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Abstract In this paper, we study the quality-of-service (QoS)-aware replica place-
ment problem in grid environments. Although there has been much work on the
replica placement problem in parallel and distributed systems, most of them concern
average system performance and have not addressed the important issue of quality
of service requirement. In the very few existing work that takes QoS into consid-
eration, a simplified replication model is assumed; therefore, their solution may not
be applicable to real systems. In this paper, we propose a more realistic model for
replica placement, which consider storage cost, update cost, and access cost of data
replication, and also assumes that the capacity of each replica server is bounded.

The QoS-aware replica placement is NP-complete even in the simple model. We
propose two heuristic algorithms, called greedy remove and greedy add to approx-
imate the optimal solution. Our extensive experiment results demonstrate that both
greedy remove and greedy add find a near-optimal solution effectively and efficiently.
Our algorithms can also adapt to various parallel and distributed environments.
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1 Introduction

Grid computing is an important mechanism for utilizing computing resources that
are distributed in different geographical locations, but are organized to provide an
integrated service. A grid system provides computing resources that enable users in
different locations to utilize the CPU cycles of remote sites. In addition, users can ac-
cess important data that is only available in certain locations, without the overheads
of replicating it locally. These services are provided by an integrated grid service plat-
form, which helps users access the resources easily and effectively. One class of grid
computing, and the focus of this paper, is data grids, which provide geographically
distributed storage resources for complex computational problems that require the
evaluation and management of large amounts of data. For example, scientists work-
ing in the field of bioinformatics may need to access human genome databases in
different remote locations. These databases hold tremendous amounts of data, so the
cost of maintaining a local copy at each site that needs the data would be prohibitive.
In addition, such databases are usually read-only, since they contain the input data for
various applications, such as benchmarking, identification, and classification. With
the high latency of the wide-area networks that underlie most grid systems, and the
need to access/manage several petabytes of data in grid environments, data availabil-
ity and access optimization have become key challenges that must be addressed.

An important technique that speeds up data access in data grid systems is to repli-
cate the data in multiple locations so that a user can access the data from a server in
his vicinity. It has been shown that data replication not only reduces access costs, but
also increases data availability in many applications [7, 12, 13]. Although a substan-
tial amount of work has been done on data replication in grid environments, most of
it has focused on infrastructures for replication and mechanisms for creating/deleting
replicas [2, 4–6, 12–15]. We believe that to obtain maximum benefits from replica-
tion, a strategic placement of the replicas is essential.

Although there has been much work on the replica placement problem [10, 11,
17, 18, 20], very few of them concerns quality of service. A large part of these works
concern the average system performance; for example, minimizing the total access-
ing cost or minimizing the total communication cost, etc. Although these metrics
are important in the overall system performance, they cannot meet the individual re-
quirement adequately. Grid computing infrastructure usually consists of various type
of resources, and the performance of these resources are quite diverse. Moreover,
different sites may have different service quality requirements according to the sys-
tem performance of the sites. Therefore, quality of service is an important factor in
addition to overall system performance.

An early work by Tang and Xu [16] considered the quality of service in addition
to minimizing the storage and update cost. The distance between two nodes is used
as a metric for quality assurance. A request must be answered by a server within
the distance specified by the request. Every request knows the nearest server that
has the replica and the request takes the shortest path to reach the server. Their goal
has been to find a replica placement that satisfies all requests without violating any
range constraint, and minimize the update and storage cost at the same time. They
show that this QoS-aware replica placement problem is NP-Complete for general
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graphs, and provide two heuristic algorithms: l-Greedy-Insert and l-Greedy-
Delete, for general graphs. They also propose a dynamic programming solution
for tree topology [16]. Although the time complexity of l-Greedy-Insert and
l-Greedy-Delete is a polynomial function of the nodes, it is not practical to ap-
ply these two algorithms in realistic environments due to their long execution time
(several minutes when l = 1).

In this paper, we study the QoS-aware replica placement problem for general
graphs with a more realistic model, which in addition to storage and update cost,
also take access cost of replicas into account, and assumes that the workload capacity
of a replica server is bounded. Our goal is to make sure that each request be serviced
by a replica server within its quality requirement and without violating the capacity
limits of the replica server. We provide two heuristic algorithms to decide the posi-
tions of the replicas to minimize the sum of update, storage, and access costs, and
satisfy the quality requirements specified by the user and the capacity limit that each
replica server can service. Our algorithm computes near-optimal solutions efficiently,
so that it can be deployed in various realistic environments.

The rest of this paper is organized as follows. Section 2 describes previous work
about replica placement. Section 3 describes our system model and defines some
notations. Section 4 presents our algorithms and gives time complexity analysis. Sec-
tion 5 presents our experiment results. Section 6 summarizes our research results and
major contributions.

2 Related works

The optimal replica placement problem has been studied extensively in the literature.
The same problem has different names in different research areas. For example, it is
referred to as p-median problem in operations research, or database location problem
on Internet, and file allocation problem in computer science. Wolfson and Milo [20]
proved that replica placement problem is NP-Complete for general graphs when read
and update costs are simultaneously considered. They also provide optimal solutions
for special topologies, including complete graph, tree, and ring. Tu et al. [17] study
the secure data placement problem in the same model and provide a heuristic algo-
rithm for general graphs. Krick et al. [11] consider read, update, and storage cost
simultaneously in general graph and provide an polynomial time approximation al-
gorithm that has a constant competitive ratio. They also provide an optimal solution
for tree topology in the same paper. Kalpakis, Dasgupta, and Wolfson [10] consider
read, update, and storage cost under tree topology. Their algorithm could cope with
the situations even when servers have capacity limits. They describe an O(n3k2) dy-
namic programming algorithm for k replicas placed in n incapacitated servers, and an
O(n3k2∧2

max) algorithm for capacitated servers, where ∧max denotes the maximum
capacity among all servers. Unger and Cidon [18] provide a more efficient algorithm
to find the optimal placement under similar model, with only O(n2) time, where n

is the number of servers. However, the algorithm in [18] cannot deal with server ca-
pacity limits. There are other algorithms that provide optimal solutions under simpler
models for tree topology [3, 9].



C.-W. Cheng et al.

An early effort by Tang and Xu [16] suggested a QoS-aware replica placement
problem to cope with the quality-of-service issues. Every edge uses the distance be-
tween the two end points as a cost function. The distance between two nodes is used
as a metric for quality assurance. A request must be answered by a server that is
within the distance specified by the request. Every request knows the nearest server
that has the replica and the request takes the shortest path to reach the server. Their
goal has been to find a replica placement that satisfies all requests without violat-
ing any range constraint, and minimizes the update and storage cost at the same
time. They show that QoS-aware replica placement problem is NP-Complete for gen-
eral graphs, and provide two heuristic algorithms, called l-Greedy-Insert and l-
Greedy-Delete, for general graph, and a dynamic programming solution for tree
topology.

l-Greedy-Insert starts with an empty replication set R, and inserts replicas
into R until all servers’ QoS requirements are satisfied. l-Greedy-Delete works
the opposite way as the l-Greedy-Insert. It begins with having a replica in every
node, then it deletes replicas whose deletion maximizes the replication cost reduction
until there is no replica that can be deleted.

The time complexity of l-Greedy-Insert and l-Greedy-Delete is O(|V |3)
for l = 0 and O(|V |2l+2) for any l > 0 [16]. The time complexity for the l = 0 case
is due to shortest path computation. There is a trade-off between the time complexity
and the quality of solution on l value. Although the time complexity is a polynomial
function of the number of nodes, the execution time of these two algorithms are very
slow in practice even when l = 1.

Since l-Greedy-Insert starts by inserting replicas into a empty replica set, and
l-Greedy-Delete starts by deleting replicas from a full replica set, the execution
time of these two algorithms depends heavily on the number of replicas in the optimal
solution. If the optimal solution has very few replicas, l-Greedy-Insert becomes
more efficient than l-Greedy-Delete. On the other hand, l-Greedy-Delete is
much more efficient when the optimal solution contains a lot of replicas.

Won, Indranil, and Klara proposed a simpler formulation about QoS-aware replica
placement problem [8]. The model did not consider update cost and assumed that
each server has identical storage cost. The goal was to minimize the number of repli-
cas in the system. They gave a proof of NP-Completeness for this problem, which
is a variation of set covering. Let A be the all-to-all shortest path matrix and entry
(i, j) of A denotes the shortest path distance between server i and server j . Let B be
another matrix and the entries in the i-th row indicate quality of service requirement
of server i. We then construct another matrix C according to A − B . If an entry of
A − B is less than or equal to 0, we set the corresponding entry of C to 1. Otherwise,
we set the entry to 0. The nonzero elements of the j -th column of C represents the
servers that are covered by server j . If we find a set of columns that cover every row
in matrix C, we find a replica placement that satisfies all requests within quality of
service requirement.

Won, Indranil, and Klara proposed a simpler and quicker algorithm to find a rea-
sonable good solution for this problem. Every iteration in the algorithm, they select
the column j (server j ) that covers most rows that not yet covered so far. This Greedy
Minimum Set Covering (Greedy MSC) is compared with our methods in our simula-
tion testing.
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Our model differs from the model in [16] in that we consider not only site con-
struction cost, update overheads, and quality of service, but also the access costs of
replica data and the workload capacity constraint of the replica servers.

3 System model

This section describes our system model. The network is represented by an undirected
graph G = (V ,E), where V is the set of servers, and E ⊆ V × V denotes the set
of network links among the servers. Each link (u, v) ∈ E is associated with a cost
d(u, v) that denotes the communication cost of the link. We assume that the graph is
connected, so that one server can connect to any other server via a path. We define
the communication cost of a path as the sum of the communication cost of the links
along the path. Because we assume that a server knows where to find the replica
server that can satisfy the data request, we define d(u, v) between two servers u,v to
be the communication cost of the shortest path between them.

Every server u has a storage cost, S(u), that denotes the cost to put a replica on
server u. The storage cost may vary depending on the nodes. Figure 1 is an example
of our model. The numbers in the circles are server indices between 0 and n − 1,
where n is the total number of servers. The number next to a server is its storage cost.
The number on a link is the communication cost of the link.

Each server in the network services multiple clients, although we do not place
clients into the network graph. A client sends its requests to its associated server, then
the server processes the requests. If the client’s requests can be served by the server,
i.e., the local server has the requested data and the requests will be processed locally.
Otherwise, the requests will be directed to a server that has the replica. As a result,
we assume that all requests are issued from the servers and there are only servers in
the network graph. In addition, because the communication cost from the clients to

Fig. 1 An example of data replication in connected network
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servers does not affect the replication decision, we ignore the communication cost
from clients to servers.

There is a special server r , called origin server, in the network graph. Without
loss of generality, we assume that server 0 is the origin server. Initially, only the
origin server has the data. A replica server is a server that has a copy of the original
data.

A replication strategy has two parts: a replica server set R ⊆ V −{r}, and a service
set function SS. For each server u ∈ R ∪ {r}, we define a service set function SS(u)

to be the set of servers that u services. We assume that each server goes to only one
server in R ∪ {r} for service; therefore, for two distinct servers u,v ∈ R ∪ {r}, the
service sets of u and v are disjoint, i.e., SS(u) ∩ SS(v) = ∅.

3.1 Replication cost

We use replication cost to evaluate replication strategies. The replication cost T (R)

of a replication strategy is defined as the sum of the storage cost S(R), update cost
U(R), and access cost A(R):

T (R) = S(R) + U(R) + A(R). (1)

Storage cost The storage cost of a replication strategy is the sum of all storage costs
of the replica servers in the replication server set R. Recall that S(v) is the storage
cost to replicate a data on server v:

S(R) =
∑

v∈R

S(v). (2)

Update cost In order to maintain data consistency, the origin server r issues up-
date requests to every replica server. The update frequency μ denotes the number
of update requests issued by r per time period. We assume that there is an update
distribution tree T , which connects all the servers in the network. For example, in
our experiments, we use a shortest path tree rooted at the origin server as the update
distribution tree. As in Fig. 1, we use bold lines to represent the edges of the shortest
path tree. The origin server r multicasts update requests through links on this tree
until all the replica servers in R receive the update requests. Every node receives up-
date requests from its parent and relays these requests to its children according to the
update distribution tree.

Given the network, the update distribution tree, the update frequency μ, the update
cost of a replication servers R is defined as follows. Let p(v) be the parent of node v

in the update distribution tree, and Tv be the subtree rooted at node v. If Tv ∩ R �= ∅,
the link (v,p(v)) participates in the update multicast. As a result, the update cost
is the sum of the communication costs from these links (v,p(v)). For example, in
Fig. 1, if the update rate is 1 and the replication servers R is {1,5,6}, then the update
cost is 11 + 13 + 9 = 33:

U(R) = μ ×
∑

v �=r,Tv∩R �=∅
d
(
v,p(v)

)
. (3)
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Access cost Each server v has to communicate with a replica server u when it
wishes to access the data from u, where v ∈ SS(u). The access cost of a replica-
tion strategy is the sum of the communication cost that each server v accesses the
data from its assigned replica server according to the service set function SS, as in
the following equation:

A(R) =
∑

u∈R∪{r}

∑

v∈SS(u)

d(u, v). (4)

3.2 Service quality requirement

Every server u has a service quality requirement �(u). The requirement mandates
that all requests generated by u will be serviced by a server within �(u) communi-
cation cost. If a request from server u is serviced by a replica server within distance
�(u) from u, we say server u is satisfied.

3.3 Workload capacity constraint

Each server u has a workload W(u) and workload capacity constraint C(u). The
workload W(u) of a server is defined as the number of requests generated by server
u. For each server u, when we put a replica on u, it has a workload capacity con-
straint, C(u), that denotes the amount of data requests that the replica server u can
handle. The origin server also has its workload capacity constraint C(r). The work-
load and workload capacity constraint on different server may be different. If the total
workload that a server u ∈ R ∪ {r} services is greater than its capacity constraint, i.e.,∑

v∈SS(u) W(v) > C(u), then server u is overloaded.

3.4 QoS-aware replica placement with capacity constraint

A replication strategy is feasible if all servers are satisfied, and none of the server
u ∈ R∪{r} is overloaded. The problem of QoS-aware replica placement with capacity
constraint is to find a feasible replication server set R and determine the service set
function SS(u) for each server u ∈ R ∪ {r}, such that the replication cost in (1) is
minimized.

Figure 1 is an example of a feasible replication strategy. We assume that the QoS
requirement Q is 8 for all servers, the workload capacity constraint C is 20 for each
server, and the replication server set R is {1,5,6}. The workload function W of each
server is in Table 1, and the service set of each server u ∈ R ∪ {r} is in Table 2. It is
easy to verify that the replication strategy R is feasible. The storage cost is 20, the
update cost is 33, the access cost is 21, so the replication cost is 74.

4 Heuristic algorithms

In this section, we first describe our two heuristic algorithms: Greedy-Remove and
Greedy-Add for QoS-aware replica placement. Then we analyze the time complexity
of these two algorithms.
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Table 1 An example of the
workload of each server in Fig. 1 Server Workload

0 10

1 19

2 5

3 5

4 15

5 4

6 9

7 8

Table 2 An example of the
service set of each server
u ∈ R ∪ {r} in Fig. 1

Replica server Service set

0 {0,2,3}
1 {1}
5 {4,5}
6 {6,7}

4.1 QoS satisfying set

We define a QoS satisfying set SAT(u) of a server u to be the set of servers from
which u is located within their QoS distance Q. That means if u become an available
replica server, it is able to satisfy those nodes in SAT(u). Formally, we have

SAT(u) = {
v | d(u, v) ≤ Q(v)

}
. (5)

Each server has its own QoS satisfying set. If there is a replica on server u, each
server v ∈ SAT(u) may be satisfied by u, if u will not be overloaded by doing so. For
a feasible replication strategy, the service set of each server u ∈ R ∪ {r} must be a
subset of its QoS satisfying set SAT(u); that is, SS(u) ⊆ SAT(u) for all u ∈ R ∪ {r}.

4.2 Greedy remove

The algorithm Greedy-Remove starts with having a replica on every server. This repli-
cation strategy is feasible since every server can serve itself locally so any QoS con-
straint is satisfied. Therefore, the service set of each server u ∈ R ∪{r} has only itself.
Greedy-Remove then repeatedly adjusts the service sets SS of a pair of replica servers
and tries to remove replicas in order to reduce the replication cost (see (1)). While
removing replicas, Greedy-Remove must simultaneously maintain the feasibility of
the replication strategy. We consider two cases while adjusting the service sets for
any two servers u,v ∈ R ∪ {r}.

Case 1: The first case is to try to remove the replica from a nonoriginal server v by
shifting all servers in the service set of v to the service set of another replica server u.
This is only possible when u is within the QoS requirement of every server in SS(v),
and this shifting of workload will not cause u overloaded. That is, SS(v) ⊆ SAT(u),
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and the sum of all workload of the servers in SS(u) ∪ SS(v) does not exceed u’s
capacity constraint C(u). The replica will be removed from v if both conditions are
satisfied

∑

w∈SS(u)∪SS(v)

W(w) ≤ C(u), (6)

v �= r, SS(v) ⊆ SAT(u). (7)

For any two servers u,v ∈ R ∪ {r}, we define a cost reduction function c1 to be
the reduced cost by shifting the workload from v to u. For each server v ∈ R, we
let rm(v) be the reduced storage and update cost due to removing the replica from
v. For ease of presentation, let ANv denote the ancestors of server v in the update
distribution tree. The rm function can be defined as follows:

rm(v) =
{
S(v) + ∑

w∈ANv∪{v},Tw∩R−{v}=∅ d(w,p(w)) if Tv ∩ R − {v} is empty,

S(v) otherwise.
(8)

The function c1(u, v) is formally defined as follows:

c1(u, v) =
{

rm(v) + ∑
w∈SS(v) (d(w,v) − d(w,u)) Condition (6) and (7) are true,

−∞ otherwise.
(9)

Case 2: The second case is to try to shift a portion of the workload from a non-
original server v to another server u. Similar to the first case, we can move a server
w from SS(v) to SS(u) only when w is in SS(v) and the communication cost between
w and u is less than the communication cost between w and v, and w is in the QoS
satisfying set SAT(u) of u. Formally, we have w ∈ SS(v), d(w,u) < d(w,v), and
w ∈ SAT(u).

After identifying the possible servers that could be moved from SS(v) to SS(u), we
must determine exactly which server must be moved. We sort all the serves in SS(v)

that could be moved according to their distance reduction (denoted as d(w,v) −
d(w,u)). The intuition is that those servers with larger distance reduction should be
moved first so that the total cost is reduced. Now we start to move servers from SS(v)

to SS(u) one at a time according to their distance reduction (in nondecreasing order).
The iterative process stops when either there is no more server in SS(v) that could be
moved to u, or server u may become overloaded. Let CS(u, v) ⊂ SS(v) denote the set
of servers that are moved from SS(v) to SS(u).

For two servers u,v ∈ R ∪ {r}, we define a c2 function to denote the reduction
cost of the second case. The c2(u, v) function is formally defined as the following:

c2(u, v) =
{∑

w∈CS(u,v) (d(w,v) − d(w,u)) if CS(u, v) is nonempty,

−∞ otherwise.
(10)

We define a cost reduction function R(u, v) for any two servers u,v ∈ R ∪ {r} to
be the maximum reduction cost of the above two cases:

R(u, v) = max
{
c1(u, v), c2(u, v)

}
. (11)
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We now describe our Greedy-Remove method in details. The Greedy-Remove al-
gorithm is iterative. Initially, we put a replica on every server in V − {r}, so the
replication server set R is V − {r}. In each iteration, Greedy-Remove examines each
pair of servers u,v in R∪{r} and computes the cost reduction function R(u, v). Then
Greedy-Remove selects the maximum R(u, v) and adjusts the service sets of u and
v, accordingly. Greedy-Remove repeats this process until it is impossible to reduce
the total replication cost.

4.2.1 Time complexity analysis

We now analyze the time complexity of Greedy-Remove. The first part of the costs
is a preprocessing to find a shortest path between any two servers. That is, we must
build an all-pair shortest path to check if one server is within the QoS requirement of
another. This takes O(|V |3) time to calculate.

Given the servers u and v, it takes O(|V |) to find out the cost reduction of moving
all servers from v to u for the first case. For the second case, it takes O(|V | log |V |)
time to sort the servers, then examine them one by one and move them from u to v if
its distance to v is longer than the distance to u.

We first compute the cost reduction function R of each pair of replica servers.
This takes O(|V |3 log |V |) time.

In each iteration, we choose the largest cost reduction R. If the corresponding
case is the first case, we need to consider two situations. The first is that there is
no replica in the subtree rooted at v after removing the replica from v. We have
to recompute the cost reduction function of v’s parent replica server with the other
replica servers. Because its reduced update cost in rm function has been changed.
The other situation is that there is only one replica in the subtree Tv after taking off
the replica from v. We have to recompute the cost reduction function of this replica
server with the other replica servers. This is because the reduced update cost of this
replica server is increased. Hence, if the corresponding case is the first case, it needs
O(|V |2) time. Otherwise, if the corresponding case is the second case, we only need
to recompute the cost reduction function of the two replica servers that we selected
with the other replica servers. This takes O(|V |2 log |V |). Thus, each iteration needs
O(|V |2 log |V |) time.

In each iteration, we remove a replica from a server or move at least one server
from one service set to another. The number of replica removal is at most |V | since
a replica can be removed at most once. In addition, each server without placing the
replica can be moved at most |V | times because it can only be moved from a ser-
vice set to another once, and there are |V | servers in the network system. Therefore,
there are O(|V |2) iterations. As a result, the time complexity of Greedy-Remove is
O(|V |3 + |V |3 log |V | + |V |2 · |V |2 log |V |) = O(|V |4 log |V |).
4.3 Greedy Add

The Greedy-Add algorithm works the opposite way as Greedy-Remove does. It begins
with an empty replication server set R, and add replicas to R one at a time.

Greedy-Add first finds the QoS satisfying set SAT(u) for every server u in V . For
ease of notation, we also define rep(u) of a server u to be the server in R ∪ {r} that
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serves u. For ease of processing, we also assume that the servers in a QoS satisfying
set SAT(u) are sorted according to their communication cost to u, i.e., d(u, v), where
v is any server in SAT(u).

The Greedy-Add algorithm has two stages. In the first stage, Greedy-Add repeat-
edly adds the replicas into the replication strategy R until the replication strategy R

is feasible. In the second stage, Greedy-Add adds replicas into the replication server
set R until it is impossible to reduce the replication cost.

At the beginning of the first stage, Greedy-Add selects servers from SAT(r) to
form SS(r). Recall that SAT(r) is the set of servers r can satisfy in terms of QoS.
Greedy-Add selects servers in SAT(r) in a nondecreasing order of their distance
to r , i.e., the server v with the smallest d(r, v) will be considered first. The selection
repeats until there is no capacity available on r or no server available from SAT(r).

In each following step, Greedy-Add examines every server u ∈ V − R ∪ {r} and
computes the replication cost of placing a replica on u. When Greedy-Add places a
replica on a server u ∈ V − R ∪ {r}, u must also serve itself, so Greedy-Add moves u

from the SS set of whoever serving u to SS(u). Then Greedy-Add can start selecting
servers from its SAT(u) and move them into SS(u). The selection starts from the first
server v in SAT(u) that has not been served by any server in R ∪ {r} until there is no
workload capacity available on u, or every server in SAT(u) has already been served
by R ∪ {r}.

If we put a replica on a server u ∈ V − R ∪ {r} and determine SS(u) by the above
selection process, the replication cost may increase or decrease. The decreasing of
the replication cost is due to the decreasing of access cost, despite the increased stor-
age cost. If putting the replica on some servers u ∈ V − R ∪ {r} can decrease the
replication cost, Greedy-Add ignores the servers which increase the replication cost
and puts the replica on the server that can reduce the most replication cost.

If Greedy-Add cannot find a location to place a replica to reduce the total repli-
cation costs, it will place a replica on the server with the highest normalized benefit.
Here, as in [16], we define normalized benefit as the increased number of served
servers divided by the increased replication cost due to the extra replicas. Greedy-
Add repeats this process until all servers are serviced by a server u ∈ R ∪ {r}.

For example, let us assume that the network in Fig. 2 has QoS requirements 5, stor-
age cost is 2, workload is 3, and capacity constraints is 20 for every server. Greedy-
Add first inserts g into SS(r), the replication cost becomes 5 due to the access cost
of g and the service set of r is {r, g}. Then Greedy-Add examines servers in V − {r}.
Since none of the servers in u ∈ V − {r} can decrease the replication cost if we put
a replica on it, Greedy-Add selects b to put a replica because b has the highest nor-
malized benefit. The service set of b is {a, b, c, d, e} and the replication cost is now
26. Greedy-Add continues to examine servers in V − {r, b}, and finds that when it
places a replica on a, the replication cost will actually decrease. Therefore, Greedy-
Add chooses a to put the next replica and the service set of b becomes {b, c, d, e}, the
service set of a is {a}, and the total replication cost becomes 23. In the next iteration,
Greedy-Add places a replica on f , which has the highest normalized benefit. Finally,
the replication server set R is {a, b,f }. This strategy is feasible and the replication
cost is 38. Refer to Fig. 3 for an illustration.

In the second stage, Greedy-Add repeatedly adds replica in order to decrease the
access cost. This stage works also in iterations. In each iteration, Greedy-Add exam-
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Fig. 2 An example of network

Fig. 3 An example of the first stage of Greedy-Add

ines all servers u ∈ V −R ∪ {r}, and try to place a replica on a server u to determines
whether this will reduce the replication cost.

When we put the replica on a server u ∈ V − R ∪ {r}, u has to serve itself and u

must be put into SS(u). Then we start selecting servers from SAT(u) and move them
to SS(u). We select servers v ∈ SAT(u) whose communication cost (d(v,u)) is less
than the communication to its original server (d(v, rep(v))). The selection starts from
the server v with the largest d(v, rep(v))−d(v,u), until there is no available capacity
on u, or no server left in SAT(u). We then recompute the replication cost. After trying
all servers in V − R ∪ {r}, Greedy-Add puts the next replica on a server that reduces
the replication cost most. Greedy-Add repeats the process until it is impossible to
reduce the replication cost.

For example, let us assume that the network on the left of Fig. 4 represents the re-
sult from the first stage of Greedy-Add and the replication server set R = {a, b,f }. In
the second stage of Greedy-Add, it examines all servers in V −R∪{r}, and decides to
place a replica on g. Although putting the replica on g increases the storage cost, the
access cost of g becomes 0 because of the new replica on g. After putting the replica
on g, the replication cost becomes 35 and the replication R becomes {a, b,f, g}. The
service set of r becomes {r}, and the service set of g is {g}.
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Fig. 4 An example of the
second stage of Greedy-Add

4.3.1 Time complexity analysis

We analyze the time complexity of Greedy-Add. Similar to the analysis of Greedy-
Remove, the first part of the costs is a preprocessing to find a shortest path between
any two servers, which takes O(|V |3) time to calculate.

In the first stage, Greedy-Add inserts the replicas into the network iteratively until
all servers are served. In each iteration, Greedy-Add examines O(|V |) servers. If we
put the replica on a server, it takes O(|V |) time to determine the service set and to
compute the normalized benefit. Thus, each iteration takes O(|V |2) time. In each
iteration, Greedy-Add puts the replica on a server and there are at most |V | servers
in the network. Therefore, in the first stage, Greedy-Add requires O(|V |3) time to
determine a feasible replication strategy.

In the second stages, Greedy-Add inserts the replicas into the network to reduce
the replication cost until further reduction in replication cost is not possible. In each
iteration, Greedy-Add examines O(|V |) servers. It takes O(|V | log |V |) time to de-
termine the service set and O(|V |) time to recompute the replication cost. Since there
are |V | servers in the network, the second stage of Greedy-Add takes O(|V |3 log |V |)
time to finish. As a result, the overall complexity of Greedy-Add is O(|V |3 log |V |).

4.4 Random

We also implement a randomized algorithm as a comparison for the Greedy-Remove
and Greedy-Add. We randomly insert the replica into the network until all servers
are served. The servers in a QoS satisfying set SAT(u) are sorted according to their
communication cost to u. When we put the replica on a server u, u has to serve itself
first. Then we select servers from SAT(u) to form SS(u). The selection starts from the
first server v in SAT(u) that has not been served by any server in R ∪ {r} until there
is no workload capacity available on u, or every server in SAT(u) have already been
served by R ∪ {r}.

5 Performance evaluation

This section describes our experimental results. Tang and Xu [16] formulate the
replica placement as an integer programming problem, then relax the requirements
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for an integer solution and consequently transform the integer program into a linear
program. The solution from the linear then serves as a comparison basis for solution
quality.

We also construct an integer program for the problem of QoS-aware replica place-
ment with capacity constraint, and then we transform it into a linear program by
relaxing the integer solution requirements. Since the solution of this linear program
is a lower bound for the solution of the original replica placement problem, this “su-
per” optimal solution is used as a performance measurement criteria. We compare
the solutions by our heuristic algorithms with this super optimal solution. The ratio
of cost computed by the heuristic algorithm to the cost computed by the super optimal
solution is referred to as normalized replication cost.

We now describe the process of how to obtain this super optimal solution. Let
V = {v0, v1, v2, . . . , vn−1} be the set of servers and v0 be the origin server, i.e.,
v0 = r . The replica placement problem can be expressed as the following integer
program.

The 0-1 variable xi represents whether a replica is placed at server vi , and the 0-1
variable yi represents whether yi will receive data update requests from its parent
p(vi) in the update distribution tree T [16]. Let the 0-1 variable zij , 0 ≤ i < n and
0 < j < n, denote whether vj will be assigned to vi . Our goal is to minimize the
following objective function:

∑

n>i>0

(
S(vi) × xi + d

(
vi,p(vi)

) × yi

) +
∑

n>i≥0

∑

n>j>0

d(vi, vj ) × zij . (12)

The minimization of (12) is subject to the following constraints:

xi, yi ∈ {0,1}, 0 < ∀i < n, (13a)

zij ∈ {0,1}, 0 ≤ ∀i < n ∧ 0 < ∀j < n, (13b)

yi ≥ xi, 0 < ∀i < n, (13c)

yi ≥ yj , 0 < ∀i, j < n ∧ p(vj ) = vi, (13d)

xi = zii , 0 < ∀i < n, (13e)

xi ≥ zij , 0 < ∀i, j < n ∧ i �= j, (13f)

zij = 0, 0 ≤ ∀i < n ∧ 0 < ∀j < n ∧ d(vi, vj ) > Q(vj ), (13g)
∑

0≤i<n

zij = 1, 0 < ∀j < n, (13h)

∑

0<j<n

zij ×W(vj ) ≤ xi × C(vi), 0 < ∀i < n, (13i)

∑

0<j<n

z0j ×W(vj ) ≤ C(v0) −W(v0). (13j)

Constraint (13e) ensures that vi must be serviced locally if there is a replica placed
on vi , where 0 < i < n, and constraint (13f) ensures that there must be a replica
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placed on vi if vj is assigned to vi . Constraint (13g) prohibits vj from going to vi

for service if vi is out of the QoS requirement of vj , where 0 ≤ i < n and 0 < j < n,
i.e., d(vi, vj ) > Q(vj ), and constraint (13h) ensures that each server vj is assigned to
at least one replica server. Constraints (13i) and (13j) ensure that each replica server
and origin server will not exceed its capacity restriction.

If we replace constraint (13a) and (13b) with (14a) and (14b), respectively, we
have a linear program instead of an integer program:

0 ≤ xi, yi ≤ 1, 0 < ∀i < n, (14a)

0 ≤ zij ≤ 1, 0 ≤ ∀i < n ∧ 0 < ∀j < n. (14b)

Because the optimal solution of the linear program is as good as the optimal so-
lution for the integer program, it can be used as a “super” optimal solution for the
replica placement problem. Note that an optimal solution from the linear program
may not even be a solution for the integer program, but it serves as a lower bound on
the total replication cost and could be used to measure how close we are to the true
optimum. We use normalized replication cost as performance metric. Normalized
replication cost is the ratio of cost produced to the linear program solution.

In our experiments, the network topology was generated according to Waxman
model [19]. In this model, N nodes are randomly placed into an s-by-s square. We
then repeatedly connect the nodes until the network becomes connected. A link is in-
serted to connect two nodes u and v with probability p(u, v) = βe−d(u,v)/αL, where
d(u, v) is the Euclidean distance between u and v, L = √

2s is the largest possible
distance between two nodes in the square, and α and β are Waxman model parame-
ters. Both α and β are in the range (0,1]. Larger value of β introduces higher edge
density, and the value of α controls the relative ratio of the number of short edges to
the number of long edges [19]. The cost of edge (u, v) is set to d(u, v).

In our experiments, the number of points N is 100 and the size of the domain s is
1,000. Waxman model parameters α and β are set to 0.05 and 0.7, respectively. We
generate 100 Waxman model graphs using GT-ITM modeling tools [1]. The average
number of edges in these 100 graphs is 332. We assume that server 0 is the ori-
gin server, from which we construct an update distribution tree by connecting every
server to server 0 by a shortest path. Finally, the default storage cost is 1,000, the
default QoS requirement is 1,000, the default workload is taken from a uniform dis-
tribution over the range [0,100], and the default server capacity limit is 500.

5.1 The effects of workload

We first compare the normalized replication cost of Greedy-Remove with Greedy-
Add under different range of workload uniform distributions. Figure 5 illustrates the
normalized replication cost under a different range of workload uniform distribution
when other parameters are set to default values. In Fig. 5, we can see that Greedy-
Remove always outperforms Greedy-Add.

Table 3 shows the average number of replicas that Greedy-Remove and Greedy-
Add put under different range of workload uniform distribution. From Table 3, we
observe that when the upper bound of uniform distribution increases, the average
number of the replicas that Greedy-Remove and Greedy-Add put also increases.
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Fig. 5 Performance comparison
when workload values are taken
form a uniform distribution,
QoS requirement = 1,000,
storage cost = 1,000, capacity
constrain = 500

Table 3 Average number of
replicas under different
workload values, the distribution
of workload is uniform

Load Greedy-Add Greedy-Remove

[0,50] 23.76 19.98

[0,100] 24.09 21.01

[0,200] 30.20 28.63

[0,300] 40.50 39.20

[0,400] 53.22 51.93

[0,500] 62.77 61.76

5.2 The effects of capacity constraint

We now consider the normalized replication cost of Greedy-Remove and Greedy-Add
under different capacity constraints. Figure 6 illustrates the normalized replication
cost under different constant values of capacity constraints when other parameters are
set to default values. In Fig. 6, we can see that the performance of Greedy-Remove is
always better than Greedy-Add.

Table 4 shows the average number of replicas that Greedy-Remove and Greedy-
Add put under different capacity constraints. From Table 4 we see that when the
capacity constraint increases, the average number of replicas that Greedy-Remove
and Greedy-Add put decreases.

From Fig. 6 and Table 4 we observe that the normalized replication cost and the
average number of replicas become steady when the capacity constraint is greater
than 600. This is because QoS requirement and access cost of each server restrict the
average number of replicas in the system.

Figure 7 and Table 5 illustrates the normalized replication cost of Greedy-Remove
and Greedy-Add and the average number of replicas that these two methods put under
different ranges of capacity constraint from uniform distribution when other parame-
ters are set to default values. From Fig. 7, the performance of Greedy-Remove is
always better than Greedy-Add. From Table 5, the average number of replicas that
Greedy-Remove and Greedy-Add place decreases when the capacity constraint in-
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Fig. 6 Performance
comparison under different
capacity constraints, QoS
requirement = 1,000, storage
cost = 1,000,
workload = [0,100]

Table 4 Average number of
replicas under different capacity
constraints, the capacity
constraint is constant

Capacity constraint Greedy-Add Greedy-Remove

100 62.38 61.13

200 34.70 33.63

300 27.63 25.60

400 24.99 22.38

500 24.09 21.01

600 24.04 20.37

700 23.64 20.16

800 23.70 20.02

900 23.43 20.00

1000 23.63 19.98

Fig. 7 Performance
comparison when capacity
constraints are taken form a
uniform distribution, QoS
requirement = 1,000, storage
cost = 1,000,
workload = [0,100]

creases. The normalized replication cost and the average number of replicas also
become stable when the upper bound of capacity constraint is greater than 700.
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Table 5 Average number of
replicas under different capacity
constraints, the distribution of
capacity constraint is uniform

Capacity constraint Greedy-Add Greedy-Remove

[100,200] 41.38 40.37

[100,300] 32.63 31.45

[100,400] 27.41 24.82

[100,700] 25.84 22.62

[100,900] 25.34 21.60

Fig. 8 Performance
comparison under different QoS
requirements, storage
cost = 1,000,
workload = [0,100], capacity
constraint = 500

Table 6 Average number of
replicas under different QoS
requirements, the distribution of
QoS is constant

QoS Greedy-Add Greedy-Remove

250 68.65 69.64

500 40.33 40.25

1000 24.09 21.01

1500 22.44 18.22

2000 21.67 18.04

2500 21.17 18.03

3000 20.94 18.03

5.3 The effects of QoS

Figure 8 gives the normalized replication cost under different constant values of QoS
requirement when other parameters are set to default values. Figure 8 show that the
performance of Greedy-Remove is worse than Greedy-Add only when QoS require-
ment is set to 250. When the QoS requirement is larger than 500, Greedy-Remove
outperforms Greedy-Add.

Table 6 shows the average number of replicas that these two algorithms put under
different QoS requirements. From Table 6, we find that as the QoS requirement in-
creases the average number of replicas that these two algorithms put will decrease.
We also can see that the average number of replicas change slightly when QoS re-
quirement is greater than 1,500. This is because the capacity constraint and access
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Fig. 9 Performance
comparison when QoS
requirements are taken form a
uniform distribution, storage
cost = 1,000,
workload = [0,100], capacity
constraint = 500

Table 7 Average number of
replicas under different QoS
requirements, the distribution of
QoS is uniform

QoS Greedy-Add Greedy-Remove

[0,2 × 103] 35.82 31.04

[0,2 × 103.5] 26.65 22.22

[0,2 × 104] 22.57 19.30

[0,2 × 104.5] 21.40 18.44

[0,2 × 105] 21.13 18.08

cost limit the average number of replicas. We also observe that the average number
of replicas that Greedy-Add puts is less than Greedy-Remove when QoS requirement
is set to 250. This is because the first stage of Greedy-Add tries to find a feasible
with less replicas. In most cases, the second stage never runs due to the small QoS
requirement.

Figure 9 and Table 7 show the normalized replication cost and the average number
of replicas when QoS is from a uniform distribution. When the QoS uniform distrib-
ution has a mean value of 1,000, the network needs more replicas than when QoS is
a constant 1,000, and the normalized replication cost is also less than when QoS is a
constant 1,000.

5.4 The effects of storage cost

Figure 10 and Table 8 show the normalized replication cost and the average number
of replicas under different constant values of storage cost for each server. Table 8
shows that when storage cost increases, the average number of replicas decrease.
This is because putting a replica is more expensive than the access cost. Because of
the capacity constraint, the average number of replicas change slightly when storage
cost is larger than 3,000.

5.5 Execution time

Table 9 and Table 10 illustrates the average execution time of 100 graphs under dif-
ferent QoS requirements and different workload capacity constraints. Table 9 shows
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Fig. 10 Performance
comparison under different
storage cost, QoS
requirement = 1,000,
workload = [0,100], capacity
constraint = 500

Table 8 Average number of
replicas under different storage
cost, the distribution of storage
cost is constant

Storage cost Greedy-Add Greedy-Remove

500 33.62 27.32

1000 24.09 21.01

2000 19.34 18.56

3000 18.05 18.11

4000 17.74 18.04

5000 17.67 18.04

6000 17.51 18.04

Table 9 Average execution
time of 100 graphs under
different QoS requirement

QoS Greedy-Add Greedy-Remove

500 0.004 s 0.007 s

1000 0.004 s 0.009 s

2000 0.006 s 0.011 s

3000 0.007 s 0.012 s

Table 10 Average execution
time of 100 graphs under
different workload capacity
limit, the workload is uniform
distribution over the range
[0,100]

Capacity Greedy-Add Greedy-Remove

100 0.005 s 0.006 s

300 0.005 s 0.008 s

500 0.005 s 0.009 s

700 0.005 s 0.009 s

that when the QoS requirement of each server increases, the average execution of
Greedy-Add and Greedy-Remove increase. From Table 9 and Table 10, the average
execution time of Greedy-Add is always less than Greedy-Remove.



QoS-aware, access-efficient, and storage-efficient replica placement

6 Conclusion

Data replication is an important technique to speed up data access in data grid. Grid
computing infrastructure usually consists of various type of resources and the perfor-
mance of these resources are quite diverse. So, to provide quality assurance for dif-
ferent data access requirements is more and more important. This replica placement
problem become more complex when the storage for replica on servers is limited. We
believe that quality of service and workload capacity should be considered simulta-
neously for quality assurance, and the access cost must also be taken into account for
system performance.

In this paper, we consider QoS requirement, workload capacity restriction and ac-
cess cost on replica placement problems. We believe that all the key issuers, including
storage cost, quality of service, server capacity constraint, access costs, and update
costs should be considered. Our proposed algorithms consider all these key issues,
and is very simple and easy to adapt to various environments. Experiment results
indicate that Greedy-Remove and Greedy-Add can find near-optimal solutions in all
parameter combinations.
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