
J Supercomput (2007) 42: 283–302
DOI 10.1007/s11227-007-0116-6

An optimal scheduling algorithm for an agent-based
multicast strategy on irregular networks

Pangfeng Liu · Yi-Fang Lin · Jan-Jan Wu ·
Zhe-Hao Kang

Published online: 6 April 2007
© Springer Science+Business Media, LLC 2007

Abstract This paper describes an agent-based approach for scheduling multiple
multicast on wormhole switch-based networks with irregular topologies. Multi-
cast/broadcast is an important communication pattern, with applications in collec-
tive communication operations such as barrier synchronization and global combining.
Our approach assigns an agent to each subtree of switches such that the agents can
exchange information efficiently and independently. The entire multicast problem is
then recursively solved with each agent sending message to those switches that it is
responsible for. In this way, communication is localized by the assignment of agents
to subtrees. This idea can be easily generalized to multiple multicast since the order
of message passing among agents can be interleaved for different multicasts. The key
to the performance of this agent-based approach is the message-passing scheduling
between agents and the destination processors. We propose an optimal scheduling
algorithm, called ForwardInSwitch to solve this problem. We conduct extensive ex-
periments to demonstrate the efficiency of our approach by comparing our results
with SPCCO, a highly efficient multicast algorithm reported in literature. We found
that SPCCO suffers link contention when the number of simultaneous multiple mul-
ticast becomes large. On the other hand, our agent-based approach achieves better
performance in large cases.

P. Liu (�) · Y.-F. Lin · Z.-H. Kang
Department of Computer Science and Information Engineering, National Taiwan University,
No. 1, Roosevelt Rd., Sec. 4, Taipei, 106, Taiwan
e-mail: pangfeng@csie.ntu.edu.tw

Y.-F. Lin
e-mail: ice@iis.sinica.edu.tw

Y.-F. Lin · J.-J. Wu
Institute of Information Science, Academia Sinica, Taipei, Taiwan

J.-J. Wu
e-mail: wuj@iis.sinica.edu.tw



284 P. Liu et al.

Keywords Multicast · Irregular networks · Message passing scheduling

1 Introduction

In recent years, with the speed of microprocessors increasing and cost decreasing
and the availability of high bandwidth, low latency switches (such as Fast Ether-
net switches, Myrinet switches, ATM switches, and GigaBit Ethernet) at a reason-
able cost, it is popular to interconnect workstations/PCs together with commodity
switches. This makes clusters of workstations/PCs an appealing vehicle for cost-
effective parallel computing.

To reduce communication latency and buffer requirement, wormhole switching
technique [2, 14] is often used in these switches. Systems with wormhole routing
provide a very small buffer space at each hop and divide a message into small flits
that travel through the network in a pipeline fashion. The main drawback of wormhole
switching is that blocked messages hold up the links, prohibiting other messages from
using the occupied links and buffers.

Multicast/broadcast is commonly used in many scientific, industrial, and com-
mercial applications. Distributed-memory parallel systems, such as cluster systems,
require efficient implementations of multicast and broadcast operations in order to
support various applications. In a multicast, the source node sends the same data to
an arbitrary number of destination nodes. When multiple multicast operations occur
at the same time, it is very likely that some messages may travel through the same net-
work link at the same time and thus content with each other, if they are not scheduled
properly.

Minimizing contention in multicast/broadcast has been extensively studied for sys-
tems with regular network topologies, such as mesh, tori and hypercu-
bes [3–6, 8–10]. Cluster networks, especially switch-based clusters, on the other
hand, typically have irregular topologies to allow the construction of scalable sys-
tems with incremental expansion capability. These irregular topologies lack many of
the attractive mathematical properties of the regular topologies. This makes routing
on such systems quite complicated. In the past few years, several routing algorithms
have been proposed in the literature for irregular networks [1, 11, 15, 16]. These rout-
ing algorithms are quite complex and thus make implementation of contention-free
multicast operations very difficult.

The goal of this paper is to develop efficient (multiple) multicast algorithms for
irregular switch-based networks. In [7], Fan and King proposed an unicast-based im-
plementation of single multicast operation based on Eulerian trail routing. In this
paper, we consider the widely used, commercially available routing strategy called
“up-down” routing.

The best known results on multicast on irregular networks are the Partial-Order-
Chain-based algorithms proposed by Kesavan and Panda [12]. The basic idea is to
order the destination processors into a sequence, then apply a binomial tree-based
multicast [13] on these destinations. The chain concatenation ordering (CCO) algo-
rithm first constructs as many partial order chains (POC) as possible from the net-
work. A partial order chain is a sequence of destinations such that we can apply



An optimal scheduling algorithm for an agent-based multicast strategy on irregular networks 285

a binomial multicast on it without any contention. The CCO algorithm then concate-
nates these POCs into sequence where a binomial multicast is performed [12]. The
sequence consists of fragments of processor sequences in which messages within the
same fragment can be sent independently, therefore congestion is reduced. Based on
the CCO algorithm, the source-partitioned CCO (called SPCCO) performs multiple
multicasts simultaneously. Each multicast produces its own sequence (consisting of
POCs), and each resulting sequence is shifted until the source appears at the begin-
ning of the sequence. By shifting these sequence, the communication is “interleaved”
according to the source, and communication hot-spots are avoided. However, both
CCO and SPCCO use the idea of POC to reduce contention. Within a single POC
different messages do not interfere with one another as long as they are from differ-
ent sections within a POC. However, this POC structure may not always be preserved
since the later binomial multicast is not aware of it. To solve this problem, we propose
an agent-based multicast algorithm, which avoids network contention by localizing
and interleaving message passings in multicast.

For a single multicast, our algorithm uses a recursive construct to localize commu-
nication. We then generalize it to multiple multicast by interleaving the communica-
tion tasks among different subnetworks. Figure 1 compares the numbers of contented
links per multicast from SPCCO and our recursive agent-based multicast (RAM)
under different number of simultaneous multicasts. The system consists of sixteen
switches. Each switch has 16 ports, with half of which connected to processors, and
the other half connected to other switches. Each multicast has 101 and 408 destina-
tions on the left and the right side of Fig. 1 respectively. As indicated in Fig. 1, our
multicast algorithm incur less contention. More experimental data will be presented
in Sect. 6.

Our agent-based approach starts with a recursive multicast algorithm. An agent
for a multicast is chosen for each subtree of the routing tree. An agent is responsible
for relaying (forwarding) the multicast messages to all the destinations in that sub-
tree. This task is divided into subtasks for each subtree, where they are performed
recursively. We generalize this algorithm to multiple multicast by choosing a pri-
mary agent for each multicast. The primary agent are chosen from the subtrees of the
root of the routing tree, and are properly interleaved so that the tasks are distributed
evenly. The primary agents for different multicasts exchange messages and then use
the multicast algorithm to forward messages.

Fig. 1 Number of contented links under different numbers of multicasts



286 P. Liu et al.

The key to the performance of the agent-based multicast strategy is the schedul-
ing of message forwarding between agents as well as between an agent and the
destination processors within each subtree. For this purpose, we develop an opti-
mal scheduling algorithm, called ForwardInSwitch, for message forwarding. We pro-
vide theoretical analysis for the optimality and time complexity of ForwardInSwitch.
Our experimental results also demonstrate significant performance improvement of
our multicast algorithms in comparison with the CCO and SPCCO multicast algo-
rithms.

The rest of the paper is organized as follows: Sect. 2 formally describes the com-
munication model in this paper. Section 3 first describes our multicast algorithm,
and then describes the generalization to multiple multicast. Section 4 describes the
communication model behind our forwarding scheme. Section 5 presents the For-
wardInSwitch optimal scheduling algorithm in details. Section 6 reports our experi-
mental results. Finally, we conclude with Sect. 7.

2 Model

We assume that the system consists of switches and processors. Each switch has a set
of ports, which can be used to connect to processors or ports of other switches. The
connectivity of switches in the network can be represented by a graph G = (V ,E),
where the set of nodes V represents switches, and the set of edges E represents the
bidirectional connection channels among switches. The graph G can be highly irreg-
ular. In addition, each processor is connected to a unique switch. Figure 2 illustrates
an irregular network consisting of 4 switches (each has 8 ports) and 15 processors,
and the corresponding graph.

The communication between two processors proceeds as follows. The source
processor prepares a message and sends it to the switch it is connected to. Then
dictated by the routing mechanism the message is routed in G from switch to switch.
Finally the message is routed to the switch where the destination processor is con-
nected to, and then delivered to the destination processor.

Fig. 2 An irregular network of
4 switches and 15 processors
and the corresponding
connection graph



An optimal scheduling algorithm for an agent-based multicast strategy on irregular networks 287

2.1 Routing mechanism

We now describe the up-down routing [16] used in our multiple multicast algorithm.
The up-down routing mechanism first uses a breadth-first search to build a spanning
tree T for the switch connection graph G = (V ,E). Since T is a spanning tree of
G, E is partitioned into two subsets – T and E − T . Those edges in T are referred
to as tree edges and those in E − T as cross edges [12]. Since the tree is built with
a BFS, the cross edges can only connect switches whose levels in the T differ by at
most 1. A tree edge going up the tree, or a cross edge going from a processor with
a higher processor id to a processor with a lower one, are referred to as up links.
The communication channels going the other direction are down links. In up-down
routing a message must travel all the up links before it travels any down links. Due
to the acyclic nature of how the direction of links are defined, the up-down routing is
deadlock-free.

2.2 Contention

We assume that a switch can deliver multiple messages simultaneously from ports
to ports, as long as the messages are delivered from different source and destina-
tion ports. This assumption is consistent with current routing hardware technology.
As a result, congestion on the communication links becomes the major bottleneck.
To avoid this problem, the routing method should fully utilize the communication
capability, as suggested by the following cases.

We consider three cases where link contention can be avoided. We will focus on
a particular switch A. In the first case, as shown in Fig. 3a, all source/destination
processors are connected to the same switch A. In this case, there will be no con-
tention since the messages travel through different paths within the switch. In the
second case, as shown in Fig. 3b, both source processors reside on A. In this case,
both can send messages to destinations in different subtrees of A simultaneously.
Note that a destination node could be any processor in these two subtrees. In the third
case two messages travel through four subtrees of switch A, as indicated in Fig. 3c. If
the two messages both go through switch A, there will be no link contention between
them. Note that the source and destination processors may appear anywhere in the
four subtrees.

Fig. 3 Example cases that avoid contention on the inter-switch channels



288 P. Liu et al.

3 Agent-based algorithms

This section describes our framework of a agent-based multiple multicast algorithm.
We first introduce the algorithm for single multicast, then generalize the idea to mul-
tiple multicast. The algorithms specify how to perform a single/multiple multicast by
determining the source and destination of all the intermediate communications, but
the actual route from source to destination is determined by the underlying up-down
routing strategy.

3.1 Single multicast

For a given irregular network, we first construct a routing tree as in up-down rout-
ing [16]. The routing tree has all the switches as the tree nodes, and the inter-switch
communication channels as the tree edges. Every tree node is the root of a unique
subtree in this routing tree, and for ease of notation we will not distinguish a tree
node (a switch in the network) from the subtree where it is the root.

For a given multicast message m and a switch v, we will define two functions—an
agent function A(m,v) that returns a processor within the subtree rooted at v and
will be responsible for relaying multicast message m, and a cost function C(m,v)

that estimates the total cost of sending m to all of its specified destinations within
the subtree rooted at v. Note that all these tree nodes here represent switches, not
processors.

We define these agent and cost functions recursively. Let D(m,v) be the set of
destination processors of message m that are connected to switch v. For a leaf switch
v, A(m,v) is defined to be an arbitrary destination processor in D(m,v), and C(m,v)

is log |D(m,v)|. If |D(m,v)| = 0, that is, m does not have any destination processor
connected to switch v, we define A(m,v) to be an empty set and C(m,v) = 0. For
an internal node (switch) v, if |D(m,v)| > 0, we pick an arbitrary destination of
m in D(m,v) to be the agent A(m,v). Otherwise we consider all the children of
v that m must be sent to, and set A(m,v) to be the agent from these subtrees that
has the highest cost. Formally, let S(m,v) be the set of children of switch v that
have destinations of m in their subtrees, then A(m,v) = w such that w ∈ S(v) and
C(m,w) ≥ w′ for all w′ ∈ S(v). Note that from this definition, the agent of a switch
is not necessarily connected to the switch itself.

The cost function for an internal node is defined as follows: For the purpose of
recursion we assume that the agent of switch v knows the message m. If |D(m,v)| =
0, the agents of tree nodes from S(v) will first perform a multicast among themselves
using a binomial multicast [13], then as soon as an agent a from S(m,v) finishes
receiving m, it recursively performs a multicast to all the destinations in the subtree
where it is defined as the agent. The total communication cost is then defined as
C(m,v). When |D(m,v) > 0|, the situation is more complicated, because the agent
of v, now a processor connected to v, can send m to other destinations in D(m,v),
or to the agents of S(m,v). We apply a procedure ForwardInSwitch that determines
the order for those in D(m,v) and S(m,v) to receive messages. After the schedule is
determined, we compute the total cost C(m,v) for v. The algorithm ForwardInSwitch
takes D(m,v) and C(w,m) for all w ∈ S(m,v) as inputs, then computes an optimal



An optimal scheduling algorithm for an agent-based multicast strategy on irregular networks 289

RAM(v, m)
{

if (|D(m, v)| == 0)
A(m, v) sends message m to all agnets in S(m, v)
by a binomial multicast;

else
call ForwardInSwitch to determine the order for A(v, m)
to send messages to elements in D(m, v) and
agents of S(m, v);

For all switch s in S(m, v)
call RAM(s, m);

}

Fig. 4 The pseudo code of RAM, which recursively performs a multicast for each subtree of switch v that
has destinations of message m

schedule and the total cost. The details of ForwardInSwitch will be given in Sect. 5.
The pseudo code of our recursive agent-based multicast (RAM) is given in Fig. 4.

When |D(m,v)| > 0, v does have some destination processors for message m and
one of them is the agent of v. When the agent sends messages to those destinations
in D(m,v) (Fig. 3a), the messages will not interfere with each other. Also when
the agent of v sends messages to those agents in S(m,v) (Fig. 3b), no contention is
possible if no cross edges are involved. In addition, the message passing from one
category (Fig. 3a) will not contend with those in the other category (Fig. 3b). When
|D(m,v)| = 0, we use a single multicast to send the messages among all the agents
of S(m,v), with one of them now being assigned as the agent of v. From Fig. 3c
we conclude that these messages will not contend with each other unless cross edges
are involved, since the agents of different subtrees in S(m,v) will not be in the same
subtree.

To sum up, we expect a very low level of congestion from this scheduling al-
gorithm. After guaranteeing low congestion, the algorithm ForwardInSwitch, which
determines the optimal schedule of message-passing between agents as well as be-
tween an agent and the destinations within its subtree, computes the total cost. The
complete details of the optimal ForwardInSwitch scheduling will be given in Sect. 4
and Sect. 5.

3.2 Multiple multicast

Let r be the root of the up-down routing tree. The agent-based multiple multicast is
carried out in three steps as described below. First for each message m we choose
a primary agent among the agents of S(m, r)—the set of subtrees of root r . Each
source processor then sends its message to its primary agent. Second, the primary
agent sends its message m to a destination d in D(m, r) if any, and to the agents of
S(m,v). Finally, each agent a of S(m, r) sends messages to its destinations by calling
RAM, and a sends m to D(m, r) with a binomial multicast.

We consider several alternatives in the first two steps of our multiple multicast
algorithm. First we consider two alternatives in choosing the primary agent. It is now
clear that if different multicasts select different primary agents, we can “interleave”



290 P. Liu et al.

the traffic in the second step and achieve good performance. In fact this interleaving
is very important for multiple multicasts to use the network resources without hot-
spots. On the other hand, we do not want to place the primary agents away from the
original multicast source very often, which may cause large traffic through the root of
the routing tree. As a result, there is a tradeoff between good locality and interleaving.
In our implementation we experimented two methods—we either choose the primary
agent that is in the same subtree as the multicast source, or any agent of switches in
S(m,v) at random. These two approaches will be denoted as SameTree and Random
respectively.

Secondly, we consider two alternatives in implementing the second step of mul-
tiple multicast. After the primary agent is chosen, it has to send the message to
a processor in D(m, r) and all the agents of switch in S(m, r). This can be imple-
mented in two different methods—the primary agent can either send m to all the
others with a binomial multicast, or work with all the other primary agents to prop-
agate information cyclicly. In the second approach, we arrange the chosen processor
in D(m,v) and all the primary agents as a ring. Each processor in the ring is re-
sponsible for relaying the information to the right side neighbor in the ring. Initially
every primary agent places its message into this “circular track” and the message
will be relayed to all the primary agents. We refer to these two approaches as Bino-
mial and Cyclic respectively. Therefore, we have four multiple multicast algorithms
as follows—SameTree-Binomial, SameTree-Cyclic, Random-Binomial and Random-
Cyclic. These four algorithms will be denoted as STB, STC, RB and RC, and their
performances will be reported in the Sect. 6.

4 Message forward model

This section describes our optimal forwarding mechanism (ForwardInSwitch) in de-
tails. Consider a switch v and a message m. Recall that D(m,v) is the set of desti-
nation processors of m which connect to v. From previous discussion |D(m,v)| > 0.
One of the processors in D(m,v), denoted by s = A(m,v), is the agent for switch
v, and s has the message m. Also recall that S(m,v) denotes the set of switches,
which are children of v that contain destination processors of m in their subtrees.
The procedure ForwardInSwitch should determine in what order, s (the agent of v),
should send m to those in D(m,v) and agents of S(m,v). See Fig. 5 for an illustra-
tion. For ease of notation, we will use the source to denote s = A(m,v), local nodes
for those processors in D(m,v), and remote nodes for agents of switches in S(m,v).
For example, in Fig. 5 there are two local nodes and three remote nodes.

A remote node g = A(w,m) is an agent of a switch w ∈ S(m,v), and is responsi-
ble for sending m to all destinations in the subtree rooted at w. Recall that C(m,w)

denotes the total time for the agent of switch w to finish its task. We denote this mul-
ticast as the task for the agent g, so the task cost of g is C(m,w). An agent cannot do
its task until it receives m from other nodes. However, an agent g can choose to help
other agents by forwarding m to them, if g thinks that its task can wait. Without lose
of generality, we assume that once the agent g (the agent of w) starts its task, it will
finish it in C(m,w) time and will not help forward m during the process. As a result,
all the forwarding by an agent will proceed its task.



An optimal scheduling algorithm for an agent-based multicast strategy on irregular networks 291

Fig. 5 The switch with two
local nodes and three remote
nodes

Now we describe the forwarding mechanism among local and remote nodes. A lo-
cal node can send m to remote nodes and other local nodes. A remote node, after
receiving message m, can help forward m to other remote nodes. We first consider
the case where the sender is a local node. Here we assume that a local node can finish
sending m to another local node in one unit of time, since both of them are connected
to the same switch. For example, if a local node s sends m to another local node r at
time t , the communication will complete at time t + 1, and both s and r will be ready
to send m. That is, we will get one more local node to help forward m right from time
t + 1. See Fig. 6 for an illustration.

If a local node s sends message m to a remote node g, we assume that there is
a latency for the remote node to receive the data. We denote this latency by Ll , so
that the remote node g will not complete receiving m until after Ll unit of time after
i sends m. Here we use an integer value Ll to model the latency among different
switches, and Ll � 1 since it takes much longer time for a remote node to receive m

than a local node does. We also assume that after one unit of time, the local node s

is ready to send another message, since it does not need to wait for m to reach the
remote destination g. See Fig. 7 for an illustration.

If a remote node g helps forward message m to another remote node h, the latency
is Lr > Ll , since the message must traverse through the root switch between them
(Fig. 8). Similarly, the source remote node g can start the next forwarding, should it
decide to do so, after one unit of time since it doe not need to wait for y to receive
m. As a result, if an agent g forwards the message n number of times to other remote
nodes, it will be delayed by n time unites before it can work on its own task.

Consider a switch v. Initially we have a local node i that has message m, and the
goal is to multicast m to all local nodes, and finish all tasks of all remote nodes. We
denote this time as the total multicast time, and the problem is to, given L, |D(v,m)|,



292 P. Liu et al.

Fig. 6 Local node s sends
message to another local node r .
The latency is 1

Fig. 7 Local node s sends
message to a remote node g.
The latency is Ll

and all C(w,m), where w ∈ S(v,m), find a schedule that minimizes the total multi-
cast time.

5 Forwarding algorithm

To find the optimal total multicast time, we derive a testing algorithm to test if a given
problem instance can finish within a given total multicast time T . We then perform
a binary search on T to determine the optimal total multicast time. As a result the



An optimal scheduling algorithm for an agent-based multicast strategy on irregular networks 293

Fig. 8 Remote node g forwards
a message to another remote
node h. The latency is Lr

focus of the forwarding mechanism is to determine whether a given problem instance
can finish in a given time T .

5.1 Criticality

Based on an expected total multicast time T , we will define criticality of a remote
node g. There are two levels of criticality for a remote node g, depending on which
kind of source node sending m to g. First, if a remote node starts sending m to g

at time T − Lr − C(g,m), g will be able to finish its task in time T . Second, if
a local node starts sending m to g at time T − Ll − C(g,m), g will also be able to
finish its task in time T . As a result, we define that g is r-critical at time dr(g) =
T − Lr − C(g,m), and l-critical at time t = dl(g) = T − Ll − C(g,m). Recall that
C(g,m) is the time for agent g to finish its task, Ll is the latency between a local
and a remote node, and Lr is the latency between two remote nodes. For ease of
notation we also define that a remote node g is non-l-critical at time t if t < dl(g),
and non-r-critical at time t if t < dr(g).

Now for a remote node g we can divide the time T into three segments according
to these two deadlines. When t < dr(g), we do not need to worry about g since it can
wait. When dl(g) > t > dr(g), g has already missed the first deadline for a remote
node to send m to it, so its only hope to finish in time T is for a local node to send
m to it. When t > dl(g) agent g misses both deadlines, the entire multicast will not
finish in time T .

5.2 The testing algorithm

We now describe our testing algorithm which determines whether it is possible to
finish the multicast within time T . At every time step, both local and remote node



294 P. Liu et al.

can send message, and we consider the first case first. A local node that has message
m selects the destination according to the following priority.

1. l-critical remote node
2. local node
3. non-l-critical remote node, with the heaviest remote node first.

Similarly, an agent that has already received m chooses destination according to
the following priority. If an agent cannot send messages in time for any other agent
to complete its task, it simply starts its own task.

1. r-critical remote node
2. non-r-critical remote node, with the heaviest remote node first.

We first show that there exists an optimal schedule in which every local node tries
to send message to local nodes before remote nodes, unless the remote nodes are
l-critical.

Lemma 1 There exists an optimal schedule in which the local nodes send message
to remote node only when the remote nodes are l-critical, or there is no local nodes
that have not yet received the message.

Proof If a remote node is l-critical, there is no way to match the deadline unless
a local nodes starts sending message to it immediately. If there is no available local
node, the total broadcast time T cannot be met since other remote nodes will not be
able to send the message in time either. As a result we only need to show that there
exists an optimal schedule in which local nodes send message to non-l-critical remote
nodes only when there is no local node to send to.

We prove the lemma by showing that if the priority is violated, we can transform
it into a new schedule that obeys the priority without increasing the total time. We
assume that there is an optimal schedule in which a non-l-critical remote node is
scheduled at time t (to be sent by a local node p) and a local node is scheduled
at time at time t + k (to be sent by a local node q). In other words, the priority is
violated. Since there is no distinction among these local nodes that have received the
message (p and q), we may switch the destinations p and q send at time t . Therefore
it suffices just to show that when a local node sends messages to remote nodes before
local nodes, we can always switch the order so that the total time will not increase.
In the following discussion, we assume that there is an optimal schedule in which
a local node s sends a message to a non-l-critical remote node g1 at time t , and at
time t + k sends a message to a local node r . In other words, the priority is violated.
We also assume that g1 is the last non-critical remote node that s send message to
before the local node r , therefore s send messages to critical remote nodes g2, . . . , gk

at time step t + 1, . . . , t + k − 1.
Recall that agent g1 starts it task at time K(g), which means that between time t +

Ll and K(g1) agent g1 helped forward K(g1) − t − Ll messages to other agents. We
will use n(g1) to denote this number of other agents helped by g1, and h1, . . . , hn(g)

are those agents.



An optimal scheduling algorithm for an agent-based multicast strategy on irregular networks 295

Fig. 9 The schedule before and after the switch. The number next to the edge is the time when the
communication starts

Case k = 1: We first consider the ease case that k = 1, that is, there is no critical
remote nodes sent between g1 and r . In this case we simply switch the order of g1
and r , so that s sends message to r and g1 at t and t + 1 respectively. See Fig. 9 for
illustrations.

Since g1 is not critical, its delay of one time step will not be fatal. In addition only
h1, we schedule r , who is ready to send messages at time t +1, to send the message to
h1, and let g1 to take care of the rest of h2, . . . , hn(g1). r is able to send this additional
message since it is moved earlier one time step. Also since g1 is delayed by exactly
one time step, it is able to send messages to h2, . . . , hn(g1) as in the original schedule.

Case k > 1: Now we consider the other case when k is greater than 1, that is, s did
send messages to l-critical remote nodes between g1 and r . Now we would like to
change the schedule. The processor s will send a message to r (instead of g1) at time
t , and let r to send the message to g1 at time t + 1. We first consider the effects on g1
in two possibilities. The first case is when n(g) is 0, i.e., g starts its work immediately
when it complete receiving the message. Because g is not l-critical at time t , delaying
g by one time step will not be fatal and g simply starts its task one time step later at
time t + Ll + 1. g will be able to finish before T , by the definition of l-criticality.

Now consider the second case when g did help forwarding messages. In the new
schedule if g still still wants to help forward messages, it will be able to do so except
for h1, since in the new schedule g1 is delayed by one time step. See Fig. 10 for
illustrations. Fortunately in the new schedule r completes receiving data from s at
time t +1. Now r can send the message to h1 (the first agent g helped forwarding to),
at time t + 2. In the new schedule h1 completes receiving message at time t + 2 +Ll ,
which is earlier than the completion time t + Ll + Lr in the original schedule. As
a result h1 will not be delayed in the new schedule. Also in the new schedule g1 is
able to take care of the remaining agents (h2, . . . , hn(g)) it helped forwarding in the
original schedule, because g1 is delayed by exactly one time step and can still send
messages to them at t + Ll + 1, . . . , t + Ll + n(g) − 1 respectively.



296 P. Liu et al.

Fig. 10 The schedule before and after the switch. The number next to the edge is the time when the
communication starts

Now consider the effects on r by the change of schedule. In the new schedule r

completes receiving the message from s at time t + 1, and sends its first message to
g1 at time t +1, and the second message to h1 at time t +2. Recall that in the original
schedule r starts sending messages at time t + k + 1, so when k ≥ 2 there will be no
conflict in the schedule of r . �

By Lemma 1 we conclude that there exists an optimal schedule in which local
nodes sends message to local nodes before any non-l-critical remote nodes. Now we
show that there exists an optimal schedule with the additional property that it will
send messages to non-l-critical remote nodes according to their workloads.

Lemma 2 There exists an optimal schedule in which the local nodes send messages
to remote nodes according to their workloads, with the heaviest remote node being
sent first.

Proof The proof is similar to the proof of Lemma 2. The only difference is that now
both g and r are remote nodes, and C(g,m) < C(r,m). Again if the remote node g

did not help any other remote node, delaying it by one time step is not fatal since it
is not l-critical at time t . If the remote node g did help other agents h1, h2, . . . hn(g)

in the old schedule, we schedule the remote node r to help the first h1, so that g can
take care of the rest h2, h3, . . . hn(g). This is always feasible since in both schedules
h1 starts receiving message at time t + Ll and no delay occurs. The remote nodes
h2, . . . hn(g) will not be delayed either since g is delayed by exactly one time step. In
addition, since C(g,m) < C(r,m), the total completion time is not delayed. �

After establishing the priority for local senders, now we argue that the remote
nodes should follow the same priority. We show that there exists an optimal sched-
ule that remote nodes will help forwarding messages to non-r-critical remote nodes
according to their workloads.

Lemma 3 There exists an optimal schedule in which the remote nodes send messages
to remote nodes according to their workloads, with the heaviest remote node being
sent first.

Proof The proof is similar to the proof of Lemma 4. The only difference is that
now the sender s is now a remote node. If the remote node g did not help any other



An optimal scheduling algorithm for an agent-based multicast strategy on irregular networks 297

remote node, delaying it by one time step is not fatal since it is not r-critical at time
t . If the remote node g did help other agents h1, h2, . . . , hn(g) in the old schedule,
we schedule the remote node r to help the first h1, so that g can take care of the rest
h2, h3, . . . , hn(g). This is always feasible since in both schedules h1 starts receiving at
time t + Lr and no delay occurs. The remote nodes h2, . . . , hn(g) will not be delayed
since g is delayed by exactly one time step. In addition since C(g,m) < C(r,m), the
total completion time is not delayed. �

Finally, we would like to establish the priority between local and remote senders.
We assume that the local nodes will pick destinations before the remote nodes do.

Lemma 4 There exists an optimal schedule in which the local nodes send messages
to remote nodes before the remote nodes send messages.

Proof We consider an optimal schedule in which the remote nodes pick destination
before the local nodes. As a result we can find a time step t a remote node r picks a
destination g2, a local node node picks a destination g1, and C(m,g2) > C(m,g1).

We now swap the role of l and r , and let l sends to g2 and r sends to g1. If K(g1)

is at least t + Lr , we break the set of destinations g1 helped forwarding to into two
subsets. One subset contains those destination g1 help forwarding from time t + Lr

to K(g1). This subset can still be handled by g1 since in the new schedule the sender
of g1 is a remote node r and g1 will complete receiving at time t + Lr . The other
subset contains those destination g1 help forwarding from time t +Ll to t +Lr . This
subset can be handled by g2 in the new schedule.

Now consider the second case when K(g1) is less than t + Lr . Now we schedule
g1 to start its own task immediately. This will not violate the total time bound since
C(m,g1) < C(m,g2), and old schedule worked fine. Whatever remains to be done
from t + Ll to K(g1) in the old schedule will be handled by g2 in the new schedule,
and those handled by g2 will still be handled by g2. None of these destination will be
delayed by this switch so the total time will not increase. �

Now we have the complete algorithm. The pseudo code of the scheduling (and
testing) algorithm is in Fig. 11.

Theorem 1 The algorithm test_finish_time correctly determines if a total forwarding
time T can be achieved.

Proof A direct result from Lemma 1, Lemma 2, and Lemma 3. �

5.3 Optimal schedule

We can use apply the testing algorithm test_finish_time to find the optimal
total multicast time. Since test_finish_time can determine the feasibility of
a proposed total multicast time T , we use a binary search on T to determine the
optimal T , and the optimal schedule. The pseudo code of the binary search is Fig. 12.



298 P. Liu et al.

test_finish_time(Time T)
{
repeat the following steps until time step T.
{

1. Schedule all l-critical nodes to receive messages from local
nodes.

if the number of local nodes is not enough, declare failure.

2. If there are source local processors left from step 1,
schedule them to send data to other local nodes that have not
yet received the message.

3. If there are source local processors left from step 2,
schedule them to send data to non-l-critical remote nodes,
with the heaviest remote nodes being sent first.

4. Schedule all r-critical nodes to receive messages from remote
nodes.

5. If there are source remote nodes left from step 4,
schedule them to send data to other remote nodes, with the
heaviest remote nodes being sent first.

}
}

Fig. 11 The pseudo code of the testing algorithm test_finish_time for determining the feasibility
of a proposed finishing time T

Optimal_Schedule(the number of local/remote nodes and their costs)
{

Set lowbound and upperbound.

while upperbound != lowerboun
if check_finish_time((upperbound + lowerbound) / 2)
upperbound = (upperbound + lowerbound)/2

else
lowerbound = (upperbound + lowerbound)/2

return lowerboud;
}

Fig. 12 The pseudo code for finding the optimal schedule by using test_finish_time

6 Simulation experiments and results

In this section, we present results of simulation experiments to compare the algo-
rithms proposed in Sect. 3 and the two order-chain-based algorithms (CCO, SPCCO)
proposed in prior works [12].

We use OMNET++ [17], a discrete event-based simulator for our experiments.
The simulator can model wormhole routing switches with arbitrary network topolo-
gies. We chose system parameters as follows. Communication start-up time is 5.0 mi-
croseconds, link transmission time between processors and switches is 10.5 nanosec-
onds, and routing delay at switch is 200 nanoseconds. The default buffer size at each
port is one flit. The default numbers of input ports and output ports are 16. The net-
work topologies are generated randomly. For each data point, the multicast statistics
is averaged over 30 different network topologies.

For all experiments, we assumed a default system configuration of a 512-processor
system connected by 64 sixteen-port switches in an irregular topology. 50% of the



An optimal scheduling algorithm for an agent-based multicast strategy on irregular networks 299

ports on a switch are connected to processors, and the other 50% of the ports are
connected to other switches.

For our study, we varied each of the following parameters one at a time: the mes-
sage length (NBM), the number of destinations in each multicast (ND), and the num-
ber of simultaneous multicast operations (NM). We use throughput, which is defined
by M/T , where M is the total length of the messages and T is the parallel completion
time of the (multiple) multicast operation, to measure the performance.

In the following we compare our proposed agent-based algorithms Random-
Binomial Random-Cyclic, SameTree-Binomial, and SameTree-Cyclic (RB, RC, STB,
and STC for short) with two ordered-chain-based algorithms, CCO and SPCCO. The
first part of the name of our algorithms refers to how to choose the primary agent,
and the second part refers to how the primary agent sends mesages to all the agents.
Please refer to Sect. 3 for details.

Effects of the number of multicast operations First we examine the effects of varia-
tion in the number of multicast operations on the performance of the proposed algo-
rithms. Other parameters are assumed to be as follows. The number of switches NS

is from 32 to 64. Each switch has 8 ports that connect to processors, and the number
of destinations in each multicast ND is from 16 to 80. The destinations are generated
randomly.

Figure 13 indicates that when the number of multicast is less than four, ordered-
chain-based algorithms perform better than our agent-based algorithms do. This is
because when the number of multicast operations is small, message contention is not

Fig. 13 Throughput under different numbers of destinations



300 P. Liu et al.

Fig. 14 Throughput under different numbers of destinations

significant and thus the importance of reducing number of communication stages out-
weighs that of reducing message contention. However, when the number of multicast
operations increases, the impact of message contention becomes more important and
the benefit of agent-based optimization becomes very significant.

Effects of the number of destinations In this set of experiments we set the number of
ports connected to processors to be 8. We choose two different numbers of switches,
(32 and 40), and vary the number of destinations for each multicast from 16 to 300.
Figure 14 illustrates the throughput of these algorithms. We observe that the through-
puts of all the algorithms increase when the number of destinations increases, due to
the increased amount of communication trafficts. In addition, the improvement ratio
of the agent-based algorithms is higher than the improvement ratio of ordered-chain-
based algorithms.

Effects of the message length We examine the effects of message length on the
performance of proposed algorithms. We choose two message lengths—128 KB for
short messages and 32 MB for long messages, and vary the percentage of the multi-
cast operations with long messages from 0 to 100. The source and destinations of a
multicast are generated randomly.

Figure 15 indicates that the throughputs of agent-based algorithm is higher than
those of the order-chain-based algorithms. In addition, we find that the throughput is
minimized when the number of long-message is small, and is maximized when the
percentage of the multicast operations with long messages is 0 or 100. The possible
reason is that long messages are likely to increase the chance of contention. When the



An optimal scheduling algorithm for an agent-based multicast strategy on irregular networks 301

Fig. 15 Throughput under different numbers of long-message multicasts

number of long-messages is small, they will cause contention in particular regions
and there is not enough of them to be evenly distributed in the system. This may
cause hot-spots in communication so the throughput is reduced. When the percentage
of long messages increeases, the throughput increases because the total amount of
traffic increases, and the long messages can now be interleaved.

6.1 Summary of results

In summary, the agent-based algorithms and the ordered-chain-based algorithms
compliment each other. The ordered-chain-based algorithms are superior to the agent-
based algorithms for small number of multicast operations, while the agent-based al-
gorithms perform better than the ordered-chain-based algorithms for larger number
of multicast operations (larger than 8 in our experiments). The difference in per-
formance of these algorithms increases with number of multicast destinations, and
number of processors in the system.

7 Conclusion

This paper describes an agent-based approach for scheduling multiple multicast on
switch-based networks. Our approach assigns an agent to each subtree of switches
such that the agents can exchange information efficiently and independently. The en-
tire multicast problem is recursively solved with each agent sending message to those
switches that it is responsible for. Communication is localized by the assignment of



302 P. Liu et al.

agents to subtrees. In addition, the agent mechanism provides an easy mechanism
in performing multiple multicasts simultaneously, with very low chances of network
contention.

The key component of our recursive multiple algorithm is an optimal scheduling
method that interleaves the local and remote message destinations. We showed that by
properly setting the priorities of destinations we are able to find an optimal schedule
to multicast messages within a subtree in the switch network.

We compare the results with SPCCO [12] and found that SPCCO, a highly effi-
cient multicast algorithm based on Partial Ordered Chains, incurs high contention in
large cases. Our agent-based approach minimizes contention by properly interleav-
ing multiple multicast and optimally scheduling message passings between agents
and destination processors to avoid hot spots.

References

1. Boden NJ, Cohen D, Felderman RF, Kulawik AE, Seitz CL, Seizovic J, Su W (1995) Myrinet—
a gigabit per second local area network. IEEE Micro (Feb):29–36

2. Dally WJ, Seitz CL (1987) Deadlock-free message routing in multiprocessor interconnection net-
works. IEEE Trans Comput C-36(5):547–553

3. Dally WJ (1987) Deadlock-free message routing in multiprocessor interconnection networks. IEEE
Trans Comput C-36(5):547–553

4. Duato J (1991) On the design of deadlock-free adaptive routing algorithms for multicomputers. In:
Proceedings of parallel architectures and languages Europe 91, June 1991

5. Duato J (1994) A necessary and sufficient condition for deadlock-free adaptive routing in wormhole
networks. In: Proceedings of the 1994 international conference on parallel proceeding, August 1994

6. Esfahanian A-H, McKinley PK, Xu H, Ni LM (1994) Unicast-based multicast communication in
wormhole-routed networks. IEEE Trans Parallel Distrib Syst 5(12):1252–1265

7. Fan K-P, King C-T (1997) Efficient multicast on wormhole switch-based irregular networks of work-
stations and processor clusters. In: Proceedings of the internationl conference on high performance
computing systems, 1997

8. Gaughan PT, Yalamanchili S (1993) Adaptive routing protocols for hypercube interconnection net-
works. IEEE Comput 26(5):12–23

9. Glass CJ, Ni LM (1994) The turn model for adaptive routing. J ACM 41(Sept):847–902
10. Gravano G, Pifarre GD, Berman PE, Sanz JLC (1994) Adaptive deadlock- and livelock-free routing

with all minimal paths in torus networks. IEEE Trans Parallel Distrib Syst 5(12):1233–1251
11. Horst R (1996) Servernet deadlock avoidance and fractahedral topologies. In: Proceedings of the

international parallel processing symposium, pp 274–280, April 1996
12. Kesavan R, Panda DK (2001) Efficient multicast on irregular switch-based cut-through networks with

up-down routing. IEEE Trans Parallel Distrib Syst 12(August)
13. Leighton FT Introduction to parallel algorithms and architectures: arrays, trees, hypercubes. Morgan

Kaufmann
14. Ni LM, McKinley PK (1993) A survey of wormhole routing techniques in direct networks. IEEE

Comput 26(2):62–76
15. Qiao W, Ni LM (1996) Adaptive routing in irregular networks using cut-through switches. In: Pro-

ceedings of the 1996 international conference on parallel proceeding, August 1996, pp I:52–60
16. Schroeder MD, et al (1990) Autonet: A high-speed, self-configuring local area network using point-

to-point links. Technical Report SRC research report 59, DEC, April 1990
17. Varga A (2001) The omnet++ discrete event simulation system. In: Proceedings of the European

simulation multiconference, June 2001


	An optimal scheduling algorithm for an agent-based multicast strategy on irregular networks
	Abstract
	Introduction
	Model
	Routing mechanism
	Contention

	Agent-based algorithms
	Single multicast
	Multiple multicast

	Message forward model
	Forwarding algorithm
	Criticality
	The testing algorithm
	Case k = 1:
	Case k > 1:

	Optimal schedule

	Simulation experiments and results
	Effects of the number of multicast operations
	Effects of the number of destinations
	Effects of the message length
	Summary of results

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


