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Abstract In this paper, we address some problems related to server placement in
Grid environments. Given a hierarchical network with requests from clients and con-
straints on server capability, the minimum server placement problem attempts to place
the minimum number of servers that satisfy requests from clients. Instead of using a
heuristic approach, we propose an optimal algorithm based on dynamic programming
to solve the problem. We also consider the balanced server placement problem, which
tries to place a given number of servers appropriately so that their workloads are as
balanced as possible. We prove that an optimal server placement can be achieved by
combining the above algorithm with a binary search on workloads. This approach
can be further extended to deal with constrains on network capability. The simula-
tion results clearly show the improvement in the number of servers and the maximum
workload. Furthermore, as the maximum workload is reduced, the waiting time is
reduced accordingly.
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1 Introduction

Grid technologies, which enable scientific applications to utilize a wide variety of
distributed computing and data resources, are classified into two categories: Comput-
ing Grids and Data Grids [9, 13]. A Data Grid is a distributed storage infrastructure
that integrates distributed, independently managed data resources. It addresses the
problems of storage and data management, data transfers and data access optimiza-
tion, while maintaining high reliability and availability of the data. In recent years,
a number of Data Grid projects have emerged in various disciplines, for instance, EU
Data Grid [8], PPDG [15], iVDGL [12], GriPhyN [6] and BIRN [3].

One way of solving the data access optimization problems is to distribute multiple
copies of a file across different server sites in the grid system. It has been shown
that file replication can improve the performance of the applications [4, 5, 7, 11, 14,
16, 17]. The existing works focus on how to distribute the file replicas in a data grid
in order to optimize different criteria such as I/O operation costs [14], response time
and bandwidth consumption [16].

In this paper, we focus on some server placement problems in Data Grid environ-
ments. Given a hierarchical network with requests from clients and constraints on
server capability, the solution to the minimum server placement problem attempts to
place the minimum number of servers that can satisfy requests from clients. Instead
of using a heuristic approach, we propose an optimal algorithm based on dynamic
programming to solve this problem. We also consider the balanced server placement
problem, which tries to place a given number of servers appropriately so that their
workloads are as balanced as possible. We prove that an optimal server placement can
be achieved by combining the above algorithm with a binary search on workloads.
This approach can be further extended to deal with constrains on network capabil-
ity. The experimental results clearly show the improvement in the number of servers
and the maximum workload. Furthermore, as the maximum workload is reduced, the
waiting time is also reduced.

2 Background

In this paper, we use a hierarchical Grid model, one of the most common architec-
tures in current use [1, 2, 10, 11, 16]. Consider Fig. 1 as an example. Leaf nodes
represent client sites that send out I/O requests. The root node is assumed to be the
I/O server that stores the master copies of all files. Without loss of generality, we
assume that the root node is the site 0. Intermediate nodes can be either routers for
network communications or I/O servers that store file replicas. Edges represent com-
munication channels between nodes. We further assume that, initially, only one copy
(i.e., the master copy) of a file exists at the root site, as in [2, 16].

Associated with each client site i, there is a parameter ri that represents the arrival
rate of read requests for client site i. A data request travels upward from a client site
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Fig. 1 The hierarchical Grid model

and passes through routers until it reaches an I/O server on the path. Upon receiving
the request, the I/O server sends data back to the client site if it owns a copy of the
requested file. Otherwise, it forwards the request to its parent server. This process
continues up the hierarchy recursively until a node that has the requested file is en-
countered or the root node is reached. The root server might update the contents of
a file. For each update, corresponding update requests are sent to the other I/O servers
to maintain file consistency. Let u be the arrival rate of update requests from the root
server.

Associated with each server site j , there is a parameter λj that represents the
arrival rate of I/O requests. λj can be computed as: λj = ∑

i∈Cj
ri + u, where Cj is

the set of clients served by server site j . The first term represents the read requests
generated by clients in Cj . The second term denotes the update requests that will be
sent to server site j .

In the absence of file replicas, all I/O requests must be served by the roots node.
However, the request arrival rate is usually much higher than the service rate of the
root node so that clients have to wait indefinitely for service. By placing I/O servers
between client sites and the root node, some of I/O requests can be served by these
I/O servers thereby alleviating the workload on the root node. According to Queueing
Theory, the workloads of I/O servers are the dominant factor in the waiting time of I/O
requests. Therefore, to benefit from file replicas, it is important to place I/O servers
at appropriate locations in a hierarchical Grid system.

3 The minimum server placement problem

I/O requests generated by client sites and data transfer requests served by server sites
can be modeled as queueing systems. According to Queueing Theory, the queue
length and the waiting time of a queueing system will eventually reach infinity if
the arrival rate of requests is greater than the service rate. Hence, there is a hard con-
straint on the arrival rate of each I/O server in a Grid system. File replicas present a
natural solution to this problem. By placing the replicas with more I/O servers, it is
possible to share I/O requests among servers and balance their workloads. However,
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it is quite expensive to setup I/O servers in a Grid system, as having more servers
usually lead to lower utilization, which means a waste of the system’s resources and
increased maintenance costs. Therefore, our first problem is to place the minimum
number of I/O servers that will satisfy I/O requests from clients.

Definition 1 Given the network topology, request arrival rates and I/O service rates,
the minimum server placement problem tries to place the minimum number of I/O
servers such that the arrival rate of requests that reach each I/O server is less than its
service rate.

To solve this problem, it is intuitively to employ a greedy method, similar to that
in [1], by placing I/O servers one by one until all the servers including the root server
meet their constraints. Although this algorithm is rather fast and easy to implement,
we found that it did not always generate the minimum number of servers in our ex-
periments. Therefore, instead of employing a heuristic approach, we try to find an
optimal algorithm based on the dynamic programming approach as shown in the re-
mainder of this section.

Definition 2 Let L(i,m) be the minimum arrival rate of leakage requests that pass
through node i when at most m servers are placed in the sub-tree rooted at node i,
and the arrival rate of requests that reach each I/O server is less than its service rate.

Leakage requests that pass through node i are requests generated by leaf nodes in
the sub-tree rooted at node i, but not served by the I/O servers in that sub-tree. Such
requests must be serviced by an I/O server above node i in the hierarchy. Hence, it
is desirable to minimize the arrival rate of these leakage requests. Depending on the
server placement, the arrival rate of the leakage requests may change. L(i,m) rep-
resents the minimum arrival rate of leakage requests among all possible placements
of at most m servers. Let n be the number of nodes in the Grid system. Based on
the following theorems, such a minimum arrival rate can be computed in a recursive
manner.

Theorem 1 L(i,m + 1) ≤ L(i,m) for any node i and m ≥ 0.

Theorem 2 If node i is a leaf node, then L(i,m) = λi for 0 ≤ m ≤ n.

Proof Since a leaf node cannot be an I/O server, all I/O requests generated by a client
site will travel up the tree to the leaf node’s parent. By definition, L(i,m) = λi for
0 ≤ m ≤ n. �

Theorem 3 For an intermediate node i with two child nodes j and k, we can derive:

L(i,m) = 0 if min
0≤r≤m−1

{L(j, r) + L(k,m − r − 1)} ≤ μi

L(i,m) = min
0≤r≤m

{L(j, r) + L(k,m − r)}, otherwise
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Proof Case 1: A server is placed on node i. Consequently, at most m − 1 servers
are placed on sub-trees rooted at node j and node k. This happens if and only if
min0≤r≤m−1{L(j, r)+L(k,m− r −1)} ≤ μi . The “if” part can be proved as follows.
Suppose that the minimum can be obtained when there are p servers on the sub-tree
rooted at node j and q servers on the sub-tree rooted at node k as shown in Fig. 2(a).
By definition, the minimum arrival rate of leakage requests that pass through node j

and node k will be L(j,p) and L(k, q) respectively. Since node i has only two child
nodes, j and k, the arrival rate of I/O requests that reach node i must be the sum
L(j,p) + L(k, q). Accordingly, we can derive:

L(j,p) + L(k, q) = min
0≤r≤m−1

{L(j, r) + L(k,m − r − 1)} ≤ μi

Hence, a server can be placed on node i. In this case, L(i,m) = 0 and must be
optimal. The “only if” part can be proved similarly. Suppose that, in an optimal server
placement, there are p servers on the sub-tree rooted at node j and q servers on the
sub-tree rooted at node k. Obviously, we have the inequalities 0 ≤ p,q ≤ m − 1 and
p + q ≤ m − 1. Since node i has only two child nodes, j and k, the arrival rate of
I/O requests that reach node i must be the sum L(j,p) + L(k, q) and must meet the
constraint L(j,p) + L(k, q) ≤ μi . According to Theorem 1, we can derive: μi ≥
L(j,p) + L(k, q) ≥ L(j,p) + L(k,m − 1 − p) ≥ min0≤r≤m−1{L(j, r) + L(k,m −
r − 1)}. This completes the proof of case 1.

Case 2: No server is placed on node i. Consequently, at most m servers are placed
on sub-trees rooted at nodes, j and k. Suppose that, in an optimal server placement,
there are p servers on the sub-tree rooted at node j and q servers on the sub-tree
rooted at node k, as shown in Fig. 2b. Obviously, we have the inequalities 0 ≤ p,q ≤
m and p + q ≤ m. Since node i has only two child nodes, j and k, the arrival rate
of I/O requests that reach and pass through node i can be computed as: L(i,m) =
L(j,p) + L(k, q) ≥ L(j,p) + L(k,m − p) ≥ min0≤r≤m{L(j, r) + L(k,m − r)}.
According to above the assumption, this is an optimal server placement. Hence, all
the equalities must hold. This completes the proof of case 2. �

Theorem 4 For an intermediate node i with k child nodes j0, j1, . . . , jk−1, the min-
imum arrival rate of leakage requests that pass through node i can be computed
iteratively as follows:

L0(i,m) = L(j0,m),

Lq(i,m) = min
0≤r≤m

{Lq−1(i, r) + L(jq,m − r)},1 ≤ q ≤ k − 1,

L(i,m) = 0 if Lk−1(i,m − 1) ≤ μi; and

L(i,m) = Lk−1(i,m), otherwise.

Proof Figures 2c and 2d illustrate the basic concept of this theorem. To find an opti-
mal server placement, we can view an intermediate node with k child nodes in Fig. 2c
as the sub-tree in Fig. 2d. Then, the minimum arrival rate of leakage requests, L(i,m),
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Fig. 2 a and b illustrate two possible server placements on node i. c and d illustrate the basic concept of
Theorem 4

can be computed recursively along the sub-tree. As the detailed proof of this theorem
is similar to that of Theorem 3, it is omitted here. �

Theorem 5 The minimum number of I/O servers that meet their constraints can be
obtained by finding the minimum m such that L(0,m) = 0.

Based on Theorems 2 to 4, we can compute the minimum arrival rate of leakage
requests by starting from leaf nodes and working toward the root node. After the
minimum arrival rate of leakage requests that reach the root node has been computed,
the minimum number of I/O servers that meet their constraints can be computed
according to Theorem 5. The proposed algorithm is presented in Fig. 3.

In the first line of the algorithm, we sort all nodes according to their distances to the
root node in decreasing order. This ensures that child nodes will be computed before
their parents so that Theorems 2 to 4 can be correctly applied. The execution time of
this step is O(n logn). The loop in line 2 iterates over every node in the system. For
each leaf node, it takes O(n) execution time in line 4. For an intermediate node that
has k child nodes, it takes O(n2) execution time in line 9, and iterates k − 1 times
in line 8. This results in O(kn2) execution time for lines 8 to 10. Lines 11 to 13 also
take O(n) execution time. Consequently, the complexity of lines 3 to 13 is O(kn2);
and the complexity of the whole algorithm is O(n3), where n is the number of nodes
in the Grid system.
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Algorithm Minimum_Leakage
Input: 1. the arrival rate λi for all leaf nodes.

2. the service rate μi for all intermediate nodes.
Output: the minimum arrival rate L(i,m) for 0 ≤ i,m ≤ n.
Procedure:

1. sort all nodes according to their distance to the root node in decreasing order.
2. for each node i do
3. if node i is a leaf node then
4. compute L(i,m) = λi for 0 ≤ m ≤ n

5. else
6. let the child nodes of node i be nodes j0, . . . , jk−1
7. compute L0(i,m) = L(j0,m) for 0 ≤ m ≤ n

8. for q from 1 to k − 1 do
9. compute Lq(i,m) = min0≤r≤m{Lq−1(i, r) + L(jq ,m − r)} for 0 ≤ m ≤ n

10. endfor
11. for m from 0 to n do
12. if Lk−1(i,m − 1) ≤ μi then L(i,m) = 0 else L(i,m) = Lk−1(i,m) endif
13. endfor
14. endif
15. endfor

Fig. 3 An optimal algorithm for the minimum server placement problem

4 The balanced server placement problem

As mentioned in the last paragraph of Sect. 2, a major factor in the performance
of a queuing system is the workloads of the servers. Since each server may have a
different capability, the workload of a server is defined as the ratio of its arrival rate
over its service rate. The minimum server problem sets a lower bound on the number
of I/O servers. However, usually we would like to setup more I/O servers to reduce
the workload. In this case, we are concerned with the maximum workload of the I/O
servers. In other words, we try to place a given number of servers appropriately so
that the workloads of the servers are as balanced as possible. We call this the balanced
server placement problem.

Definition 3 The workload of a server i, denoted by ρi , is defined as the ratio of its
arrival rate over its service rate: ρi = λi/μi .

Definition 4 The maximum workload of a system is defined as the maximum work-
load among all servers in the system.

Definition 5 Given the network topology, request arrival rates and I/O service rates,
the balanced server placement problem aims at placing a given number of I/O servers
so that the maximum workload of the Grid system is minimized.

Let m0 represent the lower bound on the number of I/O servers. Assume there
are m ≥ m0 servers to be placed. Our goal is to place at most m servers such that
the maximum workload is minimized. First, we present an algorithm to find a server
placement when the maximum workload is known. Instead of solving this problem di-
rectly, we transform it into a minimum server placement problem discussed in Sect. 3.
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Theorem 6 There exists a placement of at most m servers such that max{ λi

μi
} ≤ ρ if

and only if the minimum number of servers needed for arrival rates λi and service
rates μ′

i = ρ · μi is less than or equal to m.

Proof First, suppose that the minimum number of servers needed for arrival rates λi

and service rates μ′
i = ρ ·μi is less than or equal to m. By definition, there must exist

a placement of at most m servers such that λi ≤ μ′
i = ρ · μi for all server nodes i.

Thus, λi/μi ≤ ρ for all server nodes i. Accordingly, we can derive max{λi/μi} ≤ ρ.
This completes the proof of the “if” part.

Next, suppose there exists a placement of at most m servers such that
max{λi/μi} ≤ ρ. We can derive λi/μi ≤ ρ and λi ≤ ρ · μi for all server nodes i.
Therefore, the minimum number of servers needed for arrival rates λi and service
rates μ′

i = ρ · μi must be less than or equal to m. This completes the proof of the
“only if part”. �

Theorem 7 If there is no placement of at most m servers such that max{λi/μi}
≤ ρ and ρ′ ≤ ρ, then there cannot be a placement of at most m servers such that
max{λi/μi} ≤ ρ′.

Proof We prove this theorem by contradiction. Assume that there is no placement of
at most m servers such that max{λi/μi} ≤ ρ and ρ′ ≤ ρ. If there exists a placement
of at most m servers such that max{λi/μi} ≤ ρ′, we can derive that there must exist
a placement of at most m servers such that max{λi/μi} ≤ ρ′ ≤ ρ. However, this
contradicts the assumption. Therefore, there cannot be a placement of at most m

servers such that max{λi/μi} ≤ ρ′. �

According to Theorem 6, we can determine if there exists a placement of at most
m servers such that max{λi/μi} ≤ ρ by using the algorithm for the minimum server
placement problem in Sect. 3. The main difficulty with this approach is that we do
not know the optimal value of the maximum workload yet. Fortunately, Theorem 7
provides a foundation for searching the optimal value of the maximum workload.
It implies that if there is no server placement for a maximum workload ρ, then the
optimal value must be greater than ρ. On the other hand, if there is a server placement
for a maximum workload ρ, then it is possible to further minimize the value of the
maximum workload. Combining Theorems 6 and 7 allows us to find the optimal value
through a binary search on the maximum workload.

Before applying a binary search, however, we have to determine an upper bound
and a lower bound. It is rather easy to get an upper bound and a lower bound on the
maximum workload. So long as m ≥ m0, there always exists an upper bound of 1
on the maximum workload. A lower bound can be computed by assuming that the
fastest m servers are chosen and I/O requests are distributed to these servers evenly.
Next, we can combine a binary search of the maximum workload and the algorithm
for the minimum server placement problem to find the optimal value of the maxi-
mum workload. Because the upper bound of the binary search is a constant and the
lower bound is a function of the input parameters, the workload-balance algorithm is
strongly polynomial.

Our algorithm can be further generalized to consider network bandwidth. Take
Fig. 4 as an example. Let μji be the service rate of the communication channel
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Fig. 4 An example of network bandwidth

between node j and node i. The arrival rate of I/O requests that pass through the
communication channel between node j and node i is denoted as L(j,p). To meet
the constraint of the communication channel, it is desirable that L(j,p) ≤ μji in
the minimum server placement problem and L(j,p) ≤ ρ · μji in the balanced server
placement problem.

5 Experimental results

In this section we conduct several experiments to evaluate the performance of the
proposed algorithms. Test cases are generated based on the proposed Grid model.
The height of each case is at most 8. Each node has at most 4 children. The number
of nodes in each case is approximately 1000. The arrival rates for the leaf nodes and
the service rates for intermediate nodes are generated from a uniform distribution.
There are four groups of test cases. Each group has a different range of service rate:
0–400, 50–350, 100–300 and 150–250. We will refer those groups as group 1, 2, 3
and 4, respectively. There are 1000 test cases in each group.

We compare the performance of the three algorithms: Greedy [1], Work-
load_Based and Waiting_Time_Based algorithms. The Workload_Based (WB) algo-
rithm is described in Sect. 4. The Waiting_Time_Based (WTB) algorithm is similar
to WB except it tries to minimize the maximum waiting time of M/M/1 queueing
systems. In other words, it tries to minimize maxi{1/(μi − λi)}. Table 1 shows the
experimental parameters.

The experimental results for the minimum server placement problem is shown in
Fig. 5. Here we only compare Greedy and WB because WTB uses the same number of
servers as WB. The performance metric is the difference in the number of servers used
by WB and Greedy, i.e., the extra number of servers used by the Greedy algorithm.
The vertical axis shows the number of test cases, while the horizontal axis shows the
difference in the number of servers used by these two algorithms.
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Table 1 Parameters of experiments

Parameter Description

Height of tree ≤ 8

Number of child nodes ≤ 4

Number of nodes in each case ≈ 1000

Range of service rates 0–400, 50–350, 100–300 and 150–250

Algorithms Greedy, WB and WTB

Fig. 5 Performance comparison for the minimum server problem

Figure 5a shows that Greedy can only generate an optimal solution for 26.1% of
the test cases when service rates are between 0 and 400. WB uses one less server than
Greedy in 34.5% of the test cases and two or less servers than the greedy method
in 39.4% of test cases. Figures 5b, 5c and 5d also show similar results. Based on
the results in Fig. 5, we further classify the 1000 test cases in each group into seven
additional sets for use in the following experiments. Thus, test set Si contains those
test cases in which our algorithms use i less servers than the Greedy algorithm.

Figure 6 shows the workloads of the three algorithms. For each test set, WB and
WTB use the same number of servers as Greedy. Figure 6 uses the average of maxi-
mum workloads of each test set as the performace metric. It is obvious that the differ-
ence between Greedy and our algorithms becomes more significant as the difference
in the minimum numbers of servers increases. This means that, when using the same
number of I/O servers, both WB and WTB can actually reduce the maximum work-
load of the I/O servers and therefore balance their workloads better than the Greedy
algorithm.
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Fig. 6 The average of maximum workloads

Other groups show similar results. This indicates that our algorithms also perform
better than Greedy in other ranges of service rates. The workloads of WB are slightly
better than those of WTB. This is because WB is designed to minimize the maximum
workload while WTB is to minimize the maximum waiting time. The difference,
however, is not significant. Note that in Fig. 6c there is no data in set S6. It is because
no test case in group 3 uses 6 more servers in the Greedy algorithm.

Before we compare the average waiting times of algorithms. we should take some
points into account. In our experiments, we find that there are extraordinarily long
waiting times in several test cases. This happens when the service rate of a server
is very close to its request rate in a heavy loaded system. We refer those cases as
outliers. For example, the maximum waiting time of an outlier in group 3 reaches
90.9 while the average of maximum waiting times is only 0.968. To prevent those
outliers producing confusing results, we introduce an additional parameter, ε, to limit
the maximum waiting time of test cases. In the following experiments, it is desired
that λi ≤ μi − ε for each server i.

In the presence of ε, we can still use the binary search technique to find the max-
imum workload described in Sect. 4 with minor modifications. Suppose we want to
know if maxi{λi/μi} ≤ α and λi ≤ μi − ε, we can let μ′

i = min(αμi,μi − ε). Sim-
ilarly, suppose we want to know if max{1/(μi − λi)} ≤ β and λi ≤ μi − ε, we can
let μ′

i = μi − max{1/β, ε}. Then, we can use the dynamic programming algorithm
described in Sect. 3 to deal with that problem.

We now discuss the influence of ε. Intuitively, the larger ε is, the more servers
are needed. Figure 7 shows the extra number of servers needed for different ε.
When ε = 0.05, there are 997 test cases using the same number of servers as ε = 0.
When ε = 1, only 831 test cases use the same number of servers as ε = 0. Accord-
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Fig. 7 The extra number of servers with different ε values

ing to these results, a smaller ε is preferred since we tend to use a less number of
servers.

The functionality of ε is to filter out those test cases with extraordinarily long
waiting time. Therefore we would like to see the effect of ε. Figure 8 shows the
maximum of maximum waiting times of WTB in each group with different ε. From
Fig. 8 we can see clearly the effect of ε. For example, in group 3, the maximum of the
waiting time is 90.9 when ε = 0 and 18.18 when ε is only 0.05. We choose ε = 0.05
in our experiments since it can filter out those most outliers and in 99% cases it uses
the same number of servers as ε = 0.

After introducing ε, we then look at the results in the Fig. 9. The performace metric
is the average of maximum waiting time of each test set. This result demonstrates the
major benefit of our algorithms. The results show that, using the same number of
servers as Greedy, our algorithms reduce the average waiting time of the grid system
dramatically. For example, in Fig. 9a the average maximum waiting time of WTB is
0.17 while the average maximum waiting time of Greedy is 1.19 in set S1. The WTB
performs slightly better than WB in this metric. Again, all the test groups show the
similar results.

Figure 10 shows the maximum workloads and the maximum waiting times of WB
and WTB algorithms as the number of I/O servers increases, where m0 is the lower
bound on the number of I/O servers for test cases in S0. It is clear that the maximum
workload decreases as the number of I/O servers increases. These data can help us
determine an appropriate number of servers in a grid system. It can also help us to
determine an appropriate number of servers in a grid system when the average waiting
time is the major concern.
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Fig. 8 The effect of ε on the maximum waiting time

Fig. 9 The average of maximum waiting times
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Fig. 10 The workload and the average waiting time versus the number of I/O servers. Server capacity
range: 0–400

6 Conclusions

In this paper, we focus on some server placement problems in Data Grid environ-
ments. Given a hierarchical network with requests from clients and constraints on
server capability, the minimum server placement problem attempts to place the mini-
mum number of servers that can deal with requests from clients. As our model allows
servers have different I/O capabilities, it is more general than similar work in the
literatures. Instead of using a heuristic approach, we propose an optimal algorithm
based on dynamic programming as a solution to this problem.

We also consider the balanced server placement problem, which tries to place a
given number of servers appropriately so that the workloads of the servers are as
balanced as possible. We show that an optimal server placement can be achieved by
combining the above algorithm with a binary search on workloads. Finally, we extend
the above approach so that constraints on network capability can also be dealt with.
The experimental results clearly show the improvement on the number of servers and
the maximum workload. As the maximum workload is reduced, the waiting time is
also reduced.
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