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Much effort has been expended in attempts to estimate dynamic response parameters 
of structures. Damping ratios have been estimated with varying degrees of success. Some 
of this effort has been motivated by active research and development of structural integrity 
monitoring systems, for design purposes, accurate estimates of damping ratios are 
important. 

In this work we apply several modem spectral analysis methods (maximum likelihood 
method, maximum entropy method and the Lagunas-Hemandez method) plus the spectral 
moment relations near natural frequency to the estimation of damping ratios. We use 
simulated vibration data and test the different choices of the spectral methods in order to 
obtain the best estimation procedure. 

The spectral shape of the response near the natural frequency is estimated first as the 
basis for further analysis. Half-power bandwidth and spectral moments are then derived 
from the spectral shape. The bandwidth and moments are subsequently related to the 
damping ratio. An iterated method for obtaining the damping ratio from the spectral 
moments has been proposed by Shyam Sunder. The half-power bandwidth and moments 
are crucial to this method as is the estimation of the spectral shape, there are many methods 
available to estimate spectral shape. Different combinations of the two methods gives 
varied damping ratios, in this work we try to identify the best combinations. We have 
used many sets of exact and simulated data and applies many different combinations. 
Results show that the maximum entropy spectral method and the method of Shyam Sunder 
is the best combination from our tests. 

1. INTRODUCTION 

There are many analytical [l] and experimental methods [2] for modal damping ratio 
identification which can be applied to diverse subjects [3]. In this work we focus on 
methods which identify the damping ratio by using the estimated spectrum and the 
estimated spectral moments. 

There are many different computational methods for estimating the power spectral 
density (PSD) function using finite length data. We briefly review some important PSD 
function estimates. There are two major conventional methods those of Blackman and 
Tukey and Cooley and Tukey. The Blackman-Tukey method estimates the PSD function 
indirectly. In their indirect method the autocorrelation functions are estimated from the 
finite length data and then they are transformed by applying the Fourier transformation 
to obtain the PSD function. The Cooley-Tukey method is based on computing the PSD 
function via a finite-length fast Fourier transform (FFT) of the original data. This method 
can take full advantage of the FFT [4,5]. Both methods involve using finite length window 
functions. The performances of many variant methods depends critically on the choice 
of the length and shape of the windows. 

Burg has devised the maximum entropy method (MEM) for the PSD estimation [6]. 
The data are modelled as an auto-regression (AR) model in the MEM. The MEM has 
high resolution ability in determining the PSD shape in Fougere [7] and it also gives a 
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mathematically tractable model for random vibrations. Vandiver and Campbell used both 
simulated and measured data to study the MEM’s performance on dynamic random 
vibrations. The results in refs [7,8] reveal that the bias and the variance of the conventional 
damping estimator are strongly related to the properties of the spectral estimators. They 
also show that conventional damping estimation is not efficient for short length and noisy 
measurements. The use of such an inefficient damping estimator limits the utility of the 
damping ratio estimator. Comparisons of the MEM and conventional methods are 
available in their work, which proves that the MEM performs better in damping ratio 
estimation than the conventional methods. 

We still lack knowledge about the relative performances of several other contemporary 
comparable modern PSD estimators, such as the maximum likelihood method (MLM) 
[6] and the Lagunas-Hernandez method [9]. They all use the autocorrelation functions 
to estimate the PSD functions, this motivated the present work. The MLM is derived 
from the minimum variance unbiased spectral estimator. The Lagunas-Hernandez method 
is an improved version of the MLM. The performances of the MLM and the Lagunas- 
Hernandez method in the spectral estimation shows that they hold promise for damping 
ratio estimation, in this work we apply MEM, MLM and Lagunas-Hernandez methods 
in estimating damping ratios and discuss their performance. 

The data we use for comparing the performances of the three methods are created by 
both theoretical and estimated autocorrelation functions. This is because all three methods 
use the estimated autocorrelation functions. 

The theoretical autocorrelation functions [ 10, 1 l] for a single-degree-of-freedom (sdof) 
dynamic system with a white random input is given as follows 

R,(T) = s exp (-@0,/r/) * { cos (od14)+z sin (fwbl)}, wd =w,(l-p’)“” 
” 

where R,(T) = E[x( t)x( t + T) ] is the autocorrelation function at lag r, w, the undamped 
natural frequency, We the damped natural frequency, j3 the damping ratio, and S, the 
constant power over all frequencies of the white random input. 

The estimated autocorrelation functions can be obtained from the simulated dispIace- 
ment data (x(t), t =0 to T(=NA)), where A is the sampling interval. The effects of the 
finite data length is important for damping ratio estimation. In order to generate a sequence 
of responses in the simulation, we use a “discrete analog” [ 121 technique to simulate the 
linear stationary dynamic system and use discrete Gaussian white noise as random input 
{u(n), n =o, 1,2,. . .) where t = n * A}. The “discrete analog” technique synthesises a 
linear discrete system that is analogous with a linear continuous system. The difference 
equation of the discrete system is derived and programmed on a digital computer. 

2. SPECTRAL SHAPE ESTIMATION 

In this section we briefly review the three power spectral estimators. 
The MEM can be viewed as fitting a special AR model with order M to the finite 

discrete autocorrelation functions {R,(m), m = 0, 1, 2, . . . , M} where m is the discrete 
lag. Instead of the theoretical autocorrelation functions (l), the estimated autocorrelation 
functions 

I 

* N-+-i 
R,(m)=R,(-m)=x 1 x(n)x(n+m), OGmSit4 (2) 

n=O 
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will be used for further spectral estimation. The autocorrelation function can be also 
obtained by overlap-add sectioning and FFT techniques [5] operating on the simulated 
finite length response data {x(n), n = 0, 1, 2, . . . , N - 1). Its estimated spectrum is 

PMA 

II+ F a, exp (-j2rrmfA)j’ 
m=l 

(3) 

P&J=R,(O)- c” a,R,(m); j=J(-1) 
In=1 

where A is the sampling interval and a,,,‘~, m = 1,2,. . . , M, are obtained by solving the 
Yule-Walker equations in [4]. 

k=O 

or in the matrix form 

.R,(M) R,(M-1) ..a 

Applying Levinson’s iterative algorithm, we can solve the above Yule-Walker equation 
efficiently, see [4] for details. Now let 

i 

Rx(O) R,(-1) 0.. R,(-M) 

R,(l) R,(O) 
Rx= ; 

R,(M-1) Rx&-2) . . . 
R,(M) R,(M-1) . .a 

The MLM is then given by the following formula [6] 

S MLM(f)=ETRyIE* where E =[1,e’2”‘A,e’2”fA’2,. . .,ej2?rfA’(M)]T (4) 
X 

where * denotes the complex conjugate operation and T denotes the operation of transpose. 
S ,+,LM( f) is the power which would come through a filter designed to pass frequency f 
undistorted and to reject all other frequency components in an optimum manner. The 
computation of the above formula can be much reduced when the symmetric Toeplitz 
form of the matrix R, is considered. 

The Lagunas-Hernandez spectral function [9] is given as in the following formula 

(5) 

The above formula is an improved MLM and is a true PSD function. 
A major impediment to the wide-spread usage of these three spectral estimators has 

been the difficulty in selecting the order M which produces the optimum estimate. Several 
criteria have been suggested as an aid in the selection process, such as final prediction-error 
criterion and information theoretical criterion [4], but as yet a definite general technique 
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has not emerged. In the following discussion we detail a procedure which has a sufficiently 
small effect on the order selection for obtaining optimum natural frequency and damping 
ratio estimates. 

3. ALGORITHM FOR SPECTRAL MOMENTS 

In this section we briefly review two methods for the damping ratio estimation given 
the estimated PSD function, one is the iterative method of Sunder and the other is the 
traditional half-power method. The small damping ratio assumption is valid in all our 
work and we assume each mode of interest can be well resofved by the estimated PSD 
shape, we can then apply the dynamics of a sdof system near the maximum response 
frequency. 

For a sdof dynamic system, whose FRF at frequency w is H(w), under white noise 
excitation and whose power spectral density is a constant S,, at all frequencies, the 
theoretical displacement response spectral density (S,(w) = /H(w)/*&) can be expressed 
as [11] 

Mw) = 
SO 

(02, - W2)2f4/3W2,W2 
o<w<oo 

where o, and /3 are time-invariant parameters. 
We now review the iterative method, the first three spectral moments hi, i = 0, 1,2, are 

defined [13] as 

A, = J Oh W’S,(W) dw i=o, 1,2 
W” 

where o, and ob are lower and upper limits of the integrand respectively. The analytic 
expressions for these three moments are 

SO 4 
A,=- 

4pwi-’ 
i=O, 1,2 

where 

with 

d = 2J( 1 - p2), and r, , r, are normalised integration limits which are defined as 

r,S, r2=T 
W” WII 

Note that the quantities {Di, i = 1,2,3} are functions of the, damping ration @) and 
normaiised frequencies (r, and r2), the quantities {Ii, i = 0, 1,2} are also functions of the 
damping ratio (@) and normalised frequencies (r, and rz). 
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The average zero up-crossing frequency wup and Vanmarck’s spectral bandwidth 6 can 
be expressed as two functions of the three spectral moments [13] with the following 
identities 

A2 
W”P = 4 ) A: 

A,’ 

S2=1-- 

kd2 

s24-$ OC861. 
0 2 

The theoretical relation between the natural frequency and the average zero up-crossing 
frequency is o, = wup J(I,/I,). The concept of Vanmarck’s spectral bandwidth can be 
seen from the approximated relation /3 = ( 7r/4)S2. 

Sunder devised an iterative algorithm [ 14, 151 to solve p based on the above-formulae. 
Assume we know the maximum response frequency w,,, of the mode under consideration 
from any of the three estimated PSD shapes using equations (2), (5). The algorithm is 

Step 1: Guess an initial value for the damping ratio. This may be an arbitrarily small 
value, say 0.001. 

Srep 2: Compute the first three moments Ao, A,, A2 of the calculated response PSD 
functions. 

Step 3: Iterate to convergence on the function F(P), it is given as 

(6) 

F(P) depends on the variable /l only, and will be zero for the true value 8. When we 
get the estimated p, the natural frequency can be estimated with the formula 

IO 
WI = %p J( > I,’ 

Three suggested options of the integration intervals are: (1) the reciprocal integration 
interval which is defined as T, = 1/r2; (2) the half-power point which surrounds the known 
maximum response frequency. This option can only be used for very smooth PSD 
functions; (3) arbitrary integration interval ( r, , r2) which surround the maximum response 
frequency. This option is suitable for those PSD functions which have respective 
properties. 

Since the natural frequency w, is unknown. The maximum response frequency o,,,_ is 
used to evaluate rl and r,. Thus the estimates of r, and r2 are given by 

0, WC? wb wb 

r1=Wmax=0.J(1-2/3Z)Y r2=o,,,= 0, J(1-2p2)’ 

The solution p of F(P) can be solved by Newton-Raphson method or false position 
method. 

The traditional half-power method for a small damping ratio is given by the following 

w+1/2 - o-1/2 = WW”, w-112 < %lax < 0,112 (7) 

where w+~/~, w-l12 are the nearest frequencies to w,,, and have the property S(W._~,~) = 
S(o+,,,) = ~S(W,,,,_). The estimated /3 can be obtained from the above formula. 

4. SIMULATIONS AND RESULTS 

In this section we will simulate the responses of a sdof and a 2 dof dynamic system. 
We calculate the spectral shapes of the response by using the three spectral methods, 



284 C.-Y. LIOU AND C.-C‘. SHEN 

1 
I 
1 

I 
1 

,/ 

/ 
0 _ 

_____- -.-- 
/ 

_ ___. _ ._.. -..- -l-r--r-T I I1 I 

:: p N 
6 O 6 

8 
6 

g 
6 

O!(OJ 6U#lUO~ 

Of+DJ 6u!dwoa 



DAMPING RATIO ESTIMATION 285 

then apply the iterative method and half-power method to estimate the damping ratio 
and natural frequency. The dynamics of the sdof system in our simulation is 

d2x( t) dx(t) 
-+22p~, dt dt* 

-+ oz,x( t) = w’,x( t), x(O)=-= dx(0) o 
dt . 

The discrete system which is analogous with the above continuous system is [13] 

x(n)=Ax(n-l)-Bx(n-2)+(1-A+B)u(n) 

where 

A = 2 eepWmA cos {w,A(l -p2)“2}, jj = e-W+ 

u(n) is the Gaussian white noise input at discrete time nA, A = 0.1 set, and w, = 
2~ - (1.0 Hz). This formula is obtained by a technique which is called discrete analog 
system synthesis in [ 121. The same technique is also applied to simulating a 2 dof system 
with two natural frequencies (0: = 27r. (1.0 Hz), o’, = 2~. (2.0 Hz)} and two modal 
damping ratios {p’ = 0.03, /3* = O-03). The transient responses are truncated by inspecting 
the response graphs. The stationary responses are used for calculating the autocorrelation 
functions. The total of 12 x 1024 sampled data (20.48 min) are used for calculating the 
autocorrelation functions R,(m) = R,(-m) [5], where m = 0, 1,2, . . . , M is the discrete 
lag as before. 

There is an undetermined parameter, order M, in the three spectral methods. In order 
to signify its importance in the estimation, we include this parameter as another dimension 
in the estimation. 

The results of the sdof system are plotted in Figs l(a) and (b). The results of the 2 dof 
system are plotted in Figs 2(a) and (b) for the mode at natural frequency 2 Hz. All these 
figures are plotted with the variable lags M. The curves in the figures are truncated at a 
specific M where the limitations of that spectral method is met by using the calculated 
R,(m), m =o, 1,2,. . .) M, which have error variances. The curves in each figure display 
the general performances of the specific combination. 

5. SUMMARY AND CONCLUSIONS 

Two methods (the iterative method and the half-power bandwidth method) with three 
kinds of estimated PSD functions (MLM, MEM, and the Lagunas-Hernandez method) 
have been presented to estimate the natural frequency and equivalent damping ratio of 
a dynamic system. The four graphs are representative cases in our experiences, there are 
several important features on these graphs. In order to examine the effect of finite length 
data in the estimation, we have been using the theoretical autocorrelation functions given 
in equation (1) instead of the estimated values of equation (2) to calculate the three 
spectra and the damping ratio. The results are almost identical to those obtained in 
equation (2). This is because in equation (2) we use very long data length (12x 1024), 
this means that our procedures are applicable to short data length and noisy records. 

The MEM have several other algorithms [4], we have used only equation (3) as a 
representative of the MEM in our estimation as the results obtained are comparable, see 
c7, a 

Among all combinations in our test the estimation of the damping ratio using equations 
(2), (3), and (6) has the best result. This can be seen from the Figs l(a) and 2(a). The 
estimated damping ratios by the MEM and spectral moments almost coincide with the 
true value of O-03. 
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The Lagunas-Hernandez method is not capable of estimating the damping ratio, this 
can be seen in Fig. l(b). The spectrum of Lagunas-Hernandez is very unstable and its 
spectral envelope cannot be used for damping ratio estimation. 

The estimation by the MLM and equation (6) is good, it converges asymptotically to 
the true value and serves as the upper bound of the estimation, and so, we can use it to 
confirm the estimated damping ratio. 

The estimation by the half power bandwidth (7) is shown to be somewhat unstable 
when Figs l(b) and 2(b) are compared with Figs l(a) and 2(a). 

Figures 1 and 2 show only some of our results, many other examples from our simulations 
and measurements support these conclusions, e.g. analyses of the random vibrations of 
a single production platform in the Gulf of Mexico [8]. 
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