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ABSTRACT

The prediction of ligand binding sites is an essential
part of the drug discovery process. Knowing the loca-
tion of binding sites greatly facilitates the search for
hits, the lead optimization process, the design of
site-directed mutagenesis experiments and the hunt
for structural features that influence the selectivity
of binding in order to minimize the drug’s adverse
effects. However, docking is still the rate-limiting
step for such predictions; consequently, much
more efficient algorithms are required. In this article,
the design of the MEDock web server is described.
The goal of this sever is to provide an efficient utility
for predicting ligand binding sites. The MEDock web
server incorporates a global search strategy that
exploits the maximum entropy property of the
Gaussian probability distribution in the context of
information theory. As a result of the global search
strategy, the optimization algorithm incorporated in
MEDock is significantly superior when dealing with
very rugged energy landscapes, which usually have
insurmountable barriers. This article describes four
different benchmark cases that span a diverse set of
different types of ligand binding interactions. These
benchmarks were compared with the use of the
Lamarckian genetic algorithm (LGA), which is the
major workhorse of the well-known AutoDock pro-
gram. These results demonstrate that MEDock con-
sistently converged to thecorrect bindingmodeswith
significantly smaller numbers of energy evaluations
than the LGA required.When judged by a threshold of
the number of energy evaluations consumed in the
docking simulation, MEDock also greatly elevates

the rate of accurate predictions for all benchmark
cases. MEDock is available at http://medock.csie.ntu.
edu.tw/ and http://bioinfo.mc.ntu.edu.tw/medock/.

INTRODUCTION

Successful virtual screening of chemical libraries in the drug
discovery process requires (i) a sufficiently large and chem-
ically diverse compound library, (ii) a very accurate scoring
function and (iii) an efficient search algorithm for predicting
the correct binding conformation, location and orientation
of ligands. These three components are actually highly
entangled. For example, if the search algorithm is not suffi-
ciently efficient, then even when the scoring function has
reached satisfactory accuracy, the prediction of correct bind-
ing modes will still remain a question of serendipity. On the
other hand, if the scoring function has only very limited accur-
acy, then no matter how efficient the search algorithm is,
finding the correct binding modes will still be highly unlikely.
Also, if the chemical space under investigation is not suffi-
ciently large, then finding the most potent compounds or new
chemical entities is not likely. The docking simulations aim to
mimic the biochemical process of a ligand approaching the
active site of its receptor using computational methodologies.
In practice the structures of target receptors at the atomic
resolution, either from X-ray crystallography or from NMR
spectroscopy (or even from homology modeling), are used for
the docking simulations, which rely heavily on the second and
third components of the aforementioned process. Recently,
there have been several excellent reviews of the issues related
to docking and virtual screening for drug discovery (1–7).
Consideration of the induced-fit effect (8–10) and the potential
for allosteric interactions (11), which could both be included in
the more general sense of the extent to which chemical space is
sampled (12,13), will also enhance the power and accuracy of
computational drug design.
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This article describes the design of the MEDock (Maximum
Entropy based Docking) web server, which is aimed at pro-
viding an efficient utility for the prediction of ligand binding
sites. In particular, a comparison is made of how well the
optimization algorithm incorporated in MEDock performs
with respect to the Lamarckian genetic algorithm (LGA)
(14), which is the major workhorse of the well-known Auto-
Dock program (14). The MEDock server was given that name
because it incorporates a global search strategy that exploits
the maximum entropy (ME) property of the Gaussian prob-
ability distribution, in the context of information theory (15).
Four benchmark cases were selected to represent various scen-
arios of ligand–receptor interactions, and their docking simu-
lations were conducted to demonstrate the efficiency and the
reliability of the new algorithm.

METHODS

This section elaborates the main algorithms incorporated into
MEDock. The most important feature of MEDock in this
regard is the use of a novel optimization algorithm that
exploits the ME property of the Gaussian distribution.
Although it is not a variant of the genetic algorithm (GA)
(16), this novel optimization algorithm still belongs in the
general category of evolutionary algorithms (17). A good ana-
logy to the main heuristics employed in the optimization algo-
rithm is the search for the lowest valley in a mountain range. In
most complex systems, it is conceivable that valleys are clus-
tered, and there may be several clusters of valleys within the
entire mountain range. The shape of the energy landscape for
docking simulations has been shown (7) to be similar to that
for protein folding (18–20), which may be represented as a
very rugged funnel with many insurmountable energy barriers.
Accordingly, when a valley is found, one should continue to
search the surrounding area for an even lower valley. Since
valleys may be clustered, the likelihood of finding an even
lower valley may decrease when one moves far away from the
valleys that have already been identified. Therefore, the search
should be governed by a bell-shaped probability distribution.
The main reason why the Gaussian distribution is employed in
the design of MEDock is because the Gaussian distribution has
the maximum entropy, provided that the variance of the dis-
tribution is fixed (15). Since, in information theory, entropy
means randomness (21), ME means maximum randomness.
In other words, if the distribution of the deviation away
from a valley is quantified by the variance of the distribution,
a random search governed by the Gaussian distribution
provides the maximum randomness for finding an even
lower valley.

In each generation of the MEDock algorithm, n individuals,
represented by s1, s2, . . . , sn, are generated. Each si is in fact a
vector defining the ligand’s center of mass position (xi, yi, zi),
orientation (fi, yi, �i), and conformation (ti1, ti2, . . . , t ik)
of the k rotatable bonds of the ligand, with tij being the jth
torsional angle. Accordingly, si can also be denoted as (xi, yi, zi,
fi,yi, �i, ti1, ti2, . . . , til), and the dimension of the vector space
is l + 6. In order to achieve a scale-free representation, each
component of si is linearly mapped to the numerical range of
[0,1]. The fitness, i.e. the score or the free energy of binding,
of each individual f1, f2, . . . , fn, is calculated using the

AutoDock scoring function (14), which allows a fair com-
parison of the MEDock program with the AutoDock program.
The energies are sorted in ascending order, and the one
with the best score (i.e. the lowest energy) is ranked first in
the whole population. The ordered individuals are denoted as
t1, t2, . . . , tn.

In theMEDock algorithm, nGaussian distributions, denoted
by G1, G2, . . ., Gn, are generated before the new population in
the next generation is created. The main idea of the MEDock
algorithm is to give a bias toward the low-energy regions. The
lower the energy, the more frequent the mining. Also, in order
to ensure that the global minima can be located with increasing
precision, the width of the Gaussian distribution should be set
to diminish with the decrease of energy. Therefore, the center
of each Gaussian distribution is selected randomly and inde-
pendently from t1, t2, . . . , tn, where the probability is not
uniform but instead follows a discrete diminishing distribu-
tion, n: n� 1 : . . . : 1. That is, the probability of picking up t1 is
n times larger than that of selecting tn, the probability of
choosing t2 is n� 1 times larger than that of picking up tn,
and so on. Accordingly, one can expect that any distribution
center tk may be selected a number of times, and therefore
some of the centers of these Gaussian distributions may be the
same. After these centers are selected, one random sample
from each of the Gaussian distributions will then be taken
for creation of the next generation of individuals. The
Gaussian distribution denoted by Gi is designated with the
following probability density function:
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where tk is the center of Gi, and
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Here a and b are tuning parameters in MEDock and have been
set to 0.01 and 0.5, respectively, as the default parameters in
the current implementation. These default values for a and b
have been determined by carrying out several docking experi-
ments with different values of a and b. Some extreme values
of a and b (such as a > 0.5 and b > 1, or a > 0.5 and b <
0.00001) may produce very poor docking results. Note that the
default values of a and b remain the same for ligand–protein
interactions of different sizes, because a scale-free unit has
been applied for all components of si. It should be stressed that
exactly the same default values for a and b have been used in
the four different docking benchmarks reported in the next
section.

As mentioned earlier, the MEDock algorithm belongs to
the evolutionary algorithm class but is quite different
from the GA. The main difference is that the two key opera-
tions of the GA, i.e. crossover and mutation, have not been
included in the MEDock algorithm. Figure 1 is a schematic
example showing the sampling densities from different stages
of the MEDock and GA evolutions. This one-dimensional
energy surface is characterized by having one global minimum
and a few other local minima, which are separated by normally
insurmountable energy barriers. For MEDock it can be seen
from Figure 1a that the initial distribution was rather uniform,
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and that, as the evolution progressed, the distribution became
denser in the proximity of the global minimum. However,
owing to the design of the Gaussian function in the MEDock
algorithm, there will always be a finite probability of sampling
the regions surrounding the previously identified local min-
ima. It should be noted that this is distinct from the GA or its
derivatives, e.g. the LGA, where the whole population is ‘puri-
fied’ after certain generations, as shown in Figure 1b. That is,
all the individuals in the whole population will possess
the same ‘chromosome’ (or set of ‘genes’), which represents
the orientation, location and conformation of the ligand,
after the GA purifies the population.

One may argue that it is possible to preserve some of the
sampling around the other local minima in a GA by enlarging
the number of elites or by increasing the mutation rate. How-
ever, adjusting the GA parameters in this manner can not
solve the problem completely and will always reduce the
searching efficiency. It should be emphasized that this short-
coming automatically arises owing to the design of the GA,
which uses crossover (also called recombination) and mutation
as basic operations to generate new populations. ‘Winner-
takes-all’ is always an unavoidable consequence as long
as the GA’s evolution continues for a sufficient number of
generations.

Another central feature of MEDock is its incorporation of a
new algorithm that aims to generate good-quality initial seeds
for the optimization process. This algorithm is based on the
novel kernel density estimation algorithm that was recently
developed in-house and then incorporated into the ProteMiner
web server, which identifies the cavities on the surface of a
protein’s tertiary structure (22). The geometric center of the

alpha carbons of the residues that form one cavity then defines
the center of one of the Gaussian distributions, from which the
initial set of individuals is generated.

In order to enhance the searching efficiency, the Solis–Wets
local search method (14) has also been employed in MEDock.
This local search method basically facilitates random Monte
Carlo moves around the currently found minima in order to
find lower minima. For a very rugged, even fractal-like, energy
landscape, such a non-derivative-based local search method is
especially suitable for finding the true local minima. This also
makes the benchmark cases a truly fair comparison between
MEDock and the LGA in the AutoDock program (14).

INPUT, OUTPUT AND OPTIONS

The input file format is in the PDBQ format, which is an
extension of the PDB format. The PDBQ format for ligands
can be generated by many chemical software suites or web
servers. For example, Dundee’s PRODRG server (23) (http://
davapc1.bioch.dundee.ac.uk/programs/prodrg/) provides a
convenient visual interface to generate this file format from
the PDB file (or from other file formats) of a ligand. Although
computationally more demanding, the quantum chemical cal-
culation procedure used in e.g. the relaxed complex scheme (9)
may be invoked for a more accurate assignment of partial
charges on each atom of the ligand molecule. It should be
emphasized that the accurate assignment of the ligand’s partial
charges is critically important when dealing with ligand–
receptor interactions that are dominated by electrostatics.
The ligand files for these four benchmarks were prepared

Figure 1. (a) A schematic example of sampling densities in different stages of theMEDock evolution. (b) Similar plots for the GA evolution. This one-dimensional
energy surface is characterized by one global minimum with some other local minima, which are separated by usually insurmountable energy barriers.
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using the relaxed complex procedures (9). The PDBQ file for
proteins can be derived from the PDB2PQR server (24) (http://
agave.wustl.edu/pdb2pqr/) and a simple awk or perl script.
The PDB2PQR server also provides a prediction of the pro-
tonation states of the ionizable residues in a protein, which is
an important issue for the correct description of ligand–
receptor interactions. The MEDock web server also includes
these two web servers for automatically converting the
PDB format to the PDBQ format, just in case users do not
have other preferred procedures for the required calculations
and conversions.

RESULTS AND DISCUSSION

To demonstrate the efficiency of the new algorithm, four
benchmark cases were selected and compared with the results
of the AutoDock program. These four benchmarks were
selected to represent various scenarios of ligand binding inter-
actions. The graphical renderings of these benchmarks are
shown in Figure 2. HIV protease is a classic example for
virtual screening, in which a well-defined tunnel sits at the
interface of the two monomers of this homodimeric protein.
The second case is the binding of FK506, an immunosuppress-
ant, to its target protein, FKBP. In contrast to the first case, the
binding site for FK506 on the FKBP surface is rather shallow,
and there is another, smaller binding site close to the main
binding site which can serve as a decoy. The third case is the
interaction of phospholipase A2 and aspirin, which, compared
with the other cases, involves a relatively small ligand binding

to a target protein that could contain many possible decoy
binding sites. The fourth case considers a DNA–protein inter-
action in which a segment of DNA called the TATA-box
selectively targets its binding partner, the TATA-box binding
protein (TBP). This DNA ligand is substantially larger than the
ligands used in the other three benchmark cases (e.g. the
molecular weight of the DNA ligand was 8608.91, whereas
aspirin has a molecular weight of only 180.04). There is also
no well-defined cavity or distinct crevice that would obviously
be recognized as the DNA binding site.

All four of these benchmarks were selected to satisfy
the following criterion: the correct binding modes (i.e. the
conformation, location, and orientation of the ligand in
the crystallographic structure) should be reproducible by the
AutoDock program, which implies that the use of the Auto-
Dock scoring function is adequate in these cases. This greatly
simplified the goal of the current work, which was to design a
more efficient and reliable searching algorithm. To enable an
extensive comparison between MEDock and AutoDock, dock-
ing simulations with fixed ligand conformations were conduc-
ted to reduce the dimensionality and the computational costs.
It should also be noted that, although flexible ligands are
permissible in many docking programs, very few of them
implement an accurate molecular mechanics force field in
their search for the correct ligand conformations. Balancing
the ability to calculate both the ligand–receptor interactions
and the ligand’s internal conformational energy accurately and
efficiently is a subtle issue and requires further, extensive
investigation. In order to avoid introducing another source
of error, these four benchmarks were performed with fixed

Figure 2.Molecular graphics display of the four benchmark cases: (a) HIV-II protease complexed with its inhibitor L-735,524 (PDB ID: 1HSH); (b) FKBP-FK506,
an immunophilin-immunosuppressant complex (PDB ID: 1FKF); (c) Complex formed between phospholipase A2 and aspirin (PDB ID: 1OXR); and (d) TATA-box
binding protein (YTBP) complexed with DNA containing a TATA-box (PDB ID: 1YTB).
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ligand conformations. In general, the ligand’s conformation
will not be known in advance when attempting to predict the
ligand’s binding site; therefore, the docking of flexible ligands
is still required. Consequently, flexible docking simulations
were also performed for the benchmark cases, and the binding
sites of all these cases were correctly predicted. However,
the conformations, orientations and locations of ligands did
deviate from the crystallographic binding modes.

Although there have been some comparisons of the different
search algorithms (25–27), most of them simply use the
default docking protocols and run parameters from the tested
programs when performing their benchmarks. It should
be emphasized that the default docking parameters may not
be optimal for different systems, and in general they should be
optimized for each system in order to perform a fair compar-
ison of the different searching algorithms. This study did not
intend to compare all the existing search algorithms with the
MEDock algorithm; rather, its goal was to provide a solid basis
for a fair comparison with the LGA of the AutoDock program.
Therefore, all the GA parameters have been optimized for each
of our four benchmark cases, and the same local search para-
meters were used for both the GA and MEDock. Figure 3
shows how the global search algorithm incorporated in
MEDock performed in comparison with the LGA algorithm
incorporated into AutoDock in terms of the number of energy
evaluations it took to find the globally optimal docking state of
the given ligand–protein pair.

At the start of these benchmarks, excess docking simulations
were performed in order to determine the energies of the global
minima, which were equivalent to the crystallographic binding
modes for these four systems. The energies of these global
minima were then used to define the stop criteria, so that stat-
istics could be calculated regarding the number of energy
evaluations that were consumed/run in order to reach that glo-
bal minimum. For each of the four test cases, 100 independent
runs of the same experiment were conducted with randomly
generated seeds. The y-axis of Figure 3 represents the number
of runs (out of the 100 independent runs) that converged to the
correct binding state when the number of energy evaluations
was limited to the corresponding value on the x-axis. In these
experiments, the number of energy evaluations it took to reach
convergence was used to measure the amount of time con-
sumed by the software packages, because energy evaluations
dominate the execution time of docking software. In these
experiments the following most system-dependent run para-
meters used inAutoDock’s LGA: the population size, the Solis-
Wet iteration number, and the local search frequency, were
tuned to improve its convergence rate, and then exactly the
same set of optimized run parameters were used in MEDock.

As Figure 3 shows, for two out of the four test cases, Auto-
Dock failed to guarantee that the globally optimal docking
state will be found within a reasonable amount of time. In
contrast, all the MEDock simulations were able to converge to
the global minima within a much shorter time scale. This

Figure 3. Number of runs to reach convergence versus the number of energy evaluations consumed (in units of 107): blue, MEDock results; magenta, LGA results
(with parameters tuned); green, LGA results (with default parameters). (a) HIV-II protease complexed with its inhibitor L-735,524 (PDB ID: 1HSH); (b) FKBP-
FK506, an immunophilin-immunosuppressant complex (PDB ID: 1FKF); (c) complex formed between phospholipase A2 and aspirin (PDB ID: 1OXR); and
(d) TATA-box binding protein (YTBP) complexed with DNA containing a TATA-box (PDB ID: 1YTB).
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echoes the discussion in Methods that there will always be a
certain probability for search algorithms such as the GA and its
derivatives to fail to find the global minima. Table 1 compares
the number of energy evaluations taken by MEDock and by
AutoDock to successfully identify the optimum docking state
in 80 out of the 100 independent runs for the four test cases.
The data presented in Figure 3 and Table 1 together clearly
demonstrate the efficiency and the reliability of the design of
MEDock.

CONCLUSION

We have developed a novel methodology for docking simu-
lations, which has been shown to be both more efficient and
more reliable than the LGA. Our benchmarks consistently
showed that MEDock converged to the correct binding
modes while consuming significantly smaller numbers of
energy evaluations. Given a threshold for the number of
energy evaluations used in the docking simulation, MEDock
also greatly elevated the rate of accurate prediction for all
benchmark cases.
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