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We present a new signal processing and testing technique by using a higher statistical 
moment, the bispectrum, to determine the damping ratio and natural frequency of offshore 
structures excited by both unexpected Gaussian forces and known non-Gaussian driving 
forces. Due to unexpected exciting forces, such as turbulence, in the ocean, environment, 
the transfer functions of offshore structures are not determined through operating a known 
driving force and measuring its response. In order to overcome this problem, some of the 
existing techniques try to model the unexpected forces as white Gaussian forces or almost 
white Gaussian forces and determine the modal parameters from the response only. Others 
try to average the input and output to suppress unexpected parts. Our method uses 
third-order moments to keep the influence of the unexpected Gaussian forces away from 
the determination of the transfer function of the structure which has linear properties. We 
model the third-order moment property of the response function with a bispectral model. 
The modal parameters can be calculated from the estimated model’s coefficients. The 
method has been proven by a number of simulations. 

1. INTRODUCTION 

In this paper we discuss the time series corresponding to a uniformally sampled vibration 
record of offshore structural systems with stationary random force. We assume that a 
structural system can be represented by a set of linear differential equations derived by 
cutting the continuous structure to lumped mass-spring damper systems. These systems 
can then be modeled as autoregressive moving-average models. Many methods have been 
developed to deal with this problem. We use third-order moment and bispectrum analysis 
instead of conventional second-order moment and power spectrum analysis. In Section 
2, we introduce the third-order moment and bispectrum. In Section 3, the derivation of 
the autoregressive moving-average (ARMA) model from structural system is discussed 
briefly. In Section 4, some examples with both numerical analysis and graphs are illus- 
trated. 

2. THIRD-ORDER MOMENT AND BISPECTRUM ANALYSIS 

For a real discrete process X(t) that is zero mean and third-order stationary, define 

R(m,n)=E{X(k)X(k+m)X(k+n)} (1) 
as the third-order moment. Where m, n are integers and [E] denotes expectation. 

Using this definition, we have 
R(m,n)=R(n,m)=R(-n,m-n)=R(n-m,-m). (2) 

Define the bispectrum of this process as the double Fourier transform of equation (l), i.e. 

B(w,, 4= f If R( m,n) exp [-j(mw,+nq)]. (3) m=-cc n=-a 
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Using the relations in equation (2), we have 

B(o,,w,)=B(w,,w,)=B*(-w,,-w,)=B(-w,-w,,W*) 

= B(w, ,mt - 4 (4) 

where (*) indicates the complex conjugate. 
From the definition of equation (3), we can see that B(w,, w2) is periodic both in w1 

and w2 with period 27r. Thus, only the values of B(w, , w2) in the triangular region w2 3 0, 
w, 2 w2, w,+ w26 x is enough for a complete description of the bispectrum. In Fig. 1, 
we illustrate this region and also the symmetric relations. 

In this paper we use a parametric approached bispectrum instead of a directly double 
Fourier transform. 

Figure 1. The triangle bounded by w2 z 0, o, 3 w2 and o, + w2 s T are shown as the shaded area. All other 
regions have the same values as this region. 

3. STRUCTURAL SYSTEM MODEL AND ARMA REPRESENTATION 

Consider a simple vibration system 

Mik(t)+Ci(t)+KZ(t)=f(t) (5) 

with n d.o.f. where M, C, K are n x n square matrices. And f is the n dimensional input 
random force with 

E{f(t)fT(t)}=D6(t-s). (6) 

Equation (5) can be simplified to: 

f(t)+c~ir(t)+K’X(t)=f’(t) (7) 
where C’= M-‘&M-l/2, K’ = ,,,--1/2KM--I/2, f’= M-“2f. This is the general form of 
vibration system with n d.o.f. Equation (7) can be modified to a set of 2n first-order 
differential equations. Let 

9i =xi9 qi+n=Af. 

Equation (7) can be represented as 

(8) 
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where 

A=[_;, _‘c.]. B=[;,,2]. 
Equation (8) is then a continuous Marcov process and can be discretised to a discrete 
type as 

I 

TS 

q(t+l)=exp(ATs)q(t)+ exp [A( Ts - S)]Bf( tTs + S) ds (9) 
0 

t is a discrete time index as nTs. Ts is the sampling interval and must satisfy Ts(Ai - Aj) # 0 
(MOD 27r), hi, Aj are the distinct eigenvalues of equation (5). If it happens that Ts(Ai- 
Aj) = 0 (MOD 27r), then the output signal for these two modes becomes indistinguishable. 

The integral in the right-hand side of equation (9) can be regarded as a set of new 
random forces with mean zero and covariance matrices 

TS 

D’= 

I 
exp (As)BDBT[exp (As)]’ ds. (10) 

0 

Equation (9) can be rewritten as 

q(t+ 1) = exp (ATs)q(r)+g(r) (11) 

which is a discrete Marcov process. 
Now, from [3], equation (11) can be represented as an ARMA (2n, 2n) model as 

follows. Let 

A = exp (ATs). 

We assume that the discrete system is observable, i.e., the 2n x 2n observation matrix L 
is non-singular, where 

ST 
STA 

L= S’A’ 

S’= (0, 0, . . . , 1, 0, . . . 

Depending upon which d.o.f. is observed. 
Now apply L to equation (ll), as in [3], equation 

, 0). 

(11) changes to a similar form 

0 1 0 . . . 

0 0 1 
0 ; 

r(t+l)= . . . 
0 * . . . 0’ 0 

_ -ff2n -~zn-1 
. . . 

where Ui, i = 1,2,. . . ,2n are the coefficients of the AR part of the ARMA model 

‘c” CYiY(t-i)=,$, pjX(t-j). 

i=O 

(12) 

Consider the polynomial 

F a,p2n-i 
i=O 

(13) 
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equation (13) can be represented by the products of its roots 
2n 

Jo aip 2n-l=jc, (P-/-%)(/l -Pi?. (14) 

The damping ratio 5 and the damped frequency ad for each mode can be computed by 
the inverse of 

CLj,CLI*=exp(-5jwjTs*wjTsJl_Sf) 

j=l,2 , . . . , n, for 5, i 1. 

Consider a real pth order AR process X(n) 

(15) 

X(n)+ i ai(X(n-i)= W(n) (16) 
i=l 

where W(n)sarewhitenoisewithE{W(n)}=O,E{W(n)W(n)}=Q,E{W(n)W(n)}= 
/3 # 0. We also assume that the X(m) is independent with W(n) for m < n. W(n) is 
non-Gaussian as /3 # 0. 

Because W(n) is third-order stationary, it follows that X(n) is third-order stationary 
if it is derived from the stable model. Now multiply X( n - k)X( n - I) to both sides of 
equation (16) 

R(-k, -I)+ i a,R(i-k, i-l)=pS(k, I) 
i=l 

where 

8(k I)= 
1, fork=Oandl=O 
o 

, 
else 

R(m, n) is the third-order moment of the AR process. 
In equation (17), let k = I and varying k, I from 0 to p we get 

R(1,l) . . . R(P, P) 
R(0, 0) R(P-LP-1) 

6 . *. . . 
R(-p,-p) R(-p+l,-p+l) a.3 : 1 R(a, 0) 

Equation (18) can be represented as 

Ra=b 

a0 

aI II = 

QP 

(17) 

P 
0 [*I . . (18) 

0 

R is a Toeplitz form and in general not symmetric. The essential condition for equation 
(18) to exist is that the polynomial 

A(Z) = 1+ i aiZ-’ 
i=l 

(19) 

has all its roots inside the unit circle. 

Define 

H(Z) = l/A(Z) 

then the bispectrum of this AR process X(n) is given by 

B(w,, 4 = PH(4H(4H*(% + 4 

(20) 

(21) 
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H(w) is H(z) in equation (30) with z = exp (iw). It is obvious that B(o,, q) satisfies 
equation (3). Now for a structural system with n d.o.f. we may modify it to a ARMA 
(p,p) model with p=2n 

X(n)+ f a,X(n-i)= W(n)+ i b,W(n-j). 
i=l j=l 

(22) 

Equation (18) can be modified for this ARMA model as follows: multiply X(n - m)X( n - 
1) to both sides of equation (22) we then get equation (17). By varying k, 1 from p to 
2p, which skips the effect of the pth order MA part of equation (22), we get 

R(-S-I)+ f UiR(i-Si-I)=b,p 
i=, 

and 

where 

R= 

Ra=b 

W-P, -PI R(-p+l,-p+l) *** R(0, 0) 
R(-p-1,-p-l) R(--p, -p) * * * R(-1, -1) 

R(-2p, -2~) R(-2p+l, -2p+l) . . . R(-;, -p) 1 , a= 

a0 

aI II * , 

aP 

(23) 

b= 

WeusetherelationsE{W(n)W(n)W(n)}=~,E{W(n)W(n)W(m)}=Oform#n and 
E{X(n)X(n) W(m)} = 0 for n < m in the derivation (23). R is also a Toeplitz form in 
equation (23). ai, i = 1, 24 are the coefficients of the AR part. Then by solving the roots 
the polynomial 

2n 

1 *J*“-’ 

i=O 

we can evaluate the damped natural frequencies and damping ratios of this system. 
Many methods have been developed for solving this problem. Most of them have made 

an assumption that the input random force is white. In most situations this assumption 
is right but in some cases this may be wrong. In these cases those methods will fail to 
work. But if the input force is Gaussian then we can still solve this kind of problem by 
using the higher order moment method as mentioned earlier. We illustrate this by the 
definition in equation (1) 

R(m, n)=E{X(k)X(k+m)X(k+n)} 

if the input force is Gaussian it follows that X(k) is also Gaussian then for the basic 
property of Gaussian sequence all the third-order moment R(m, n)s are equal to zero. 
If we apply another set of non-Gaussian white input to this vibration system, then only 
the effect of this set of input force exists even if the original input force is not white. So 
we can solve this problem without the problem that coloured input force might have on 
the system’s response. It is also very important that this applied non-Gaussian input 
should be statistically independent of the original input force. 
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4. EXAMPLES 

We now give some examples. 
Consider first a single d.o.f. system 

X(t)+2w5X(t)+w2X(t)=f(t)+g(t) (25) 

where w, 5 are the undamped natural frequency and the damping ratio of the system 
respectively, f( t) is the unexpected input Gaussian force but not white, and g(t) indepen- 
dent with f(t) is the known applied white non-Gaussian noise with E[g(t)] = 0, 
HXtk(t)l= 0, and ~k(~k(~k(~)l =P. 

In this example we set w2 = 10.0 and 2~5 = 0.2, the coefficient derived from A matrix 
is (I-O-(1.5816, 0.9608), the damping ratio and damped natural frequency are 0.03163 
and 0.5033 Hz respectively. 

We use equation (11) for the simulation set sampling time interval equal to 0.2 set and 
truncate the first 2000 data so as to avoid the transient effect. R( m, n) is computed as its 
expected value 

1 N-max(m,n) 

ww)=~ c x(i)x(i+m)x(i+n). (26) 
i-1 

In equation (26) X(k) was subtracted from its mean value and is a zero mean sequence. 
Equation (23) can be solved with an effective method as in [5] as R is a Toeplitz form. 
We use the second program because matrix R in this equation is non-symmetric. The 
applied force g(t) was produced by calling a Gaussian sequence and taking its absolute 
value then minimising its mean value. After this procedure g(t) becomes a non-Gaussian 
white noise with zero mean. 

The results are listed in Table 1 and Figs 2 and 3. 
Now consider a multi d.o.f. system. 

Mji(t)+CJi(t)+KX(t)=f(c)+g(t). 

We use a three d.o.f. system for illustration, and 

M=[; % ;] C=[ -;:” jr; -;4] 

K=[ -i ;; -;;I, g=[ ;;i;i;], f=[ y;;;]. 

(27) 

The coefficients of AR derived from A matrix are a = (l-0, -2.394, 3.497, -3.764, 
3.030, -1.812, O-741), the damping ratios and damped natural frequencies are (0.0171, 
0.0435, O-0548) and (0.385, 1.202, 1.829) respectively. In this case we use an 0.15 set 
sampling time interval and the first 2000 data were truncated. The estimated coefficients 

TABLE 1 

5 and wd for a d.0.f: system 

A 5 @d 

Matrix A 
Estimated 

(1.0, -1.5816,0.9608) O-03163 0.5033 
(1.0, -1*5741,0.9595) 0.03227 0.5077 
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Figure 2. Output signal of one d.o.f. system with 2& = 0.2 and CIJ’ = 10. Total of 1000 data were plotted after 
truncating 2000 data. 

i O0 

Figure 3. Bispectrum 
about 0.5 Hz. 

of one d.o.f. system plotted in log scale with sampling frequency 5 Hz. Peak value at 

TABLE 2 

& and fs parameters for three d.0.J: system 

5, 52 53 fi f2 f3 

Matrix A 0.0171 0.0435 0.0548 O-385 1.202 1.829 
Estimated O-0185 O-0467 o-0547 o-395 1.203 l-824 
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are AR are a = (1.0, -2.39, 3.501, -3.705, 3.033, -1.801, 0.735). The results are listed 
in Table 2 and Figs 4 and 5. 

We use only the coefficient of the AR part in evaluating the bispectrums as the effect 
of the MA part is not so important. The difference between this bispectrum and true 
bispectrum is only at the valley. The locations of the peaks are still the same. The graphs 
are plotted with the log scale in magnitude. 

If the coefficients of the MA part are also required, we can evaluate them with a similar 
method. This is discussed in Appendix A. 

Both examples illustrated here give satisfactory results because we have an approximate 
estimate for both damping ratios and natural frequencies. If these results are acceptable, 
then there remains one problem: how can we determine the d.o.f. of the vibration system? 
In other words, what value should we assign to n as in equation (5) if we have measured 

2.75 

-1.61 

-2.70 

25.00 50.00 75.00 100~00 

Sequence *IO’ 

Sequence *IO' 
25~00 50.00 75.00 100~00 

3.94 

Figure 4. Output signal of three d.o.f. system as in equation (27). Total of 1000 data were plotted after 
truncating 2000 data. 

Figure 5. Bispectrum of three d.o.f. system with sampling frequency 6.67 Hz. Respective peak values at about 
0.40, 1.20 and 1.80 Hz. 
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a set of vibration data from a continuous off shore structural system. This is very important. 
In general, the d.o.f. for a continuous system is infinite. It is impossible for us to solve 
this vibration problem using an infinite d.o.f. A suitable d.o.f. should be chosen before 
we estimate the parameters of the vibration system. Many authors have discussed this 
problem [7]-[9], optimum d.o.f. are chosen with different criteria. In this paper, we have 
not discussed this problem because the criteria are not as suitable for our estimating 
method. 

In this paper we use third-order moments for the estimation of system parameters 
because the input force is often seen to be not white. If in some special cases the input 
forces are known to be white, all the above equations will work with some modification. 
We discuss this in Appendix B. 
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APPENDIX A 

If the coefficients of both AR and MA parts are needed, we can solve the coefficients 
of the MA part bj after the coefficients of the AR part a have been solved. Now ai can 
be solved by equation (23). We solve bj as follows, rewrite equation (22) 

X(h)+ i aiX(n-i)= W(n)+ i biw(rt-j). (Al) 
i=l j=l 

Multiply both sides of equation (Al) by X( t -p) x X( t -p) 

R(-p, -p)+ f aiR(i-p, i-p) = b,p = I$,. 
i=l 

(a 

In this equation we have used the fact that 

E{X(m)X(m) W(n)) = 
{ 

0 formcn 
P for m = n. 

Now multiply both sides of equation (Al) by X( t - p) x X( t -p + k), change k from 1 
to p, to get a set of recursive equations 

R(-p,-p+k)+ f aiR(i-p,i-p+k)=a,Hk_l+a2Hk-2+** *+ a,&+ b,&,= Hk. (A3) 
i=l 

In this equation we use equation (Al) for X(t-p+ k). If (ui)s have been solved then 
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all the (Hk)s can be computed. Now, we get 

&= b,P 

H, = a,H,+ b,Ho 

H,=a,H,+a,H,,+b,H, 

and then 

b, = (H, -a,Ho)lHo 

b2=(H2-alHl-a2Ho)lHo 

bp = (HP - aH,_, - a,H,_, - * * * - a,H)/ H,, 

which can be written as a formula 

> 
Ho 

then all the (bj)S can be computed. 

(A4) 

APPENDIX B 

If the original input force is known to be white, then second-order moments R(m)s 
are enough for computing the parameters of the structural vibration system. All the above 
equations can still work with some modification as follows. Multiply both side of equation 
(22) with X(n - k) 

R(-k)+ i R(i-k)=E{W(n)X(n-k)}+ 5 E{W(n-j)X(n-k)}. 
i=, i=l 

By varying k from p to 2p we have the same equation as equation (23) 

Ra=b 

but with 

R= 

R(-p+ 1) * . . R(O) 1 
W-P- 1) R(-P) .*a R(-1) a= 

1 R&P) R(-;p+ 1) . . . R&P) 1 
where 

I u form=n 
E{W(m)X(n))= o form,n 

We define the powers spectrum as 

P(w) = uH(w)H*(o) 

where H(w) is defined as in equation (20) with z = exp (io). 

a0 11 y1 b= 

ap 

(A5) 

u 

0 1: 6 

(A6) 
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TABLE Bl 

5 and f parameters for a three d.o.jI system 

Matrix A 0.0171 o-0435 0.0548 0.385 1.202 l-829 
Estimated 0.0185 0.0422 0.0553 0.385 1.203 1.829 

Frequency (Hz) 

Figure Bl. Power spectrum density of three d.o.f. system using second-order moments as in example 2. 

As in example 2 with the same system parameters but where the original input force 
is white, we solve this problem with all the third-order moments replaced by second-order 
moments. The results are given in Table Bl and Fig. Bl. A total of 30 000 data are used 
with 30 records each having 1000 data. We also truncate the first 2000 data to avoid the 
transient effect. 

The true coefficients of the AR part are 

a = (1.0, -2*394,3*497, -3*764,3*030, -1*812,0*741) 

and the estimated coefficients of the AR part are 

a = (l-0, -2*393,3*497, -3*762,3*026, -1*809,0.741) 

We also use the AR part for plotting the power spectrum density function as in Fig. Bl. 
It can be seen from the above that we have a better estimate than the one in example 

2. The reason is that R(m)s has a better statistic character than R(m, m)s. 

CONCLUSION 

From the above results as in Tables 1 and 2, we can get an approximate estimate of 
both damped natural frequency and damping ratio although they are not quite correct. 
This is due to the bad statistic characteristics of R(n, n) as it is a cubic term and very 
close to zero and is easily affected by the characteristic of the input force. This phenomenon 
can be improved by taking more data for better averages. In fact, we have made many 
assumptions in our simulation and these assumptions, in general, were not true, proving 
that it is not necessary to ask for higher precision. We are continuing our work in this 
field and trying to improve our methods by using third-order moments R(m, n) instead 
of R(n,n). 


