There are the following constraints:

(1)

(2)

(3)
(4)

Storage constraint: The available storage provided by a processor is limited. Let SUB(P,) denote the
storage limit for processor P, and STOR(M,,) denote the amount of storage occupied by program
module M,,. If M,,, Mt2, . . . , M, are all assigned to P,, then STOR(M,,) + STOR(MJ
+ . . . + STOR(MJ must not exceed SUB(P,).

Load constraint: The available computational load provided by a processor has an upper bound. Let
LUB(P,) denote the computational load upper bound for processor P, and LOAD(M,,) denote the
computational load required by program module M,,. If M,,, M,,, , . . , M,, are all assigned to P,, then
LOAD(M,,) + LOAD(MJ + . . . + LOAD(MJ must not exceed LUB(P,).

Some subsets of program modules are restricted to the same processor.
Some program modules are restricted to some specific processors.

More constraints can be included in the model if necessary. Based on the model, the problem can be
mathematically formulated as follows. Let M denote the set of program modules, P the set of processors,
and let + be a mapping from M to P, i.e., 4 : M + P. The problem is to minimize

igrE(M., G(W))+ ZE 2 T(M,, 4, 4(W)* ICI(y)) over all feasible mappings 4.
i-l j-i+1

3. A branch-and-bound algorithm

Since a tree structure is a convenient representation of the execution of the branch-and-bound
algorithm, we will describe the branch-and-bound algorithm through the generation of the branch-and-
bound tree. Each edge in the branch-and-bound tree represents an assignment of a program module to
some processor. The nodes at the lowest (m th) level represent complete solutions and all the other nodes
represent partial solutions. A node is infeasible if it does not satisfy the constraints, and an assignment of a
program module to some processor is infeasible if it leads to an infeasible node. It is clear that if a node is
infeasible, then all of its descendants are infeasible. This suggests that whenever an infeasible node is
detected, it may be fathomed, thereby preventing the generation of its subtree. For each node, a pair of
values Qj and D,j are estimated for all free (not yet assigned) program modules M, and all processors Pj.
vi is the minimum increasing cost that is expected for all the free program modules, given that M, is to be

62

Volume 32, Number 2 INFORMATION PROCESSING LETTERS 24 July 1989

assigned to P!. Let S denote the set of program modules that are included in the corresponding partial
solution. qj is estimated as follows:

+ c min
t

E(My, P,) + C T(M,, M., P,, P+cz,)

MyQS+(M,J M,ES

+T(M,. M,, P,, P,) IKE (1, 2 ,..., n} and M_y+ P, is feasible
)

,

where P+cx, and P+(,, are the respective processors to which M, and Mz were assigned. q, is set to
infinity if M, + Pi is infeasible or M,, ---) P, is infeasible for all processors P,. On the other hand, D,, is the
minimum increasing cost that is expected for all the free program modules, given that M, is not to be
assigned to P,. 4, is estimated as follows:

D,j=min{&lkE {1,2 ,..., n}, k#j}.

In addition to Q, and D,,, two costs, current cost (CC) and expected cost (EC), are computed for each
node. The current cost is the cost of the partial solution (complete solution, if the node is at the lowest
level) that is represented by the node. Initially, CC = 0 for the root node. For a nonroot node, if the edge
to it from its parent node represents the assignment of M, to P,, the current cost is computed by the
following equation:

CC=CC,++f,, p,)+ 1 T(M,, M,, p,, P+(k,),
MkES

where CCP denotes the current cost of the parent node, S denotes the set of program modules that are
included in the partial solution represented by the parent node, and P+ck, is the processor to which Mk
was assigned. Note that for each feasible node at the lowest level, CC is the cost of the corresponding
complete solution. On the other hand, the expected cost is the minimum increasing cost that is expected
for all the free program modules. It is computed as follows:

EC = min{ lJj tall free program modules M, and all processors P, } .

Thus, for each node, CC + EC is a lower bound on the costs of the complete solutions that will appear in
its subtree.

The generation of the branch-and-bound tree starts at the root and follows the LC (Least Cost) strategy
[8]. The nodes that wait to be branched are called live nodes. The live node that has a minimum value of
CC + CE is selected to be branched next. If a tie exists, break any. When a node is branched, the program
module M, that satisfies EC = Uij for some processor P, will be assigned to all processors (see Fig. 1). An
upper bound cost (UC) is along with the branch-and-bound algorithm and it represents an upper bound
on the optimal cost. UC is set to be infinity intially and is updated to be min{ UC, CC} whenever a
feasible node at the lowest level is reached. If a node satisfies CC + EC >, UC, then it is fathomed, since
further branching from it will not lead to better solutions. If a node satisfies CC + U,j > UC for some free
program module M, and some processor P,, then it is impossible to get better solutions if Mi is to be
assigned to Pj. This implies that M, should not be assigned to P, (denoted by M, ++ P,). Thus a node can
be fathomed if it satisfies CC + q, 2 UC for some free program module M, and all processors P,.
Similarly, if a node satisfies CC + Dij 2 UC for some free program module M, and some processor P,,
then M, is restricted to P, (denoted by M, --) P,). These restrictions will cause more nodes to be fathomed.

63

Volume 32. Number 2 INFORMATION PROCESSING LETTERS 24 July 1989

Fig. 1. The branching of a node.

Finally, when the branch-and-bound algorithm terminates, the value of UC is the optimal cost and the
optimal solutions will be generated at the nodes with CC = UC.

The branch-and-bound algorithm is as follows.

Branch-and-hound algorithm

(1)
(2)
(3)
(4)

(5)
(6)
(7)

(8) (9)
(10) (11)
(12)
(13)
(14)
(15)
(16)
(17) (18)
(19) (20)

(21)

(22)

set live-node-list to be empty; {live-node-list is a priority queue storing live nodes}
put root node into live-node-list and compute IL!,, Dl,, EC. and CC for root node;
set UC to be infinity;
while live-node-list is not empty do
begin

choose a node OL with minimum value of CC + EC from live-node-list;
if a has CC + EC > UC or CC + qj > UC for some free M, and all P,, j = 1, 2,. . . , n
then remove (2 from live-node-list
else begin

if CC + Qj > UC for some free M, and some P, then a restriction “M, * Pj” is added;
if CC + Dij 2 UC for some free M, and some P, then a restriction “M, - Pj” is added;
branch a (assign M, that satisfies EC = y, for some P, to all processors);
for each (assume p) of newly generated nodes do

if /I is feasible then begin
compute qj, Di,, EC, and CC;
if /3 is at the lowest level
then if CC < UC then replace UC with CC
else if CC + EC < UC then insert 8 into live-node-list

end;
remove a from live-node-list

end
end;
output UC and the nodes (at the lowest level) with CC = UC.

4. Experimental results

In this section we provide experimental results to show the effectiveness of the branch-and-bound
algorithm. The criterion we adopt to evaluate the performance of the algorithm is the saving rate, which is

64

Volume 32, Number 2

Table 1

INFORMATION PROCESSING LETTERS 24 July 1989

Saving rates for randomly generated instances

n -

2

-

3

-

4

-

5

-

6

m

4

i

5
10

-

4"

6"

5

r
[O.lOl

p-o.2 P-O.5 P-O.8

COMMUNCATION COSTS

IO.501

0.96047 0.94524 0.94011 0.95107 0.93072 0.91115
0.97087 0.95992 0.94584 0.93919 0.91964 0.94701
0.98114 0.96668 0.92447 0.92701 0.95789 0.97743
0.98539 0.97152 0.96683 0.95228 0.97015 0.98432
0.99313 0.98723 0.98151 0.98244 0.97384 0.98986
0.98985 0.98431 0.96492 0.97630 0.98292 0.99671
0.99552 0.98761 0.96805 0.97910 0.98860 0.99511
0.99419 0.98428 0.98315 0.98531 0.99272 0.99681
0.99732 0.98750 0.97985 0.98997 0.99576 0.99841
0.99773 0.98429 0.98527 0.99602 0.99685 0.99922
0.99713 0.99446 0.99496 0.98682 0.99847 0.99935
0.99862 0.99207 0.98996 0.99391 0.99868 0.99983
0.99888 0.99738 0.99420 0.99533 0.99934 0.99986

0.95109 0.95109 0.94285
0.97767 0.96669 0.96614
0.98615 0.98414 0.97298
0.99489 0.99325 0.99325
0.99830 0.99634 0.99271
0.99867 0.99789 0.99525
0.99956 0.99802 0.99744
0.99970 0.99765 0.99676
0.99955 0.99896 0.99710

0.93461
0.96120

FJ:K

::m

8:E
0.99990

0.94780 0.94780 0.9454’: 0.94310 0.90557 0.93372
0.98344 0.97289 0.97465 0.97992 0.97875 0.97172
0.99454 0.99i76 0.99088 0.98736 0.98443 0.98472
0.99775 0.99574 0.99515 0.99453 0.99003 0.99090
0.99923 0.99789 0.99750 0.99347 0.99165 0.99828
0.99957 0.99904 0.99871 0.99827 0.99671 0.99753
0.99982 0.99957 0.99883 0.99852 0.99736 0.99933

0.89743 0.89743 0.8910: 0.88461 0.87820 0.87820 0.89743 0.89743 0.8974?
0.97055 0.96414 0.9654; 0.96927 0.96670 0.95390 0.96414 0.96158 0.9500E
0.99078 0.99052 0.9882: 0.99180 0.98259 0.97380 0.98899 0.97772 0.9074:
0.99790 0.99703 0.9927t 0.99170 0.98709 0.98540 0.99441 0.99139 0.99267
0.99894 0.99858 0.9981' 0.99751 0.99183 0.99298 0.99543 0.99145 0.99798
0.99981 0.99955 0.9986; 0.99832 0.99833 0.99725 0.99943 0.99675 0.99875
0.99993 0.99971 0.9988! 0.99901 0.99835 0.99924 0.99849 0.99898 0.9997s

0.92664 0.92664 0.92664 0.92200 0.92664 0.92200 0.92200 0.92664 0.92200
0.98083 0.98392 0.97851 0.98315 0.97543 0.96540 0.97852 0.97389 0.96308
0.99629 0.99372 0.9953s 0.99217 0.98883 0.98626 0.99320 0.98844 0.99191
0.99921 0.99820 0.99794 0.99440 0.99460 0.99631 0.99625 0.99610 0.99687
0.99937 0.99864 0.99886 0.99763 0.99801 0.99620 0.99867 0.99860 0.99838
0.99992 0.99961 0.99885 0.99962 0.99788 0.99926 0.99960 0.99811 0.99975

p-o.2 p-o.5 psO.8

IO.1 001

p-o.5

0.92681
0.94819
0.96844

E%tF4
0.99298
0.99705

%E

::E

8:Ei

D-O.0

0.95655
0.97204

:::z;‘:
0.99499

%:%I
:%I1
EE
0.99992
0.99995

0.91483 0.92802 0.93626
0.94309 0.95846 0.96669
0.98634 0.96969 0.98908
0.98343 0.98252 0.99410
0.98442 0.99100 0.99734
0.99087 0.99728 0.99915
0.99384 0.99787 0.99946
0.99334 0.99900 0.99987
0.99918 0.99950 0.99992

0.94310 0.93137 0.94545
0.97113 0.96058 0.95882
0.99102 0.97462 0.98209
0.99398 0.99043 0.99306
0.99217 0.99622 0.99752
0.99495 0.99564 0.99951
0.99869 0.99912 0.99971

defined to be 1 - (N(n - l)/(nm+r - l)), where N is the number of nodes that are actually generated by
the branch-and-bound algorithm and (nmf ’ - l)/(n - 1) is the number of nodes in the complete
(unbounded) tree. Since the constraints introduced in the model have a great influence on the saving rate,
we do not take them into account in the experiment (it is clear that we would get higher saving rates if the
constraints were considered). We make the following assumptions in the experiment:

(1) Execution costs are given randomly from [O,lOO].
(2) Communication costs are given randomly from [O,lO], [0,50], and [O,lOO].
(3) Any two program modules have the same probability p to communicate with each other during

program execution. p = 0.2, 0.5, 0.8 are considered.
(4) Five instances are run for each case and the average saving rate is computed.

Table 1 shows the resulting saving rates. For over half of the generated instances the saving rates exceed
99%, and it appears that the saving rates will be higher for larger-size instances.

65

Volume 32, lrlumber 2 INFORMATION PROCESSING LETTERS 24 July 1989

Besides, we also compare optimal costs with those obtained by the random assignment method. The
random assignment method randomly assigns each program module to a processor. We assume that
execution costs and communication costs are given randomly from [O,lOO] and [OSO] respectively. There is
a load constraint on each processor. The LOAD(Mi)‘s are given randomly from (0,501 and each processor
has the same value of

LUB= $ * f LOAD(
i-l

Table 2

Comparison of optimal costs with costs obtained by random assignment method

m=4

m=5

m=6

m=7

m=8

m=9

m=lO

Optimal

cost

172

161

115

108

89

183

147

119

173

172

193

202

130

147

45

208

164

149

110

215

260

175

207

150

287

260

272

222

253

106

296

73

220

339

375

Random assignment method

Number of Greatest

successes cost

38 482

34 574

31 415

21 370

23 425

37 628

37 476

23 722

32 560

38 621

36 678

25 547

20 589

32 646

31 581

35 871

34 803

29 733

24 497

34 813

35 993

22 899

36 985

32 885

31 1255

38 1158
19 1042

28 1105

39 1126

31 1010

35 1255

24 1289

32 1250

31 1478

33 1619

Least Average

cost cost

185 370

192 366

131 212

119 258

188 298

196 397

167 330

144 471

217 411

259 440

335 471

255 419

319 452

283 495

282 410

351 618

298 558

290 491

225 389

375 564

531 798

397 544

460 687

370 655

665 937

561 867

629 849

506 749

451 851

388 688

691 951

458 924

642 977

869 1103

927 1266

Volume 32, Number 2 INFORMATION PROCESSING LE-ITERS 24 July 1989

The experiment is performed for n = 4, m = 4, 5,. . . , 10, and p = 0.5. Five instances are randomly
generated for each value of m, and 50 random assignments are made for each instance. Among the 50
random assignments, the number of successful (feasible) assignments is computed, and the greatest cost,
the least cost, and the average cost are given for the successful assignments. Table 2 shows the
experimental results.

5. Two reduction rules

If constraints do not cause interference among program modules (for example, the first three con-
straints in the model cause interference among program modules), the following two reduction rules can be
implemented for fathoming more nodes. Let C,, denote the maximum communication cost that is incurred
by M,, given that M, is to be assigned to Pi. That is,

C,i= 5 max{T(M,. M,, P,, P,)Ir=l,2 ,..., n}.
r-l.r+-i

We then have the following property.

Property 1. Zf E(M,, Pk)aE(Mi,P,)+C,j for k=l,2 ,_._, j-l,j+l,._., n, then there exists an
optimal assignment in which M, is assigned to P,.

Proof. Suppose that J/* is an optimal assignment in which M, is assigned to P, (u #j). Then we can
construct an assignment +’ from $* by changing the assignment of M, from PO to Pi. Let A* be the total
cost of $* and A’ be the total cost of $‘. We have

d-A* = E(M,, p,) + f T(M,, M,, p,, +‘(M,))
r--l,r#i

-E(M,, P,)-- f T(M,, 4, P,v 4*(
r-1,rti

Q E(M,, p,) -Et& P,) -+

r-1,rfi

<E(M,, Pj)-E(M,, P”)+C,j<O.

So, #’ is an optimal assignment. 0

Suppose that M, only communicates with Mu. Let SS,,,, denote the maximum total cost that is
incurred by the set {M,, Mu }, given that M, and Mu are to be assigned to the same processor, and SR,,
denote the minimum total cost that is incurred by the set {M,, Mu}, given that M, and Mu are to be
assigned to different processors. That is,

ss,, = m={E(M,, P,)+E(M,, P,)lj=1,2 ,..., n},

SR mm =fin{E(M,,P,)+E(M,,P,)+T(M,,M,,P,, P,)lj,u~{1,2 ,..., n}and j+o}.

We then have the following property.

67

Volume 32, Number 2 INFORMATION PROCESSING LETTERS 24 July 1989

Property 2. If M, only communicates with MU and SS,,, < SR,,, then there exists an optimal assignment in
which both M, and MU are assigned to the same processor.

Proof. Suppose that $* is an optimal assignment in which M, and MU are assigned to P, and P,, j + u,
respectively. Then we can construct an assignment +’ from q* by changing the assignment of M, from P,
to P,. Let A* be the total cost of IJJ* and A’ be the total cost of $‘. We have

A’-A* = E(M,, P,) - [E(M,, p,) + T(M,, M,, p,, P”,]

=[E(Mi* Pu)+E(Mu, pu)]-[~(M,, P,)+E(Mu, P,_*)+T(M,. Mu, P,, PO)]

<SS_-SR,,<O

So, 4’ is an optimal assignment. 0

6. Concluding remarks

Sinclair [14] has proposed a branch-and-bound algorithm for solving the module assignment problem
with the same model except that no constraints are included. In his algorithm a maximal set of
independent modules (that do not communicate with one another) is first found and these modules will be
assigned after other modules. The lower bound is estimated under the assumption that there is no
communication among free modules. Thus it is unnecessary to expand a node if the free modules on the
node are independent of one another. Unfortunately, this is not true if constraints are taken into
consideration. In this paper, using a different branch-and-bound algorithm, we have solved the module
assignment problem with constraints. The experimental results show that the algorithm has an accurate
estimation of the lower bound.

Acknowledgment

The authors wish to thank the Editor and anonymous referees for their helpful suggestions and
comments.

Appendix: An example

Suppose that there are five program modules M,, M2,. . . , MS and their interconnection pattern is
shown in Fig. 2, where Mj-Mj means that M, communicates with M, during execution. There are three
processors P,, Pz and P3 available. The execution costs and communication costs are shown in Table 3
and Table 4 respectively. There are storage constraints and load constraints imposed on processors. The
values of STOR and LOAD for each program module are shown in Table 5 and the values of SUB and
LUB for each processor are shown in Table 6. M, and M, are restricted to the same processor, M, is
restricted to P, and P2, and M4 is restricted to P3. To have the illustration simpler, we assume that an
initial feasible solution M, --f P,, M, - P,, M3 + Pz, M4 --) P3, M, + P,, whose cost is 110, is obtained by
heuristics. The branch-and-bound tree is shown in Fig. 3, where “M, ---) Pj” in each node means “assign
program module M, to processor P,“. But, “M, + P,” on an edge represents the restriction that program
module M, is restricted to processor P, and “M, + Pj” on an edge represents the restriction that program
module M, is not allowed to be assigned to processor P,. The numbers in parentheses represent the

68

Volume 32, Number 2 INFORMATION PROCESSING LETTERS 24 July 1989

/M’\
/M2\ /M3

M4 M5

Fig. 2. Interconnection pattern of M,. M,. . , M,.

Table 3
Execution costs

Table 4

Communication costs

Table 5
The values of STOR and LOAD

M, Mz M, J% M,

STOR 16 9 18 24 12

LOAD 13 8 11 16 9

Table 6
The values of SUE and LUB

PI

SUB 40

LUB 35

p2

50

40

PI

40

30

sequence in which the nodes are generated. The values of CC and EC are also shown in Fig. 3. Tracing
Fig. 3, we can find that the optimal solution is M, + P2, ii-f, -+ Pz, M3 + Pz, M4 + P3, kf, -B P,, the cost
of which is 104.

69

Volume 32, Number 2 INFORMATION PROCESSING LETTERS 24 July 1989

cc=0
EC = U,: = 59

UC= 110

(I)
cc=21

fathomed
EC=Ur, =66

(3
cc= 9

EC=U,: =54
infeasible

(CC + U,, > UC, k = I, 2, 3)

(4)
M, - P,

infeasible

Mz - P,

(5)

Ml -.P, cc=15
EC = U,, = 68

I (6)
hl, _ P,

infeasible

I
(8)

infeasible
dI (9)

MI . ..p. CC=45
EC = u,, = 73

fathomed __

(CC + EC 2 UC)

(10) (12)

infeasible

infeasible infeasible

Fig. 3. The branch-and-bound tree.

References

[l] R.K. Arora and S.P. Rana, On module assignment in
two-processor distributed systems, Inform. Process. Lelr. 9

(1979) 113-117.

[2] R.K. Arora and S.P. Rana, Analysis of the module assign-

ment problem in distributed computing systems with
limited storage. Inform. Process. L&t. 10 (1980) 111-115.

[3] S.H. Bokhari, Dual processor scheduling with dynamic

reassignment, IEEE Trans. Soft-ware Eng. SE-5 (1979)
341-349.

[4] S.H. Bokhari, A shortest tree algorithm for optimal as-

signments across space and time in a distributed processor

system, IEEE Truns. So/fware Eng. SE-7 (1981) 583-589.

[5J T.L. Casavant and J.G. Kuhl, A taxonomy of scheduling

in general-purpose distributed computing systems. IEEE

Trans. Soffware Eng. SE-14 (1988) 141-154.

Optimal Solution: M, - P2

MI - P,
M, - P*

M, - Pa
M, - P,
cost = 10-l

[6] W.W. Chu and L.M.-T. Lan, Task allocation and prece-

dence relations for distributed real-time systems, IEEE
Tram. Compur. C-36 (1987) 667-679.

[7] C. Gao, J.W.S. Liu and M. Railey, Load balancing al-

gorithms in homogeneous distributed systems, In: Proc.
1984 Internor. Conf on Parallel Processing (1984) 302-306.

18) E. Horowitz and S. Sahni, Fundamentak of Compuler
Algorirhms (Computer Science Press, Potomac, MD, 1978).

(91 B. Indurkhya, H.S. Stone and X.-C. Lu, Optimal parti-

tioning of randomly generated distributed programs, IEEE
Trans. Sofware Eng. SE12 (1986) 483-495.

[lo] V.M. Lo, Heuristic algorithms for task assignment in

distributed systems, IEEE Trans. Compur. C-37 (1988)
1384-1397.

[ll] P.R. Ma, E.Y.S. Lee and M. Tsuchiya. A task allocation

70

Volume 32, Number 2 INFORMATION PROCESSING LEITERS 24 July 1989

model for distributed computing systems, IEEE Trans.

Compur. C-31 (1982) 41-47.

[12] G.S. Rao, H.S. Stone and T.C. Hu, Assignment of tasks in

a distributed processor system with limited memory, IEEE
Trans. Cornput. C-28 (1979) 291-299.

[13] C.C. Shen and W.H. Tsai, A graph matching approach to

optimal task assignment in distributed computing systems

using a minimax criterion, IEEE Trans. Cornput. C-34

(1985) 197-203.

[14] J.B. Sinclair, Efficient computation of optimal assign-

ments for distributed tasks. J. Parallel Disrribuled Com-
put. 4 (1987) 342-362.

[IS] H.S. Stone. Multiprocessor scheduling with the aid of

network flow algorithms, IEEE Trans. Software Eng. SE-3

(1977) 85-93.
1161 H.S. Stone and S.H. Bokhari, Control of distributed

processes. Computer I1 (1978) 97-106.

71

