
Y.-C. Chen, L.-W. Chang, and C.-T. Hsu (Eds.): PCM 2002, LNCS 2532, pp. 944-951, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Peer-to-Peer Support for File Transfer and Caching
Mechanism

Jenq-Haur Wang and Tzao-Lin Lee

Department of Computer Science and Information Engineering,
National Taiwan University,

Taipei, Taiwan.
{jhwang,tl_lee}@csie.ntu.edu.tw

Abstract. In existing Internet file transfer mechanism, proxy servers play a
major role in load balancing and reducing duplicate file access requests for
services like FTP and WWW. However, proxy servers are usually unaware of
the availability of cached contents on other peer proxy servers. This is a waste
of time since duplicate requests are needed. Unnecessary traffic can be reduced
if cooperation and coordination among peer proxies can be utilized. In this
paper, peer-to-peer support was incorporated in ordinary file transfer and
caching mechanism to reduce unnecessary processing time and storage.
Through the location service, hosts requesting file services can dynamically
determine if a copy is available and its current location. Work load for file
servers will be greatly reduced, and personalization of file transfer
configuration can be fully supported.

1 Introduction

With the tremendous growth of the Internet, numerous networking applications such
as WWW (World-Wide Web), E-mail, and FTP (File Transfer Protocol) [1] have
been widely used. Specifically, file access applications like WWW and FTP have
become ubiquitous and central to many people’s daily lives. However, in current file
transfer mechanism, FTP and Web servers play a critical role since all file access
requests require the intervention of these servers. This could result in overloaded
server and no service could be provided. Therefore proxy servers have been widely
deployed to eliminate unnecessary transfers for file objects already retrieved by other
clients.

When a user browses a web page through a proxy server, the URL (Uniform
Resource Locator) of requested web page will be checked if a copy is available on
proxy server. If so, no further outbound connections are needed since the page is
already fetched. If not, the proxy server will act like an agent for the client and make
HTTP (HyperText Transfer Protocol) [2] requests to the real web server as indicated
in the URL on behalf of the client.

However, communication and coordination among peer proxy servers are still not
much used. Proxy servers are usually configured in a hierarchical way where parent
and sibling proxies are manually organized. When a proxy doesn’t contain the
requested file object (a cache miss), it may make Internet Cache Protocol (ICP) [3]
requests to see if any of its neighbor proxies has the object. “Neighbor hits” where
neighbor proxy has the object may be fetched from either parent or sibling proxy, but
“neighbor misses” must be forwarded only to parent proxy. Since parent and sibling

Peer-to-Peer Support for File Transfer and Caching Mechanism 945

relationships must be manually configured in existing implementations like squid [4],
reutilization of existing cached contents on peer proxy servers can be very difficult.
Duplicate file replications among different proxies are still possible and caching
efficiency may be further improved.

With the rapid development of various mobile devices, wireless LANs (WLANs)
[5] have become more popular as an alternative network access method. In
infrastructure mode, mobile nodes can connect to the wired network via access points
(APs) as if they have been directly attached. However, since APs are limited in range,
mobile nodes may roam into the ranges of different APs. IP roaming problem occurs
if different APs are located on different subnets. Mobile IP scheme [6] is one of the
most common ways to solve the IP roaming problem.

On the other hand, peer-to-peer technology has been widely deployed in various
applications, for example, file sharing software like Napster [7] and ezPeer, instant
messaging software like ICQ and MSN, and open source protocol like Jabber [8] and
GnuTella [9]. Moreover, the distinction between centralized and decentralized
applications has become blurred to leverage the advantages of both. Therefore, an
infrastructure for integrating current Internet client-server file transfer mechanism and
peer-to-peer file sharing applications was proposed to provide better integrated
services. In a mobile environment, each mobile node may act as a peer proxy in which
the cached content could be utilized by other nodes. Therefore, our focus is on better
utilizing existing proxy caching mechanism and web cache communication and
coordination protocols in peer-to-peer applications.

2 Motivation

In this section, the current architecture for file transfer and caching and its
shortcomings will be briefly reviewed, and our infrastructure will be proposed as a
feasible solution.

In current Internet file transfer mechanism, several protocols are used: HTTP [2]
for transferring web pages, FTP [1] for transferring files, and ICP [3] for inter-proxy
communication. As shown in Fig. 1, a typical scenario for current file transfer
mechanism is illustrated.

Fig. 1. Shows a typical scenario for file transfer and caching, where a proxy hierarchy is
deployed.

c
proxy Sibling

proxy

FTPd HTTPd

ICP

FTP

HTTP

FTP/HTTP

Parent
proxy

Proxy hierarchy

946 J.-H. Wang and T.-L. Lee

As shown in Fig.1, users can browse a web page or access a file with a specific
URL (uniform resource locator) via browser like Microsoft Internet Explorer or
Netscape. File access requests are made via either HTTP or FTP directly or through a
proxy server. Since common files on the same web site may be requested by different
users, proxy server is usually deployed as a cache of similar requests for domain
users.

In order to get better performance, more than one proxy servers may be deployed
in a hierarchical way. There are many possible deployment schemes for proxy servers
with regards to the relative place of a cache between client and server. Proxy caching
as described above is the most common one. The other possible schemes include
personal proxy server where cache is on each individual client, transparent proxy
caching where proxy setting is transparent to clients, reverse cache where the focus is
on server not clients, and active caching where applets are used for caching dynamic
documents [10]. In fact, these schemes may be deployed simultaneously with better
overall performance.

Proxy server configuration in a browser can be done automatically by protocols
like WPAD (Web Proxy Automatic Discovery) [11], through a PAC file (Proxy Auto-
Config File Format) [12], or manually configured.

The web caching mechanism works fine, but there are several problems that affect
the performance of file retrieval. Firstly, the load on a proxy server is heavy in terms
of file storage and time for HTTP/FTP processing. Each proxy server has to deal with
every file access request from domain clients. Usually cache hits in proxy server will
result in better performance for retrieving file objects. However, in the case of busy
proxy server or even server failure, the performance would be worse than without
proxy.

Secondly, file objects may have been cached by other peer proxies or personal
proxy servers which are unknown to our proxy server. Although inter-cache
communication protocols such as ICP [3], WCCP [13], HTCP [14], CARP [15], and
Cache Digest [16] have been proposed, they are not widely implemented. Moreover,
inter-proxy communication relationships are usually manually configured and
dynamic addition and removal of peer proxy can be difficult.

Thirdly, proxy configuration in a browser is usually not versatile enough. In the
case of busy server or server failure, no fallback mechanism for bypassing overloaded
server is provided. This could result in worse performance than direct connection
without proxy.

Fourthly, personalization cannot be done very efficiently in proxy server. For
example, it’s difficult to configure a content filter for each individual domain user.
That would be time-consuming and impractical. It’s common to configure on firewall
or proxy server a content filter for the whole domain. But for each individual domain
user, a finer-grain control of configuration is needed, for instance, a content filter for
each user, which is more reasonable since each user may want to filter content from
different sources.

In order to offload proxy server and to provide complete customization in file
retrieval, a peer-to-peer infrastructure for file transfer and caching was proposed.
Specifically, we want to bypass a busy or overloaded proxy server if there are other
replications for requested objects. Cached content on peer proxy servers can be
utilized for improving cache utilization. Besides, users can have their own
configurations for file processing like content filtering.

Peer-to-Peer Support for File Transfer and Caching Mechanism 947

3 Infrastructure

As shown in Fig.2, an infrastructure for peer-to-peer file transfer is illustrated.
When clients issue HTTP/FTP requests to proxy server, it will first query the

location server for possible replications of the given URL. Since peer proxy has
registered to location server, its presence and content will be known to location
server. After receiving reply from location server, proxy server will issue redirect
messages to client which will then try to access from the peer proxy.

Fig. 2. Shows peer-to-peer support (redirect mode) for file transfer and caching.

In this infrastructure, searching for proxy servers can be transparent to users since
location service lookups can be done automatically by proxy servers. Besides, the
availability of peer proxy can be used as a way of load balancing between servers.
Since the latest information for each cache in a domain can be obtained, the most
suitable proxy server can be reached and load balancing can be achieved. Fault
tolerance mechanism can also be provided in the case of proxy failure. As shown in
Fig. 2, key components in the infrastructure include: location servers (LS), proxy
servers, and FTP/HTTP servers. The functional description of each component is
provided as follows.

3.1 Location Server

Location server is responsible for storing the current location and content index for
each peer proxy. These include hostname, current IP address, URLs for cached
content, and resource profiles (for example, access control list). Since the peer proxy
server may be changing its location or contents frequently, the amount of data update
may be quite large. Therefore, Resource Location Records (RLRs) can be stored in a
distributed way, for example, one location server for each domain (like DNS server).
RLRs for cached URLs on each proxy server are stored in location server of its home
domain.

c
proxy

Peer

proxy

FTPd

HTTPd

LS

�HTTP/FTP

�query

�register

�result

�redirect

�file access

948 J.-H. Wang and T.-L. Lee

Most of the relevant works in location service are related to geographical
positioning of mobile nodes in a wireless network, the location of servers, and
location-based services. They mainly focused on the physical positioning of mobile
nodes or servers, not the current way of accessing a particular resource, for example,
the IP address of currently available peer proxy with the requested data.

As shown in Fig. 3, there are two possible operations for a location server: update
and query. Proxy servers update their current location (IP address), URLs and
resource profiles for cached content to location server when they are first added,
changed, or removed from the domain. On the other hand, peer proxy servers query
the location server for available replication of a particular URL in order to retrieve
resource from it. In other words, location server has to be coupled with the
management of resource addition/removal. Proxy servers must do registration/de-
registration when being added or removed.

However, when mobile node is roaming into a foreign network, it must register to
its home location server for location update. This can be done directly or through the
help of location server in foreign network (Indirect Update). For a mobile node to
detect it has left its home network, the advertisement based mechanism used in
Mobile IP [6] or hint based move detection method [17] can be deployed.

Fig. 3. Shows the operations of location servers.

3.2 Proxy Server

In our infrastructure, each proxy server has to register to its domain location server
when the cached contents are added, changed, or removed. The current IP address and
the cached contents are indexed by the location server. When a peer proxy needs to
search for the availability of a specific URL, a location service query will be issued
and the result will be checked to see if redirect is needed.

There are several deployment alternatives for peer-to-peer file transfer and caching.
Besides the redirect mode depicted in Fig.2, two other schemes are possible, proxy
mode and server-to-server copy mode, which are illustrated as follows.

In proxy mode, file access requests from clients are repeated on local proxy where
file objects fetched from peer proxy are cached. This “greedy” caching mechanism

C2

C3

’

home network foreign network

Location

server

Location

server

C3

C1

roaming

register
De-register

Location
Update

Indirect

update

Location Update

Peer-to-Peer Support for File Transfer and Caching Mechanism 949

would require more storage requirement but less penalties for a cache miss will be
experienced since as much content as possible will be cached. But it’s not suitable for
proxy server load balancing since the load of proxy server is heavy.

Fig. 4. Shows an alternative deployment scheme (proxy mode) for peer-to-peer file transfer and
caching.

On the other hand, in server-to-server copy mode, file access requests for clients
are not redirected to peer proxies. Instead, notifications to both client and peer proxy
are issued by local proxy and the real file transmission takes place without the
intervention of local proxy. This is illustrated in Fig. 5.

Fig. 5. Shows server-to-server copy mode for peer-to-peer file transfer and caching.

This caching mechanism has the advantage of load balancing for redirect mode,
without much intervention of local proxy.

Note that existing inter-cache communication protocols can still be used in
different conditions. For example, ICP [3] can be used for inter-proxy communication
protocol, but modifications to ICP are required for supporting mechanisms such as
server-to-server copy. On the other hand, cache digests [16] can be used in which full
index doesn’t have to be built. Only the cache digests for each peer proxy are needed.

Among these alternatives, redirect mode is better for load balancing, while proxy
mode has the advantage of “greedy” caching in local proxy. Server-to-server copy
mode has the advantage of redirect mode without much intervention for local proxy
server if inter-proxy communication protocol support is available.

c
proxy

Peer

proxy

LS

�HTTP/FTP

�query
�register

�result

�result �result

�request

c
proxy

Peer

proxy

LS

�HTTP/FTP

�query
�register

�result

�prepare
�result

�prepare

950 J.-H. Wang and T.-L. Lee

4 Advantages

In our architecture, there are several advantages over current file transfer mechanism.
Firstly, file (WWW, FTP, proxy) servers can be offloaded since replication can be
found via location service lookups. Load balancing can thus be achieved. Secondly,
peer-to-peer support for file transfer can be achieved, and integration of existing file
transfer protocols with peer-to-peer applications can be done. Thirdly, personal
configuration for file server, for example, content filtering, such as ACL: allow/deny
<source URL>, can be fully supported.

5 Security Concerns

When one mobile node is roaming into a foreign network, authentication and
authorization is required before it’s granted network access. For example, IEEE
802.1x [18] can be used as the network access control mechanism as shown in Fig. 6.

Fig. 6. Shows the authentication and authorization for mobile nodes, where AS is the
Authentication Server, and LS is the Location Sever.

On the other hand, for each operation of update and query, authentication and
authorization are required to ensure the correctness of each record in location server.

6 Future Work

Most importantly, file authenticity is the most difficult problem. We have to make
sure that the file objects registered by peer proxies are indeed the objects as they
claim. The authenticity and non-repudiation principle is most important. Besides,
conditions for users behind firewall and users inside private network have to be dealt
with.

MN’

LSLS

MN

AS

IEEE 802.1x

Peer-to-Peer Support for File Transfer and Caching Mechanism 951

7 Conclusion

In this paper, a peer-to-peer support for file transfer and caching mechanism was
proposed. Through the sharing of cached contents of peer proxies in the same domain,
we could further improve the cache utilization and reduce unnecessary duplicate file
access requests. In addition, load balancing for overloaded proxy servers can be
achieved by means of proxy redirecting and server-to-server copy operations
incorporated in our scheme.

References

1. J. Postel and J. Reynolds, “File Transfer Protocol (FTP),” STD 9, RFC 959, IETF, October
1985.

2. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,
“Hypertext Transfer Protocol – HTTP/1.1,” RFC 2616, IETF, June 1999.

3. D. Wessels and K. Claffy, “Internet Cache Protocol (ICP), version 2,” RFC 2186, IETF,
September 1997.

4. Squid Web Proxy Cache, http://www.squid-cache.org/.
5. Information Technology – Telecommunications and Information Exchange between

System – Local and Metropolitan Area Networks – Specific Requirements Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,
IEEE Std. 802.11-1999, 1999.

6. C. Perkins, “IP Mobility Support for IPv4,” RFC 3220, IETF, Jan. 2002.
7. Napster, http://www.napster.com/.
8. Jabber, http://www.jabber.org/.
9. The GnuTella Protocol Specification v0.4, http://www.clip2.com/GnutellaProtocol04.pdf.
10. G. Barish and K. Obraczka, “World Wide Web Caching: Trends and Techniques,” IEEE

Communication Magazine, vol. 38, issue 5, pp. 178-185, May 2000.
11. P. Gauthier, J. Cohen, M. Dunsmuir, and C. Perkins, “Web Proxy Auto-Discovery

Protocol (WPAD),” Internet Draft, Internet article at:
http://www.web-cache.com/Writings/Internet-Drafts/draft-ietf-wrec-wpad-01.txt, IETF,
July 1999.

12. Netscape, “Navigator Proxy Auto-Config File Format,” Internet article at:
http://wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html, March 1996.

13. M. Cieslak, D. Forster, G. Tiwana, and R. Wilson, “Web Cache Communication Protocol
V2.0,” Internet Draft, IETF, April 2001.

14. P. Vixie and D. Wessels, “Hyper Text Caching Protocol (HTCP/0.0),” RFC 2756, IETF,
January 2001.

15. V. Valloppillil and K.W.Ross, “Cache Array Routing Protocol v1.0,“ Internet Draft,
IETF, February 1998.

16. A. Russkov and D. Wessels, “Cache Digests,” Proceedings of 3rd International WWW
Caching Workshop, April 1998.

17. N. A. Fikouras and C. Goerg, “Performance Comparison of Hinted and Advertisement
Based Movement Detection Methods for Mobile IP Hand-offs,” Proceedings of the
European Wireless 2000, Dresden, Germany, September 2000.

18. IEEE Standards for Local and Metropolitan Area Networks: Port based Network Access
Control, IEEE Std. 802.1X-2001, June 2001.

http://www.squid-cache.org/
http://www.napster.com/
http://www.jabber.org/
http://www.clip2.com/GnutellaProtocol04.pdf
http://www.web-cache.com/Writings/Internet-Drafts/draft-ietf-wrec-wpad-01.txt
http://wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html

	Peer-to-Peer Support for File Transfer and Caching Mechanism
	1 Introduction
	2 Motivation
	3 Infrastructure
	3.1 Location Server
	3.2 Proxy Server

	4 Advantages
	5 Security Concerns
	6 Future Work
	7 Conclusion
	References

