
Broadcast Scheduling Optimization for Heterogeneous
Cluster Systems

Pangfeng Liu

Department of Computer Science and Information Engineering
National Taiwan University

Taipei, Taiwan, R.O.C.
E-mail: pangfeng@csie.ntu.edu.tw

Network of workstation (NOW) is a cost-effective alternative to massively parallel su-
percomputers. As commercially available off-the-shelf processors become cheaper and
faster, it is now possible to build a PC or workstation cluster that provides high computing
power within a limited budget. However, a cluster may consist of different types of pro-
cessors and this heterogeneity within a cluster complicates the design of efficient collective
communication protocols. This paper shows that a simple heuristic called fastest-node-first
(FNF) [3] is very effective in reducing broadcast time for heterogeneous cluster systems.
Despite the fact that FNF heuristic fails to give the optimal broadcast time for a general het-
erogeneous network of workstation, we prove that FNF always gives the optimal broadcast
time in several special cases of clusters. Based on these special case results, we show that
FNF is an approximation algorithm that guarantees a competitive ratio of 2. From these
theoretical results we also derive techniques to speed up the branch-and-bound search for
the optimal broadcast schedule in HNOW.

1. INTRODUCTION

Network of workstation (NOW) is a cost-effective alternative to massively par-
allel supercomputers [2]. As commercially available off-the-shelf processors be-
come cheaper and faster, it is now possible to build a PC or workstation cluster
that provides high computing power within a limited budget. High performance
parallelism is achieved by dividing the computation into manageable subtasks, and
distributing these subtasks to the processors within the cluster. These off-the-shelf
high-performance processors provide a much higher performance-to-cost ratio so
that high performance clusters can be built inexpensively. In addition, the pro-
cessors can be conveniently connected by industry standard network components.
For example, Fast Ethernet technology provides up to 100 Mega bits per second
of bandwidth with inexpensive Fast Ethernet adaptors and hubs.

In parallel to the development of inexpensive and standardized hardware com-
ponents for NOW, system software for programming on NOW is also advancing
rapidly. For example, the Message Passing Interface (MPI) library has evolved

1

2 LIU

into a standard for writing message-passing parallel codes [1, 8, 12]. An MPI
programmer uses a standardized high-level programming interface to exchange
information among processes, instead of native machine-specific communication
libraries. An MPI programmer can write highly portable parallel codes and run
them on any parallel machine (including network of workstation) that has MPI
implementation.

Most of the literature on cluster computing emphasizes on homogeneous cluster
– a cluster consisting of the same type of processors. However, we argue that
heterogeneity is one of the key issue that must be addressed in improving parallel
performance of NOW. First it is always the case that one wishes to connect as
many processors as possible into a cluster to increase parallelism and reduce exe-
cution time. Despite the increased computing power, the scheduling management
of such a heterogeneous network of workstation (HNOW) becomes complicated
since these processors will have different performance in computation and com-
munication from one another. Secondly, since most of the processors that are used
to build a cluster are commercially off-the-shelf products, they will very likely be
outdated by faster successors before they become unusable. Very often a cluster
consists of “leftovers” from the previous installation, and “new comers” that are
recently purchased. The issue of heterogeneity is both scientific and economic.

Every workstation cluster, be it homogeneous or heterogeneous, requires ef-
ficient collective communication [3]. For example, a barrier synchronization is
often placed between two successive phases of computation to make sure that all
processors finish the first phase before anyone goes to the next. In addition, a
scatter operation distributes input data from the source to all the other processors
for parallel processing, then a global reduction operation combines the partial so-
lutions obtained from individual processors into the final answer. The efficiency
of these collective communication will affect the overall performance, sometimes
dramatically.

Heterogeneity of a cluster complicates the design of efficient collective commu-
nication protocols. When the processors send and receive messages at different
rates, it is difficult to synchronize them so that the message can arrive at the right
processor at the right time for maximum communication throughput. On the other
hand, in homogeneous NOW every processor requires the same amount of time to
transmit a message. For example it is straightforward to implement a broadcast
operation as a series of sending and receiving messages, and in each phase we
double the number of processors that have received the broadcast message. In a
heterogeneous environment it is no long clear how we should proceed to complete
the same task.

This paper shows that a simple heuristic called fastest-node-first (FNF), intro-
duced by Banikazemi et.al. [3], is very effective in designing broadcast protocols
for heterogeneous cluster systems. Despite the fact that FNF heuristic does not
guarantee optimal broadcast time for every heterogeneous network of workstation,
we show that FNF does give the optimal broadcast time for several special cases of

BROADCAST SCHEDULING OPTIMIZATION 3

HNOW. First we show that there exists an optimal broadcast schedule in which all
the fastest processors receive the broadcast messages before all the others (called
fastest-node-first principle). Consequently when there are only two classes of pro-
cessors, FNF always gives the optimal broadcast time. This result is very useful
in practice since most clusters consist of a small number of classes of processors.

In addition, we show that when the communication time of any processor � in
the cluster is a multiple of any faster processor � , then � should be scheduled after

� . Consequently FNF gives optimal broadcast time in such clusters. This result by
itself is not very practical since most clusters do not have such property. However,
based on this result, we show that FNF is actually an approximation algorithm that
guarantees a broadcast time within twice of the optimum for any cluster.

Besides the theoretical results, we also introduce new search techniques derived
from the theoretical results. For example, we can use the fastest-node-first prin-
ciple, combined with a monotonic cost property in [3], to dramatically reduce the
search space. These techniques are useful in practice when one has a cluster con-
sisting of more than two types of processors, and the FNF performance guarantee
described above is consider insufficient.

The rest of the paper is organized as follows. Section 2 describe the communi-
cation model in our treatment of broadcast problem in HNOW. Section 3 describes
the fastest-node-first heuristic for broadcast in HNOW. Section 4 gives the theoret-
ical results. Section 5 discusses techniques in the heuristic search of the optimal
broadcast schedule, and Section 6 concludes.

2. COMMUNICATION MODEL

There have been two classes of models for collective communication in ho-
mogeneous cluster environments. The first group of models assumes that all the
processors are fully connected. As a result it takes the same amount of time for a
processor to send a message to any other processor. For example, both the Postal
model [5] and LogP model [14] use a set of parameters to capture the communi-
cation costs. In addition the Postal and LogP model assume that the sender can
engage in other activities after a fixed startup cost, during which the sender injects
the message into the network and is ready for the next message. Optimal broadcast
scheduling for these homogeneous models can be found in [5, 14]. The second
group of models assume that the processors are connected by an arbitrary net-
work. It has been shown that even when every edge has a unit communication cost
(denoted as the Telephone model), finding a optimal broadcast schedule remains
NP-hard [9]. Efficient algorithms and network topologies for other similar prob-
lems related to broadcast, including multiple broadcast, gossiping and reduction,
can be found in [7, 10, 11, 13, 16, 18, 19, 20].

Various models for heterogeneous environments have also been proposed in the
literature. Bar-Noy et al. introduced a heterogenous postal model [4] in which
the communication costs among links are not uniform. In addition, the sender

4 LIU

may engage another communication before the current one is finished, just like
homogeneous postal and LogP model. An approximation algorithm for multicast
is given, with a competitive ratio ������� where � is the number of destination of the
multicast [4]. Banikazemi et al. [3] proposed a simple model in which the het-
erogeneity among processors is characterized by the speed of sending processors.
Based on this model, an approximation algorithm for reduction with competitive
ratio 2 is given in [17]. We adopt the simple model from [3] for its simplicity and
the high level abstraction of network topology. Other models for heterogeneous
clusters include [6, 15].

The model is defined as follows. A heterogeneous cluster is defined as a col-
lection of processors ���
	 ���	�������	 ������� , each is capable of point-to-point commu-
nication with any other processor in the cluster. Since we are interested in the
communication capability only, each processor is characterized by its speed of
sending messages. Formally, we define a non-negative transmission time of a
processor to be the time it needs to send a unit of message to any other processor.
Note that by this definition the time required to transmit a message is determined
by the sender.

The communication model requires that the sender and receiver processors can-
not engage in multiple message transmissions simultaneously. That is, a sender
processor must complete its data transmission to a receiver before sending the
next message to anyone else. This restriction is due to the fact that every processor
and communication network have limited bandwidth, therefore we would like to
exclude from our model the unrealistic algorithm that a processor simply sends
the broadcast message to all the other processors at the same time. Similarly, the
model prohibits the simultaneous receiving of multiple messages by any processor.
That is, the model disallows the unrealistic implementation of a reduction opera-
tion by having one processor receive the messages from all the other processors
simultaneously. Although in practice many message passing libraries provide non-
blocking send and receive primitives, these simultaneous message transmissions
are eventually serialized in the hardware level.

After defining the communication model, we can define other terminologies for
the broadcast problem in a heterogeneous system. We define a broadcast tree as
follows. Each node in the broadcast tree represents a processor in the cluster, and
the root of the tree is the source processor for the broadcast. The children of a tree
node � are the processors that receive the broadcast message from � . The ready
time of a processor � is the time � completes receiving the broadcast message from
the parent of � , and is ready to send out messages of its own. In other words,
the ready time of a processor � is the time that the parent of � started sending the
message to � , plus the transmission time of the parent of � . Figure 1 illustrate a
broadcast tree for a cluster of five processors, with transmission time � , � , � , � ,
� respectively. The number inside a tree node is its transmission time, and the
number next to it is its ready time. Note that since all the message sent from the

BROADCAST SCHEDULING OPTIMIZATION 5

same source is serialized, the receive time of two siblings differ by at least the
transmission time of their parent.

A

BCD

E

22
12

1

3
2

0
1

3

FIG. 1. An broadcast tree for five processors.

3. FASTEST-NODE-FIRST TECHNIQUE

It is difficult to find the optimal broadcast tree that minimizes the total broadcast
time in a heterogeneous cluster, therefore a simple heuristic called fastest-node-
first (FNF) is proposed in [3] to find a reasonably good broadcast schedule. The
heuristic works as follows. In each iteration the algorithm chooses a sender from
the set of processors that have received the broadcast message (denoted by �),
and a receiver from the set that have not (denoted by �). The algorithm picks
the sender � from � so that � will finish this transmission as early as possible,
considering all the transmission that has been scheduled so far, and chooses the
receiver � as the processor that has the minimum transmission time in � . Then �
is moved from � to � and the algorithm iterates to find the next sender/receiver
pair. The intuition behind this heuristic is that by sending the message to those
fast processors first, it is likely that the messages will propagate more rapidly.

The fastest-node-first technique is very effective in reducing broadcast time.
The FNF has been shown in simulation to find the optimal broadcast time, with
high probability, when the transmission time are randomly chosen from a given
table [3]. The FNF technique also delivers good communication efficiency in
actual experiments. In addition, FNF is simple to implement and easy to compute.

Despite its efficiency in scheduling broadcast in heterogeneous systems, fastest-
node-first heuristic does not guarantee optimal broadcast time [3, 6]. A simple
example is shown in Figure 2, and a more complicated one is given in [6]. The
number inside a tree node indicates its transmission time, and the number next to
it is its ready time. Let � be the only processor with transmission time 2 in this
cluster. According to the fastest-node-first principle, the root processor will first

6 LIU

send the message to � before the rest of the processors. The resulting broadcast
tree (on the left) has a total communication time of 5. On the other hand, an
optimal scheduling is for the root to send the message to � in the second round, as
indicated by the tree on the right in Figure 2. The optimal broadcast tree requires
only 4 time steps, one less than the tree by FNF on the left.

1

2333

33

1234

35

0

3 32

33

1

123

44

0

3

4

FIG. 2. An counterexample that FNF always produces the optimal broadcast time.

4. THEORETICAL RESULTS

Despite the fact that FNF cannot guarantee optimal broadcast time, we show
that FNF is optimal in some special cases of heterogeneous clusters. Based on
the results on these special cases, we show that fastest-node-first has a completive
ratio of two.

We will need the following two theorems from [3] to prove the optimality of
FNF in the special cases of heterogeneous system.

�����������
	�����

[3] There exists an optimal broadcast tree � in which all

processors sends message without delay. That is, for all processor � in � , starting
from its ready time, � repeatedly sends a message with a period of its transmission
time until the broadcast ends.

�����������
	������
[3] There exists an optimal broadcast tree � in which every

processor has a transmission time no less than the transmission time of its parent.

Note that from the definition of optimality in Theorem 4.2 we consider the
optimal broadcast schedule from all possible sources. We will follow this definition
and investigate the optimality when the source is given in Section 4.4.

With Theorem 4.1, we can simply discard those trees that will delay messages,
and still find the optimal schedule. The proof of Theorem 4.2 follows from the

BROADCAST SCHEDULING OPTIMIZATION 7

observation that by exchanging a child node with its parent that has a longer
transmission time, the final broadcast time will not increase. As a result we assume,
without lose of generality and throughout this paper, that every processor in an
optimal broadcast tree has a transmission time no less than its parent’s.

Since there is no delay within the broadcast tress, we can represent a broadcast
tree as a sequence of processors sorted in their ready time. Recall the set � and

� in the description of FNF. Since no delay is allowed, any scheduling method
must schedule � , the processor in � that could have completed a transmission
at the earliest time, to send a message immediately. Formally we define ����

� � 	 ������	 � ������� to be a sequence of � processors sorted in their ready time, i.e. the
processors will be moved from � to � in the order defined by � . Therefore, for
FNF the processors will appear in � in non-decreasing transmission time order, i.e.
the processors will receive the broadcast according to their transmission time. Let

�
�

��� � denote the ready time of �	� , then the total broadcast time of � (denoted by
��
��������� � � �) is by definition �

�
� ����� � . A broadcast sequence � is optimal if and and

only if for any other permutation of � (denoted by ���), ��
���������� � � ��� ��
��������� � ��� � .
Note that by this definition we consider the schedule for all possible broadcast
sources.

Let � � ��� be the transmission time of a processor � , and � �"! � � 	 � � be the number
of messages successfully sent at and before time � by � in the sequence � . Formally,
� � ! � � 	 � � is the minimum non-negative integer � such that �

� �#�%$ �'&(� � �#�") � , for
�) �

� �#� . Following this notation, we can define the ready time �
�

� � � recursively
by the following equations.

�
�

� �	� �+*

�
�

� � � �-,/.10�2��43
� ���5
687 � � � !

�
� 6 	 � �"):98; 	 � �<9�� �>= � (1)

4.1. Fastest Nodes First
We first establish the lemma that all the fastest processors should send mes-

sages before all the others. Without lose of generality, we assume that the trans-
mission time of the fastest processors is 1. Consider an optimal sequence �?��

� � 	 � � 	�������	 � ����� � . From Theorem 4.2 we can argue that � � � � � � � , and �
�

��� � must
be an integer if � � �	� � � � since only a fastest processor can send a message to a
fastest processor.

Suppose there are fastest processors appearing after slower processors in � . Let
� � � 6 be the first such processor in � . We show that among the slower processor
appearing before � , one of them (denoted by �) became ready one time step ahead
of � , i.e. �

�
� � � �

� �#� = � .

8 LIU

� ��	 	�� ����

Let � � � � � 	 � � 	 ������	 � ����� � be an optimal broadcast sequence,

and � � � 6 be the first fast processor appearing after slower processors in � . If
�
�

� 6 � � � , then there exists an 9���� such that � � �	� ��� � � � 6 � and �
�

��� � � � = � .

Proof. First we show that there exists a set of processor with ready time � = � .
Since � is a fastest processor, � must be an integer by Theorem 4.2. In addition,
the root of the tree must be an fastest processor, and it will send out messages at
integer time steps, including � = � .

We prove the lemma by contradiction. Let’s assume all processors that became
ready at � = � are fastest processors, and � be one of them. We will consider two
cases. First we assume that there is no slower processor with ready time between
� = � and � . As a result � will not be the first fast processor appearing after slow
processors since � became ready at time � = � , and the slower processor appearing
before � must appear before � as well.

In the second case, there do exist a set of slower processors (denoted by)
with ready time between � = � and � . Let
 be the set of processors that sent
messages to processors in 	 . We argue that all the processors in
 are slow
processors since all the fast processors send messages at integer time. Therefore,
the ready time of any processor in
 is before ��= � since their transmission
time is greater than 1. However, we know that a fastest processor � is ready at
time ��= � , which became ready after those slower processors in
 . As a result

� cannot be the first fastest processor appearing after slower processors either.

Let � be an optimal sequence and � � � 6 denote a fastest processor that appears
after the slower processor � � � � with ready time �

� ��� = � in Lemma 4.1. We show
that by exchanging � with � in � , i.e. let ��� � � � �
	�������	 � � ��� 	 � 	 � ��� �	�������	 � 6 ��� 	 � 	 � 6 � �������	 � ����� � , the total broadcast time will not increase. In other words, � � has the
same optimal broadcast time as � does. First we establish the new ready time for

� and � after the exchange.

� ��	 	�� �����
By modifying � into ��� as described above, the ready time of �

is made earlier from � to ��= � , and the ready time of � is delayed from � = � to
� � � � . As a result � � !� � � 	 � � $ � ��!� � � 	 � �) � ��! � � 	 � �'$ � ��! � � 	 � � , for
�) � .

Proof. Since the first 9 processors of ��� are the same as in � , the ready time
of � in � � is � = � , as same as the ready time of � in � . Similarly the ready time
of ��� in � � , for 9�������� , is as same as in � because no matter � or � became
ready at time �'= � , it will not send any message until time � . On the other hand,
the ready time of � in ��� is delayed by one time step. Now consider the new � �
function for ��� . Since � is moved forward one time step, an interval as long as its
transmission time, � � !� � � 	 � � � � ��! � � 	 � � $ � for �) � . On the other hand, �

BROADCAST SCHEDULING OPTIMIZATION 9

is delayed by one time step, which is less than its own transmission time. As a result

� ��! � � 	 � �"� � � ! � � 	 � � � � � ! � � 	 � � $ � for �) � , and the lemma follows.

After establishing the effects of exchanging the two processors on the new � �
function, we argue that the ready time of the last � = � processors will not be
delayed from � to ��� . We prove this statement by induction and the following
lemma servers as the induction base.
� ��	 	�� �� �

The ready time of � 6 � � in � � is no later than in � .

Proof. The lemma follows from Lemma 4.2 and the fact that the ready time
the first � $ � processors in the sequence is not changed, except � and � . Here we
use the subscript to indicate whether the � � function is defined on � or � � , and
for easy of notation we remove the same second parameter � from all occurrences
of � � functions.

� ! � � 6 � � �

�+,/.10 2 �43
65

� 7 � � � !�
�

� � �) � $ � ;

�+,/.10 2 �43 �
6 ���5

� 7 ��� ���7 �
� � ! � � � ��� $ � � ! � �#� $ � � ! � � �)�� $ � ;

�+,/.10 2 �43 �
6 ���5

� 7 ��� ���7 �
� � ! � � � �8� $ � ��!� � �#��$ � ��!� � � �") � $ � ;

� ,/.10 2 �43 �
6 ���5

� 7 ��� ���7 �
� � ! � � � �8� $ � � ! � �#� $ � � ! � � �) � $ � ;

� � ! � � 6 � �4�

Now we complete the induction.
� ��	 	�� �� ��

The ready time of � � in � � is no later than in � , for � $ � � � �
� = � .

Proof. We complete the proof by the induction step. Assume that the receive
time of � 6 � � in � � is no later than in � , for � � � � � = � = � . Again for easy
of notation we remove the same second parameter � from all occurrences of � �
functions.

10 LIU

��!� � � 6 � � � � �

� ,/. 0 2��43
6 � �5
� 7 � � � !

�
� � �") � $�� $ � ;

� ,/. 0 2��43 �8�
6 ���5

� 7 ��� ���7 �
� � ! � � �� ��� $ � � ! � �#� $ � � ! � � � $

6 � �5
� 7#6 � �

� � !� � � �� ���) � $ � $ � ;

� ,/. 0 2��43 �8�
6 ���5

� 7 ��� ���7 �
� � ! � � � �8� $ � ��! � �#� $ � � ! � � � $

6 � �5
� 7#6 � �

� ��!� � � �� �8�") � $�� $ � ;

� ,/. 0 2��43 �8�
6 ���5

� 7 ��� ���7 �
� � ! � � � �8� $ � � ! � �#� $ � � ! � � � $

6 � �5
� 7#6 � �

� � ! � � � ���)�� $ � $ � ;

� � ! � � $�� $ � �

The last inequality follows from the induction hypothesis that all the processors
from � 6 � � to � 6 � � have earlier ready time in ��� than in � , so they will have
larger � � function, and a smaller � to satisfy the equation in (1). One immediate
result from Lemma 4.3 and 4.4 is that for any broadcast sequence, including the
optimal ones, it will never increase the total broadcast time by making the fastest
processors ready as early as possible. Now we have the following theorem.

�����������
	��� �
There exists an optimal broadcast sequence in which all the

fastest processors appear before all the other processors.

4.2. Special Cases
We consider two special cases in which FNF guarantees minimum broadcast

time. First we consider the case that there are only two classes of processors in
the cluster. The second case is that the transmission time of any slower processor
is a multiple of any faster processors.

4.2.1. Two classes of processors

�����������
	��� ��
The fastest-node-first algorithm gives optimal broadcast time

when the number of classes of processors is two,but does not guarantee the optimal
broadcast time when the number of classes of processors is three.

BROADCAST SCHEDULING OPTIMIZATION 11

Proof. Given any optimal broadcast sequence consisting of two classes of pro-
cessors, we can always make the ready time of a faster processor earlier should it ap-
pear after any slower processors,and the resulting sequence is still optimal. We can
repeat this process until no such faster processor exists, and the resulting sequence
is as same as the one given by FNF. The second part of the theorem follows from

Figure 2.

In practice it is very likely that a cluster consists of only a small number of
types of processors since they are often purchased in batches. This result ensures
that the FNF algorithm can achieve optimal broadcast time when the number of
classes of processors is 2. For clusters consist of more types processors, FNF is
also proven effective through simulations [3].

4.2.2. Multiple of transmission time

The fastest-node-first algorithm also gives optimal broadcast time when the
transmission time of any slower processor in the cluster is a multiple of any faster
processors. Without lose of generality, let’s again assume that the transmission
time of the fastest processors is 1. First we show that Lemma 4.1 is true for all
processors, instead of only for the fastest ones, for such clusters.

� ��	 	�� �����
Let � � � � � 	 � � 	�������	 � ����� � be an optimal broadcast sequence for

a cluster where the transmission time of any processor is a multiple of any faster
processor. Suppose there exists a processor � � � 6 that becomes ready after a
slower processor in � , then there exists an 9 � � such that � � � � is a slower
processor and �

�
� � � �

� ��� = � .

Proof. The proof is similar to the proof of Lemma 4.1 and is in fact easier since
now the ready time of all processors are integers. We consider the first processor

� that appears after a slower processor. Similar to the argument in Lemma 4.1,
we argue that there exists a set of processors that became ready one step ahead
of � because the root of the broadcast tree is a fastest processor. If any such
processor is slower than � then the lemma follows. If this is not the case, the
processor slower than � but appears before � will be ready at time �

� ��� = � or

earlier, and � will not be the first processor that appears after a slower processor.

Similarly, we argue, as in Lemma 4.5, that it is always possible to switch a
processor � with a slower processor that became ready one step ahead of � . This
modification will not increase the total broadcast time,as indicated by the following
lemma. Again notice that this is true for any processor, not just only for the fastest
ones as in Lemma 4.5.

12 LIU

� ��	 	�� ����
By switching � with � in Lemma 4.5, the ready time of � is moved

forward from � to ��= � , the ready time of � is delayed from � = � to � , and
� ��!� � � 	 � � $ � � ! � � 	 � �) � � ! � � 	 � ��$ � ��! � � 	 � � , for �) � .

Proof. Let’s consider the change to � � function from � ’s point of view. Since
� is delayed by only one time step, � � ! is at most greater than � � !� by 1,
and this decrease only happens at time interval � �

�
� �'$ � � � � � 	 �

�
� � $ � � � � � $ � � ,

where � is an positive integer and �
�

� � is the ready time of � in � . Note that
this interval includes the time �

�
� � $ � � � � � but not �

�
� � $ � � � � � $ � . How-

ever, during this interval � � !� � �#� will be larger than � � ! � ��� by one since
� � � � is a multiple of � � �#� and � became ready one step earlier in � � than in

� . This increase compensates the decrease due to � and the Lemma follows.

With Lemma 4.6 in place we have the following theorem.

�����������
	������
The fastest-node-first algorithm gives optimal broadcast time

when the transmission time of any slower processor in the cluster is a multiple of
any faster processors.

4.3. Competitive Ratio Analysis

Theorem 4.5 by itself is not very useful in practice since most clusters do not
have such nice transmission time property. However, we can use Theorem 4.5 to
show that FNF is actual an approximation algorithm of competitive ratio 2. This
somehow explains that in simulations FNF always produces very good schedules
(within 1% of the optimal [3]).

We now consider a special class of clusters in which the transmission time of
every processor is a power of 2. Without lose of generality we assume that the
fastest processor has a transmission time of � , and the slowest one has ��� (� � *).
We will call this kind of cluster a power 2 cluster. From Theorem 4.5 it immediately
follows that FNF produces the optimal broadcast time for all power 2 clusters.

By increasing the transmission time of processors, we can transform a hetero-
geneous cluster into a power 2 cluster. We increase the transmission time of each
processor � to be ����� �
	 �������� , i.e. the smallest power of 2 that is no less than the
original transmission time. We will show that FNF, optimal for the transformed
cluster, also gives a schedule within twice of the optimal time for the original
cluster.

�����������
	�����
The fastest-node-first scheduling has a total reduction time no

greater than twice of the optimal schedule.

BROADCAST SCHEDULING OPTIMIZATION 13

Proof. Let � be an optimal broadcast sequence for a heterogeneous cluster
�

, and
� � be the power 2 cluster transformed from

�
. Let � and � � be the

broadcast time of � for
�

and
� � respectively, i.e. before and after the power 2

cluster transformation. We argue that this increase in transmission time will at
most double the total broadcast time, i.e. � � � � � . We can use a simple induction
on 9 to argue that � � , which is ready at time �

�
� � � for

�
, becomes ready no later

then � �
�

��� � for
� � . The induction step follows from the fact that all the previous

� 6 for � �<9 , become ready no later than � �
�

� 6 � for
� � , and their transmission time

at most double from
�

to
� � .

Now we apply FNF scheduling on
� � and let ��� � be the resulting broadcast time.

Since
� � is a power 2 cluster, it immediately follows from Theorem 4.5 that � � � is

no more than � � . Finally, we apply the same FNF scheduling on
�

and let ��� be
the resulting broadcast time. ��� should be no more than � � � since the transmission
time of each corresponding processor is higher in

� � than in
�

. As a result � �
is no greater than � � � , which is no greater than � � , which is no more than � � .

4.4. Broadcast for Specified Source

The previous sections describe theoretical results for the broadcast problem in
which the source of the broadcast can be any processor. That is, the optimal
schedule is the fastest one among all possible schedules considering all possible
sources, and as suggested by Theorem 4.2, there exists an optimal schedule in
which the source is the fastest processor. In practice, however, the application
usually will specify the source of the broadcast, i.e., during the computation a
particular processor has to broadcast an important information in order for other
processors to proceed. We should show that, under the constraint that the source
is given, which is not necessarily a fastest processor, Theorem 4.6 is still valid.

We will use the same notation as in the general case, but with the following
modification. First, we still define a schedule � � � � � 	�������	 � ����� � as a sequence
of processors, and � � is the specified source for the broadcast. Note that we can
no long assume that � � is the fastest processor. Let � � �	� � still be the transmission
time of ��� , and the fastest processor has transmission time 1. To simplified the
notation we will assume that the time will start at = � � � ��� , so that the ready time
of the processor that receives the first message from the source � � , i.e., � � , will be
0. We first show that for any power 2 cluster, there exist an optimal schedule in
which � � is the fastest processor.

� ��	 	�� ����
Let

�
be a power 2 cluster. There exists an optimal schedule

� � � � � 	 ������	 � ����� � such that � � is the fastest processor.

14 LIU

Proof. Without lose of generality we assume the source � � is not the fastest
processor. Let � be any optimal schedule and � be the second processor in
� . We consider the case that � is not the fastest processor in

�
, i.e., � � � � �

� . From this assumption we argue that the ready time of the fastest proces-
sor, denoted by � , has ready time as earliest at ,/. 0 � � � � � � 	 � � � ��� � � . Now we
switch � and � in � and let � be the second processor in the sequence � . Sim-
ilar to Lemma 4.2, we argue that the increase of � � function from � is more
than enough to compensate the decrease of � since � has a shorter transmission

time. As a result the modified schedule is also optimal, and the lemma follows.

With Lemma 4.7 in place we can argue that there will be processor ready at time
0, 1, 2, and so on since � � has transmission time 1. Now we can proceed to the
following lemma, which is similar to Lemma 4.5 and 4.6.

� ��	 	�� ����
Let � � � � � 	 � � 	�������	 � ����� � be an optimal broadcast sequence for

a power 2 cluster, in which � � is the specified source and � � is the fastest processor.
Let � � � 6 be the first fast processor appearing after any slower processor other
than � � .

1. If �
� �#� � � , then there exists an 9�� � such that � � � � and � � � � � � � �#� and

�
�

� � � �
� ��� = � .

2. By switching � with � , the ready time of � is moved forward from � to �'= � ,
the ready time of � is delayed from � = � to � , and for the resulting new schedule
� � , we have � ��!� � � 	 � � $ � ��!� � � 	 � �) � ��! � � 	 � � $ � � ! � � 	 � � , for �) � .

Proof. The proof is also similar to Lemma 4.5 and 4.6. We notice that from
Lemma 4.7 we are certain that there exist a set of processors that become ready one
time step ahead of � . Then it follows that one of these processor must be a slower
processor, otherwise � will not be the first faster processor appearing after slower
ones. The second part of the lemma follows from a similar argument in Lemma 4.6.
Notice that we exclude � � in the lemma since we cannot exchange the order of the

specified source.

Finally, we conclude that FNF is also optimal for a power 2 cluster when the
source is given, and establish the following competitive ratio.

�����������
	�����
The fastest-node-first scheduling has a total reduction time no

greater than twice of the optimal schedule when the source is given.

BROADCAST SCHEDULING OPTIMIZATION 15

5. HEURISTIC SEARCH

The previous section describes the theoretical results that guarantees the opti-
mality of FNF method under special cases, and provides performance guarantee
for general cases. However, in practice one may want to find the optimal broadcast
schedule for a particular cluster that contains more than two kinds of processors.
In such cases we have to search for the optimal schedule since FNF does not guar-
antee optimality. This section describes the techniques that we used to speed up
the search process.

As described in Section 3, any broadcast tree can be converted into a sequence
of processors. As a result we can find an optimal reduction schedule among these� � = � ��� possible sequences, where � is the number of processors in the cluster.
However, for a typical cluster

� �>= � ��� is such a large number that we apparently
cannot try all of these permutations, even by a branch-and-bound procedure. To
overcome this problem,we conduct experiments to show that by using Theorem 4.2
in [3] and Theorem 4.3 in this paper we can dramatically reduce the search space.

We use three techniques to reduce the number of sequences we have to consider.
First of all, we examine the sequences in such an order that those sequences with
faster processors appearing first will be examined first. Formally we define the
priority of a sequence to be the number processors that have shorter or equal
transmission time than the next processor in the sequence. In other words, the FNF
schedule has the highest priority, and will be considered first. In addition, from
Theorem 4.3 we know that we can ignore all sequences that fastest processors are
not at the beginning, and still find the optimal schedule. This dramatically reduces
the search space since now we only have to schedule those processors that are not
from the fastest processor group.

The second technique is to apply Theorem 4.2 so that when a slow processor
is scheduled to send the message to a faster processor, we can stop the search at
that subtree immediately. In addition, it is possible for several senders to complete
simultaneously so that more than one processor can be the receiver at the same
time. In that case if any sender is slower than any of those possible receivers then
we can drop this partial solution completely.

Finally, we use standard branch-and-bound technique to explore the search tree.
If the cost of a partially examined sequence is already larger than the current
optimal, then the entire subtree is pruned. This technique is most effective when
the difference among processor speed is large.

We conduct the experiments on a Pentinum 3-450 PC running FreeBSD 3.2
UNIX. The PC has 128Mbytes memory and we use gcc 2.7.2-1 to compile the
code. The input cluster configurations for our experiments are generated as follow.
We assume that the number of classes in a cluster is 3. This assumption is practical

16 LIU

since processors are usually purchased in batches, and the number of batches is
usually small. We vary the cluster size from 10 to 21. For each processor we
randomly assign a communication speed from the three possible values. For each
cluster size we repeat the experiments for 50 times and compute the average for
the quantities we measured.

We quantify the search ratio of an algorithm as the percentage of the entire
search tree the algorithm has to examine in order to find the optimal solution. As
a result, an algorithm that scans � tree nodes before finding the optimal one the
search ratio is

�
� , where � is the number of nodes in the entire search tree.

TABLE 1.

The comparison of two search programs.

search tree FNF search generic branch-and-bound search time
P N L n time n/N n time n/N ratio

10 8895 2750 101 0.0005 1.135% 1876 0.0089 21.091% 17.9
11 26200 8094 132 0.0008 0.504% 4956 0.0278 18.916% 36.8
12 65666 20118 180 0.0012 0.274% 10406 0.0671 15.817% 57.7
13 182749 55812 364 0.0027 0.199% 25517 0.1857 13.963% 69.7
14 479988 146226 549 0.0046 0.114% 62318 0.5150 12.983% 111.9
15 1130166 342050 1111 0.0101 0.098% 144507 1.3335 12.786% 132.1
16 3156025 953521 2007 0.0200 0.064% 300785 3.0448 9.531% 152.1
17 9193712 2773002 3002 0.0349 0.033% 1029079 11.6970 11.193% 334.5
18 31946795 9688499 5721 0.0709 0.018% 2658041 32.9900 8.320% 465.3
19 86500614 26089395 6124 0.0825 0.007% 7098066 96.4370 8.206% 1169.6
20 220708439 66378464 12693 0.1821 0.006% 13926482 205.1097 6.310% 1126.2
21 658075130 198533991 27418 0.4348 0.004% 29399414 576.2480 4.470% 1324.3

Table 1 compares the efficiency of our algorithm with a simple branch-and-
bound search. The first two columns indicate the average number of nodes and
leaves of the search trees generated. The next three columns are the number
of tree nodes examined, the search time (in second), and the search ratio from
our algorithm. The next three columns are from a generic branch-and-boundalgo-
rithm. The last column shows the performance ratio between these two algorithms.
Guided by various heuristics described earlier, our algorithm searches much fewer
tree nodes than the generic branch-and-bound method, and consequently runs
much faster. For large clusters our algorithm runs about 1300 times faster than the
generic algorithm, and can find the optimal solution within a fraction of a second,
even for clusters consisting up to 21 nodes.

6. CONCLUSION

BROADCAST SCHEDULING OPTIMIZATION 17

FNF is a very useful technique in reducing broadcast time. We show that in
several special cases it always gives optimal broadcast time. In simulations it can
find the optimal solution with very high probability when the number of processors
is small, and the transmission time is randomly chosen from a small table[3]. In
practice it also delivers good performance in actual NOW systems. The schedule
is easy to compute and can be updated incrementally.

This paper also derives a performance guarantee for FNF algorithm for general
heterogeneous clusters. We show that FNF guarantees the total time to be within
twice of the time from an optimal schedule. It will be more interesting if one can
derive a bound on the difference, instead on the factor, between the schedule from
the proposed algorithm and the optimal one.

This paper also suggests techniques to speed up the search process of find-
ing an optimal schedule. We combined three key techniques into the algorithm
– to schedule all fastest node first, a sender cannot be slower than its receiver,
and branch-and-bound. This combined approach dramatically reduces the search
space, and provides optimal schedule within a fraction of a second, for clusters up
to 21 processors.

There are many research issues open for investigation. For example, it will be
interesting to extend this technique to other communication protocols and models.
For example, in our model the communication time is determined solely by the
sender. In a more practical and complex model the communication time may be
a function of both the send and the receiver [6]. In addition, it will be worthwhile
to investigate the possibility to extend the analysis to similar protocols like par-
allel prefix, all-to-all reduction, or all-to-all broadcast. These questions are very
fundamental in designing collective communication protocols in heterogeneous
clusters, and will certainly be the focus of further investigations in this area.

7. ACKNOWLEDGMENT

The authors thank Dr. Da-Wei Wang for helpful discussions, and Mr. Tzu-Hao
Sheng for implementing the heuristic search program. This work is supported in
part by National Science Council of Taiwan, under grant number NSC 89-2213-
E-194-009.

REFERENCES
1. Message Passing Interface Forum. Mar 1994.

2. T. Anderson, D. Culler, and D. Patterson. A case for networks of workstations (now). In IEEE
Micro, Feb 1995.

3. M. Banikazemi, V. Moorthy, and D.K. Panda. Efficient collective communication on heterogeneous
networks of workstations. In Proceedings of International Parallel Processing Conference, 1998.

18 LIU

4. A. Bar-Noy, S. Guha, J. Naor, and Schieber B. Multicast in heterogeneous networks. In Proceedings
of the 13th Annual ACM Symposium on theory of computing, 1998.

5. A. Bar-Noy and S. Kipnis. Designing broadcast algorithms in the postal model for message-passing
systems. Mathematical Systems Theory, 27(5), 1994.

6. P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna. Efficient collective communication in distributed
heterogeneous systems. In Proceedings of the International Conference on Distributed Computing
Systems, 1999.

7. M. Dinneen, M. Fellows, and V. Faber. Algebraic construction of efficient networks. Applied
Algebra, Algebraic Algorithms, and Error Correcting codes, 9(LNCS 539), 1991.

8. J. Bruck et al. Efficient message passing interface(mpi) for parallel computing on clusters of
workstations. Journal of Parallel and Distributed Computing, Jan 1997.

9. M. R. Garey and D. S. Johnson. Computer and Intractability: A guide to the theory of NP-
Completeness. W. H. Freeman, 1979.

10. L. Gargang and U. Vaccaro. On the construction of minimal broadcast networks. Network, 19,
1989.

11. M. Grigni and D. Peleg. Tight bounds on minimum broadcast networks. SIAM J. Discrete Math.,
4, 1991.

12. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation of
the mpi: a message passing interface standard. Technical report, Argonne National Laboratory and
Mississippi State University.

13. S. M. Hedetniemi, S. T. Hedetniem, and A. L. Liestman. A survey of gossiping and broadcasting
in communication networks. Networks., 18, 1991.

14. R. Karp, A. Sahay, E. Santos, and K. E. Schauser. Optimal broadcast and summation in the logp
model. In Proceedings of 5th Ann. Symposium on Parallel Algorithms and Architectures, 1993.

15. R. Kesavan, K. Bondalapati, and D. Panda. Multicast on irregular switch-based networks with
wormhole routing. In Proceedings of International Symposium on high performance computer
architecture, 1997.

16. A. L. Liestman and J. G. Peters. Broadcast networks of bounded degree. SIAM J. Discrete Math.,
1, 1988.

17. P. Liu and D. Wang. Reduction optimization in heterogeneous cluster environments. In Proceedings
of the International Parallel and Distributed Processing Symposium, 2000.

18. D. Richards and A. L. Liestman. Generalization of broadcast and gossiping. Networks, 18, 1988.

19. J.A. Ventura and X. Weng. A new method for constructing minimal broadcast networks. Networks,
23, 1993.

20. D. B. West. A class of solutions to the gossip problem. Discrete Math., 39, 1992.

