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In this work we employ three versions of the maximum entropy method (MEM) and a 
version of the maximum likelihood method (MLM) to estimate the transfer functions 
among several places of a vibrating structure and use these transfer functions to resolve 
the modal shapes of the structure. Many conventional methods fail when the structure is 
undergoing random vibration, or their performance is impaired by the low resolution of 
the methods or non-stationary nature of the vibration. The modem cross-spectral estimates 
by the MEM have been proved to be a useful method for random vibration. The important 
contribution of this work is that, by introducing the maximum likelihood cross-spectral 
estimate and comparing with those modem cross-spectral estimates by MEM, the mode 
shapes can be estimated with fairly good results under severe conditions. We test this idea 
with computer simulations and their results are consistent with our predictions. 

1. INTRODUCTION 

Random vibration problems are important in the dynamics of structures and machines. 
The natural frequencies and modal shapes are the most significant parameters concerning 
the condition of the structures or the machines. There are many existing methods to 
estimate these parameters. The spectra1 approaches of these parameters are used frequently 
in estimating the transfer functions at different positions of a structure and obtaining its 
mode shapes. We now briefly review the conventional spectra1 estimations (see [l] for 
details). Conventional spectra1 estimations are based on the Fourier transform of finite 
data and take advantage of the fast Fourier transform (FFT) to speed comutation. These 
methods suffer a tradeoff between resolution and variance because of the finite amount 
of data, and cannot resolve the mode shapes under severe environmental conditions. 
Burke et al. in 1980 proposed a different method for the problem of estimating mode 
shapes in ocean environments [2,3]. In order to improve the performance in both 
resolution and variance, Briggs et al. [4] in 1982 proposed an approach which applied 
the modem cross-spectra1 estimates to improve the estimated transfer functions and 
improve the mode shape estimation. Briggs concluded that the transfer function estimated 
by the cross-spectrum is better than by the autospectrum. Briggs’ method takes advantage 
of the high resolution ability of the multichannel maximum entropy method (MEM) for 
the recorded finite data [5-71. There are many varieties of MEM; we will employ three 
famous algorithms-the Yule-Walker, Burg, and Morf algorithms. This choice is based 
on our own experiences, and are well established. Liou in 1985 derived another method 
of multichannel cross-spectra1 estimates under the name of multichannel maximum 
likelihood method (MLM) [8]. This method can be derived in a different way [9, lo]. 
The MLM is best known for its simple appearance, stability, and resolution. We are 
interested in comparing its ability in mode shape estimation with the MEMs. 
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In section 2, we briefly review the estimation of transfer functions and cross-spectral 
estimates by the multichannel MEM and MLM. In section 3, we compare the performance 
of MEM and MLM in the estimation of mode shapes using both a lumped mass system 
and a continuous mass system. In section 4, we provide a summary of this work. 

2. TRANSF5R FUNCTIONS AND CROSS-SPECTRAL ESTIMATES 

In this work we will estimate the transfer functions between every two positions among 
several specified positions in a giving structure. The amplitude and phase relation of the 
transfer function between the two positions are used as the mode shape relations. We 
will further assume the modes can be well discriminated in the frequency domain by 
using the modern spectral analyses. The transfer function estimates [l] between the 
position i and 1 is defined as following: 

H,,(/)=$ff, OSf<CO, 
II 

(1) 

(2) 

(3) 

where Sir(f) and S,,(f) are the estimated cross-spectrum and autospectrum by the MEM 
or MLM. The phase spectrum, 4i,(f), can be obtained from equation (2) by factorising 
the phase term of the complex valued transfer function, Hi,(f). The coherence spectrum 
is defined as following: 

I&(f )I* 
Yi'(f)=Sfi(f)S#(f)* 

In our simulation cases the phase 4(f) is close to 0” or 180”, Yir( f) is close to 1, and 
there is a significant (large) peak in the magnitude cross-spectrum graph ISi,( f )Os f < Co1 
at any natural frequency, fn. These relations are useful for the identification of the natural 
frequencies fn of the structure. Once a natural frequency fn has been found, the transfer 
functions at frequency fn can be estimated by substituting the estimated cross-spectral 
Sil(fn) and autospectral Sii(fn) in equation (1) to obtain HiI( Then the estimated 
magnitude vector and phase vector of a mode shape is given by 

U(f") = wL(f")l, WI2(f”)I, I&(f")l, . . . 9 IWdfn)l, * . f IT, (4) 

44"L)=[4,,(fn), 4,2(fn), 4n(fn), . . .9 h(_L), . . . I’. (5) 

We briefly review the multichannel (two channels in this work) MLM and MEM 
algorithms in the following paragraphs. Let 

xi/ = [xi(rl)9 xl(f*), Xi(fZ), xl(r2), xi(f3), Xl(f3), . . f 3 Xi(fM+l), XI(rh4+I)1T, 

where Xi( f,,,) is the measured acceleration or displacement at position i at time r,,, = m - A 
and x is a column vector with dimension 2( M + 1). A is the sampling interval. The MLM 
cross-spectral estimate is defined as: 

Esi,(f )I =[GtRii’Gl-‘, (6) 
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. . . prr/rM+, 

. . . 0 

with each submatrix 

Ri,(-2) * . . R/(-M) 
Ri,(-1) * * * R,(-M+ 1) 
R,(O) a-. Ri,(-M+2) 

: : * : 

*. 
R,,(ti-2) . . . R,~O) i 

R,(n) = rii(n) ridn) 

r,i(n) > r,,(n) ’ 

In the above formula, Gt denotes the Hermitian matrix of the 2( M + 1) x 2 matrix G, 
and M + 1 is the filter order. The 2( M + 1) x 2( M + 1) matrix Ri, is equal to the expectation 
of the matrix [x,Xf] and each entry yi,(n) in Ril(n) is equal to the expectation value 
(correlation) of Xi( tk+,,)x,( tk). An estimated correlation 

Fi,(n)-+ E xi(fm+n)xI(fm) 
m 1 

or other methods [ 1, 1 l] will replace the theoretical value ril( n) in equation (4). In equation 
(4) [S,,(f)] is a complex 2 x 2 square matrix and 

where ii,(f) is the estimated cross-spectral estimate at frequency f using estimated 
correlations S,(n). From now on we will omit the hat *, in all 2 for convenience. 

Since MEM is well known and well established, we briefly review its algorithms for 
later use. Let xir( m) = [Xi( t,), x1( t,)lT be a two-dimensional column vector. Two prediction 
error (PE) vectors E&,n and E&,n, which are two-dimensional column vectors, are defined 
for the data Xi,(m). These are 

E&M,n = ?, A .qmXidn - ml, 

E&g = ft &f,~-mXidn - ml, 
m=O 

where AM.", and B,, are forward and backward autoregression (AR) filter coefficients 
respectively. The filter order is M + 1. The expectation energies of the two PE matrices 
are defined by 

p’, = ~~O%tn)(E/M,n)+l 
p”, = ~T0%,,)@,.,)+1. 

By minimizing the forward and backward expectation PE energy, we obtain the matrix 
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equation for the backward and forward AR filters. 

where Ri,(n)=E{Xi,(t+n)Xi,(t)7} 
of the two filters are given below. 

are a 2 x 2 square submatrix. The Z-transforms [ 1 l] 

The two-channel MEM spectral density estimates are given by 

[S$(f)]= f 
In=-a 

R,z-"=A;(z)P',A-,t 5 
(> 

1 
[s;(f)] = BZ(z)Pb,B-,f - 0 Z* 

where [Si(f)] and [S&(f)] are complex 2 x 2 square matrices and * denotes the complex 
conjugate. They are 

St(f) sil(f) Pm1 = (&) s~,(f) S(f) s,,(f) 
> 

; 
~s~(f)~ = (&f ) S,,(f) > . 

There are three algorithms to obtain the forward and backward AR filters, A,, and 
B M,n. They are the Yule-Walker, Burg, and Morf algorithms [5-71. Burg’s algorithm 
operates directly on the data xi,(m). Both the Yule-Walker algorithm and Morf algorithm 
use the estimated correlation functions S,(n) explicitly. The Morf algorithm will give a 
unique AR filter coefficient, [S:(f)] = [Si(f)]. In both the Burg and the Yule-Walker 
algorithm we will use [S$(,(f)] as the cross-spectral estimate. Once the filter coefficients 
have been determined, we can calculate the cross-spectra matrix, [S(f)], 
substitute its data in equations (l)-(3) to obtain the transfer functions and 
shape vector. 

and then 
the mode 

3. APPLICATIONS IN MODAL SHAPE IDENTIFICATION 

In this section we will apply the algorithms in the above section to estimate the modal 
shapes of two systems. One is a three-degree-of-freedom lumped mass system, the other 
is a one-dimensional continuous mass system. We now describe the two dynamic systems 
and their simulations in the following two cases. 

CASE A: LUMPED MASS SYSTEM 

The first system is a linear one-dimensional lumped mass system consisting of three 
masses mi (i = 1,2,3) connected by springs and dampers. The dynamic equation of this 
system is 
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In our case m, = m, = 1, m3 = 2, k, = k2 = 30, k, = 60, (Y = p = 0.006 and the theoretical 
undamped three natural frequencies of the above system are 0.325, l-150 and 1.768 Hz. 
In the dynamic equation, y(f) = [y,(t), y2( t), y3( t)lT denotes the displacement vector of 
the three masses. n(t) = [n,(t), nl( t), n3( t)lT is the simulated white Gaussian random input 
forces to the three masses and all ni( t) (i = 1,2,3) have independent identical probability 
distribution. By using the Euler implicit formulas [ 111, the dynamic differential equation 
is simulated by a difference equation. The simulated random forces can be generated by 
computer simulations. The accelerations 

hi ( L ) Xi(t,)=~ 
dt2 ’ 

i=l,2,3 

at the three masses are recorded spontaneously and used for later modal shape estimation. 
The sampling rate is 10 Hz and the recorded length is (102.4 s). A total of 1024 data 
samples is obtained for each mass by truncating the transient response data to reduce 
the effect of initial conditions. 

The unbiased correlation functions which will be used in the MLM and Yule-Walker 
algorithm are estimated by a fast Fourier transform (FFT) based algorithm [l, 111. The 
techniques of segmenting and averaging the 1024 data in MEM and MLM are properly 
determined by conventions and some experience to achieve high performance. They are: 
(1) MEM, Yule-Walker algorithm: four segments of 256 data each. (2) MEM, Burg 
algorithm: four segments of 256 data each. (3) MEM, Morf algorithm: 16 segments of 
64 data each. (4) MLM, 16 segments of 64 data each. Four representative figures are 
included in Figs l-4. These four figures are part of the figures for ]Si,l, the magnitude 
cross-spectral between masses i and /, obtained by using the given segmenting and 
averaging to display roughly the relative performance. The natural frequencies can be 

460 I , ! , / , I , I , 1 , 
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Figure 1. Cross-spectral magnitude by the Yule-Walker algorithm (filter order = 20) for 

mass system. 
the 3 dof lumped 
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Figure 2. Cross-spectral magnitude by the Burg algorithm (filter order = 20) for the 3 dof lumped mass system. 
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Figure 3. Cross-spectral magnitude by the Morf algorithm (filter order = 13) for the 3 dof lumped mass system. 
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Figure 4. Cross-spectrai magnitude by MLM for the 3 dof lumped mass system. 
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easily identified by frequencies below the large peaks in these magnitude cross-spectral 
graphs. The averaged natural frequencies over all such figures are listed in Table 1. The 
undamped natural frequencies are the theoretical values, [c] = 0. Since the damping factor 
is very small, the damped natural frequencies are very close to the undamped natural 

TABLET 

Frequency 

Method Mode 1 Mode 2 Mode 3 

Undamped 0.325 1.152 1.768 
Yule- Walker 0.322 1.143 1.768 
Burg 0.313 1.143 1.748 
MOlf 0.293 1.221 1.836 
MLM 0.322 1.152 1.758 

frequencies. From our experience with the Morf algorithm, we find that Morf’s MEM 
has several disadvantages on modal analyses. We summa&e its disadvantages as follows: 
(1) It is unstable when the filter order it4 + 1 changes slightly. (2) Its spectra always have 
high peaks at non-natural frequencies. This has caused trouble in identifying the natural 
frequencies. (3) It has a large bias in the natural frequency estimation. Therefore, we will 
not use the Morf algorithm in the following work. In order to estimate the mode shape 
vector u(fn) and +(fn), we estimate the magnitude cross-spectra ISil( in the beginning, 
then substitute these estimated Si,(fn) in equations (l)-(3) to obtain the transfer functions, 
HiI( Using equations (4) and (5), we obtain the estimated mode shapes. We will fix 
the i = 1 and change the I= 2, 3. The theoretical mode shapes are shown in Table 2. 

TABLE 2 

Mode Frequency (Hz) Mass 1 Mass 2 Mass 3 

1 0.325 1.000 1.861 2.162 
2 1.152 1.000 0.254 -0.341 
3 1.768 1.000 -2.115 0.679 

Tables 3-5 are the three mode shapes estimated by using the Yule-Walker and Burg 
algorithms, and MLM. 

CASE B. ONE-DIMENSIONAL LINEAR STRING SYSTEM 

Consider a one-dimensional string with uniform mass density p = 1. It is fixed at z = 0 
and z = L= 100 with constant tension T = 100. Its motion is given by the following 
differential equation: 

T a*JG, t) t) a2Yk 
T+f(s t)=P at2 * 

dZ 

The natural frequencies f, and mode shapes are 
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TABLE 3 

Yule- Walker’s algorithm with jilter order M + 1 = 20 and a = /3 = 0.006 

Mass Phase (degree) Coherence squared Transfer function 
i&l 4J”(J;, 1 r(f;,) lH,,(f;,)l 

l&2 
l&3 

l&2 
l&3 

l&2 
l&3 

First mode at f;, = 0.322 Hz 
0.0 1.00 1.859 
0.1 1.00 2.162 

Second mode at f;, = 1.143 Hz 
0.3 1.00 0.253 

177.0 1.00 0.334 

Third mode at J;, = 1.768 Hz 
179.2 1.00 1.990 

0.6 0.97 O-637 

TABLE 4 

Burg’s algorithm with jilter order M + 1= 20 and a = /3 = 0.006 

Mass 
i&l 

l&2 
l&3 

l&2 
l&3 

l&2 
l&3 

Phase (degree) 
dO(f” 1 

Coherence squared 
Y(f”) 

First mode at f;, = 0.3 13 Hz 
0.0 1.00 
0.4 1.00 

Second mode at f;, = 1.143 Hz 
0.9 0.99 

178.0 1.00 

Third mode at J;, = 1.748 Hz 
177.7 0.97 

3.2 o-97 

Transfer function 
IHil( 

1.830 
2.187 

0.250 
0.330 

2.858 
0.578 

TABLE 5 

MLM with Jilter order M + 1= 20 and cx = /I = 0.006 

Mass Phase (degree) Coherence squared Transfer function 
i&l 4OU,) r(J;,) IHi,(f;,)I 

l&2 
l&3 

l&2 
l&3 

l&2 
l&3 

First mode at J;, = O-322 Hz 
0.2 1.00 1.896 
0.4 1.00 2,200 

Second mode at J, = 1.152 Hz 
0.4 O-99 0.251 

178.8 1.00 0.338 

Third mode at f;, = 1.758 Hz 
179.6 0.89 2.030 

0.1 0.94 0.651 
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In order to simulate this string, we apply a finite element method and discretise the string 
into nine elements with nine nodes (or nine degrees of freedom). The dynamics of the 
discretized system are obtained as below. 

Proportional damping is added to the above equation, [c] = CY[ m] + p[ k], a = /3 = O-02. 
The simulation of the above differential equation is analogous with the lumped mass 
system in case A. We recorded the 1024 samples of the accelerations 

xi(tm) = 
d’Yi(tm) 

dt2 ’ 
i = 1,2,3, . . . ,9 

for each of the nine nodes. We use the same segmenting and averaging combinations as 
for the lumped mass system in case 1, and apply the two channel MEM and MLM to 
obtain the cross-spectra between every two nodes. Three typical magnitude cross-spectra 
between node 1 and node 3 are included in Figs 5-7 which are obtained by the Yule-Walker 

20 , , , , , , 1 , , , , , , , 

L 

5 16- 

i - 

iv2- 
B 

Frequancy (Hz) 
Figure 5. Cross-spectral magnitude by the Yule-Walker algorithm (filter order = 20) for the simulated string. 

Freqmcy (Hz) 
Figure 6. Cross-spectral magnitude by the Burg algorithm (filter order = 20) for the simulated string. 
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Figure 7. Cross-spectral magnitude by MLM for the simulated string 

and Burg algorithms, and MLM. The theoretical and estimated lowest three natural 
frequencies are listed in Table 6. 

The estimated mode shapes are summarised in Table 7. 
Plots of the estimated mode shapes are shown in Figs 8-10. From the above two 

simulations and our experiences with many measured field data, the three methods by 
Yule-Walker, Burg, and MLM give comparable results in both natural frequency estima- 
tion and mode shape estimation. For the modal shape identification, our cases have shown 
that the multichannel MLM’s performance is no worse than the multichannel MEM’s. 

4. SUMMARY 

In this work we have applied different algorithms of the multichannel MEM and MLM 
to estimate the mode shapes and compare their performances through simulations. Since 
many flexible parameters in the algorithms affect their performance, there is no unique 
way to compare their ability and draw conclusions. Our results show that both multi- 
channel MEM and MLM are capable of estimating the mode shapes of a structure in 
random vibration. 

TABLE 6 

Frequency/ Hz 

Method Mode 1 Mode 2 Mode 3 

Undamped 0.050 0.100 0.150 
Yule- Walker 0.050 0.100 0.153 
Burg 0.0488 0.0989 0.151 
MLM 0.050 0.100 0.152 
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TABLE 7 

Yule- Walker, Burg and MLM with filter order M -t 1 = 20 and 
a=p=O-006 

Mass Undamped Yule-Walker Burg MLM 

Figure 8. The estimated and theoretical first modal shape of the string. Cl, Burg; +, MLM; 0, Yule-Walker. 
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l&9 l*OOO 
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Figure 9. The estimated and theoretical second modal shape of the string. Cl, Burg; +, MLM; 0, Yule-Walker. 
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Figure 10. The estimated and theoretical third modal shape of the string. 0, Burg; +, MLM; 0, Yule-Walker. 
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