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A Separable Cross-Entropy Approach to Power 
Spectral Estimation 

Abstract-We present a new approach for power spectrum estima- 
tion based on a separable cross-entropy modeling procedure. We start 
with a model of a multichannel, multidimensional stationary Gaussian 
random process which is sampled on a nonuniform grid. An approxi- 
mate separable model is then fit to this, in which selected frequency 
samples of the process are modeled as independent random variables. 
Two cross-entropy-like criteria are used to select optimal separable ap- 
proximations. One of our methods yields a spectral estimation algo- 
rithm which is a generalized version of Capon’s MLM method, and the 
other is similar to classical windowing methods. We conclude with a 
discussion of different strategies for designing bandpass filters for use 
with this method. 

I. INTRODUCTION 
HERE are a large number of applications in which it T is necessary to estimate the power spectrum of a sta- 

tionary random process given samples of the covariance 
kemel. The simplest approach is to form the periodogram 
by computing the magnitude squared of the Fourier 
Transform of a set of windowed data samples. Unfortu- 
nately, the periodogram yields inconsistent and biased 
spectral estimates. Bias is introduced by the data window- 
ing process, and the variance of each frequency sample 
remains constant regardless of the number of data samples 
[l]. Blackman-Tukey [2] suggested a simple method for 
improving the variance of the estimate by windowing the 
correlations of the data before Fourier Transforming. A 
similar effect was achieved by Welch [ 3 ]  and others by 
averaging multiple periodograms formed from overlap- 
ping short frames of data. In both cases, the methods trade 
off resolution for decreased variance by using a window 
to average the power across a number of frequency com- 
ponents. The shape and width of the window controls the 
tradeoff between resolution and variance. 

More modem methods use precise objective functions 
or models of the underlying random process to achieve 
higher resolution, smoother estimates, and lower vari- 
ance. Burg’s Maximum Entropy method (MEM) (41 
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chooses a power spectrum estimate to maximize the en- 
tropy of the spectrum subject to the constraint that the 
spectrum must match the first few correlations of the data. 
Given one-dimensional, uniformly sampled correlations, 
the resulting spectrum is all-pole, and can be calculated 
using various linear prediction methods. An alternative 
approach is Capon’s Maximum Likelihood Method 
(MLM) which designs an optimal Finite Impulse Re- 
sponse (FIR) bandpass filter at each frequency to pass that 
frequency unmodified but reject as much other signal en- 
ergy as possible. The output power of the filter is used as 
the estimate of the power spectral density at that fre- 
quency. This spectral estimate can be shown to have the 
form of an all-pole model, although the coefficients are 
different than those of MEM. Numerous other interpre- 
tations of MLM exist in the literature. Marzetta [SI, for 
example, shows the MLM gives the upper bound on the 
amplitude of each frequency component given the known 
correlations. MLM is easy to compute even for nonuni- 
formly sampled or multidimensional data, while MEM is 
quite difficult for these cases. The resolution of MLM, 
however, tends to be lower than that of MEM [6]. 

In this paper, we consider a very different approach to 
the problem of power spectrum estimation. We start by 
noting that a stationary Gaussian random process can be 
loosely characterized as having a Fourier Transform which 
is a Gaussian white noise process. As the amount of data 
grows asymptotically large, samples of the transform ap- 
proach independent zero-mean Gaussian random vari- 
ables with variance equal to the power spectrum. Our new 
approach to spectral estimation starts by fitting an ap- 
proximate model to the given data, in which we assume 
that a selected set of up to N frequency samples are in- 
dependent random variables. The best such separable 
model is chosen by minimizing one of two discriminant 
or cross-entropy functions. The approach used is pre- 
cisely that developed by Musicus [7], but applied to the 
spectral estimation problem. One of our methods yields a 
generalized form of the MLM method, and the other is 
similar to a classical windowing approach. Examples are 
shown demonstrating the performance of these tech- 
niques. 

Our presentation is somewhat indirect. We will start by 
discussing the use of cross-entropy to build model ap- 
proximations in which variables are forced to be indepen- 
dent. After discussing various special cases of the results, 
we will consider the power spectrum estimation problem. 
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11. GAUSSIAN ESTIMATION PROBLEM 111. SEPARABLE CROSS-ENTROPY MODELING 
Suppose we are given a finite set of L jointly Gaussian 

real or complex valued random variables, x I ,  . * * 7 X L ,  
each a vector of length N j  

where E [ ]  is the expectation operator, Cov [ I  is the co- 
variance, and x H  = x P  is the complex conjugate trans- 
pose. is an NI X NI matrix. It will be convenient to 
define variables 

where x and m ,  have length N = C N I ,  and R, is an N x 
N conjugate symmetric positive-definite covariance ma- 
trix. Then the probability density of x is Gaussian with 
mean m, and covariance R ,  

(2 .3)  

Lety , ,  * * . , y p  be a set of P vectors, each of length 
M I ,  which are formed from linear combinations of the xJ 

p ( x l ,  * * , x L )  = p ( x )  = N ( m , ,  R , ) .  

L 

y ,  = c T,, /xI  
J =  I 

The y ,  are jointly Gaussian. Let 

for i = 1, . * - , P.  (2 .4)  

where y has length M = C M i ,  and T has dimensions 
M x N .  Assume that M I N ,  and that T has rank M .  
Then y is Gaussian with mean m,. and positive definite 
covariance R, 

P(Yl> * - . 7 Y P )  = P ( Y )  = N(m, . ,  RJ 

In general, the components { y i }  will be correlated 
Gaussian random variables. Suppose, however, that the 
components { y i }  are “close” to being independent in the 
sense that the off-diagonal blocks of the R,  covariance 
matrix are “small” compared to the diagonal blocks. It 
might be computationally and analytically convenient in 
this case to find an approximation to the Gaussian model 
for y in which the components { yi  } are treated as inde- 
pendent random variables, but in which the shape of the 
probability density is otherwise about the same. More for- 
mally, we will try to find a separable probability density 
model q(  y )  in which the components { y i }  are indepen- 
dent random variables 

4 ( Y )  = ql(Yl)42(Y2)  * * * d Y P ) .  (3 .1)  

Our goal is to find a separable q(  y )  which optimally ap- 
proximates the original p ( y ) in some manner. 

Kullback’s two discriminant functions 181 are good cri- 
teria for measuring the goodness-of-fit between p and 4. 
The first discriminant function is equivalent to the cross- 
entropy criterion suggested by Shore and Johnson 191 and 
developed for this class of problems by Musicus [7]. The 
second function is just the reverse of the first. We will 
develop these two approaches in the next two sections, 
and then compare the results. 

A .  Cross-Entropy (CE) Method 
Shore and Johnson considered the following problem. 

Suppose that we are given an U priori estimate p ( )  of a 
probability density for some unknown a,  but that we are 
not very certain of its validity. Suppose that new obser- 
vation data arrive which suggest that this estimated den- 
sity is incorrect, and that the actual density must belong 
to some set Q. Shore and Johnson started with four in- 
variance and consistency axioms which, they argued, any 
reasonable estimation procedure must obey. These insist, 
for example, that the same answer must result regardless 
of the coordinate system chosen for the unknown. Shore 
and Johnson were then able to prove that any estimation 
procedure which satisfies these axioms must yield the 
same estimate as that found by minimizing the cross-en- 
tropy H( q ,  p )  over the set q E Q 

H ( q ,  p )  = 4 ( a )  log 4O da.  
P (a> 

where We will call this the “Cross-Entropy’’ Method (CE), and 
will denote the solution by qc-. For our problem, Q is the 
set of separable densities, and so 

m, = Tm, 

R, = TR,TH. (2.6) n 

It will be convenient to partition R,  into blocks [ R , ] , , ,  of 

trix R,-‘ into blocks [R,-I], ,  . 

4CE + min 1 4 l ( Y l )  * * * 4P(YP) 
91 .YP size M I  x M J ,  corresponding to the covariance of y ,  and 

y, . Similarly, we will partition the inverse covariance ma- . log q 1 ( Y l )  * * 4 p ( y p )  dy l  . . . dyp. (3 .3)  
P ( Y , .  * * * 2 Y P )  
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We show in Appendix A that this minimization problem 
has a unique solution which has the form 

Only the second term in (3.8) depends on q. This term 
can be further decomposed, reducing the minimization 

P 

fo r i  = 1 ,  - .  , P .  (3.11) 

With this objective function, therefore, the separable 
function simply models each component as having the 

i =  rI I ~ [ R ; ~ l ; , ; ~  
(3 .6)  

IRJ'I 
H ( 4 C E 9  P )  = E log 

where 1 R,' 1 is the determinant of R; ' .  Note that H (  q ,  p )  
is always'positive, and attains its absolute minimum value 
of 0 if and only if q = p .  Thus, the minimum cross-en- 
tropy value will be zero if and only if the original proba- 
bility density is already separable. If the minimum 
H ( i j C E ,  p )  is close to 0, then qCE is a good separable ap- 
proximation to p .  If the minimum H ( q C E ,  p )  is large, 
however, then the y i  are strongly correlated and the best 
separable approximation is still quite poor. 

B. Reversed Cross-Entropy Approach 
A related approach which gives quite a different result 

is to reverse the order of the arguments in the cross-en- 
tropy function, choosing 4 to minimize H ( p ,  q )  

same mean and covariance as the original marginal den- 
sity. 

The value of the reverse cross-entropy function (3.7) at 
this solution is 

P 

Once again, this will be zero if and only if p is already 
separable. If the value is close to 0, then GRCE is a good 
separable approximation to p .  Otherwise, the y i  are not 
modeled well as independent random variables. 

C.  Comparison of the Techniques 
It is interesting to compare the behavior of the separa- 

ble approximations for these two methods. If the original 
density p were separable, 

ORCE min s P ( Y l  ' *  . 7 Y P )  
91,' " . 9 ~  

We will call this the ''Reverse Cross-Entropy " (RCE) 
Method, and will denote the solution as G R C E .  This min- 
imization is considerably easier to solve than that in (3.3). 
We can write (3.7) in the form 

P 

P ( Y >  = P ( Y l )  * * P(YP>,  (3.13) 

then both methods would simply set qCE = QRCE = p ,  and 
the value of the cross-entropies would both be zero, 
H (  d C E ,  p )  = H ( p ,  gRcE) = 0. In general, however, when 
p is not separable, then the two methods will give some- 
what different answers, and the cross-entropy values will 
be somewhat different. The CE method (3.5) sets each 
component of the density q, to the conditional probability 
density of y ,  given that the remaining components are set 
equal to their a priori means. The RCE method (3.11) 
sets each component density to the marginal density of y ,  . 
In general, with correlated y , ,  the CE density estimates 
will be "narrower" than the RCE estimates. In fact, it is 
straightforward to show through matrix manipulation that 
the CE covariance estimate is always smaller than the 
RCE covariance estimate 

( 3 . 1 4 )  

Both methods have a similar structure; the primary dif- 
ference is that CE bases its estimates on diagonal blocks = q m \ w  [R\I, , , ) .  ( 3 . 9 )  
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of the inverse covariance matrix, [R,-l]l-l l ,  while RCE 
uses diagonal blocks of the covariance matrix, [ R , ] , , , .  
This suggests a simple duality between these methods: the 
$(-E and qRCE approximations to p ( y ) = N (  m, , R, ) are 
equal respectively to the 4RCE and gCE approximations to 
P ( Y )  = N ( m , ,  K ' ) .  Also, H ( ~ c E .  P I  = H ( P ,  & E )  and 

This duality also implies that neither method can be 
better than the other in all cases. For two unknowns, ex- 
ample 1 below shows that both methods always achieve 
equal cross-entropy, H ( Q C E ,  p )  = H ( p ,  QRCE) .  For 3 or 
more unknowns, however, examples can be constructed 
in which the difference between H (  Q C E ,  p )  and H (  p ,  
QRCE) is arbitrarily large (see Appendix B). 

D. Example 1-Two Variables 
Let y I ,  y 2  be two jointly Gaussian real-valued random 

variables with means E l y , ]  = m,, and covariances 
Cov ( y , ,  y , )  = R,] . We will try approximating this model 
with a separable model q1 ( y 1  )q2  ( y 2 ) .  The CE method 
gives 

H ( p ,  4 R C E )  = H ( 4 R C E ?  P ) .  

R, = TR.,TH (3.21) 

R,:' = T-~R.; '  T - I .  (3 .22)  

Let [ T I i , ,  be the ith block of rows of T 

(3.23) 

so that [ T I ; , ,  is an N; X N matrix, and 

Yi = [ T I ; , * x .  (3.24) 

Similarly, let [ T - ' ] , , ;  be the ith block of columns of T-I 

T- '  = ([ T - I * * * [T-'I*, ,]  (3.25) 

so that 
P 

x = T-Iy  = [ T - ' ] ,  , y j .  (3.26) 
i =  I 

t TI,,* t T - l l * , j  = 6,.J (3.27) 

where 6, , is the Kroneker delta function, 6, , = 1 if i = 
-._I 

4 ( y 2 )  = N(m,?, R22 - R 2 1 R ; 1 R 1 2 )  (3.16) j ,  = O  else. Equation (3.27) implies that [ T I ; , ,  is orthog- 
onal to all [ T - ' ] * , ,  for i # j ,  and has a unit projection 
onto [ T - ' ] , ,  ;. Then our two approximation methods give and the value of the cross-entropy function is 

Note that the Cross-Entropy solution for the ith variance 
depends on [ T - ' ] * , ; ,  which in turn depends on the choice 
of all the linear transformations [ T I I , * ,  . . . , [ T I p . *  . The 
Reversed Cross-Entropy solution for the ith variance, on 
the other hand, depends only on [ T ] ;, *.  

where 
4 l ( Y l )  = N ( m , , ,  R i l )  

4 2 ( Y 2 )  = N ( m w  R22) (3.19) 

and its cross-entropy is exactly equal to that of CE 
(3.20) IV. POWER SPECTRUM ESTIMATION 

H ( 4 C E ,  P )  = H ( p ,  QRCE) .  

Note that the covariance of the CE estimates is smaller 
than the covariance of the RCE estimates. Also, note that 
if the unknowns are initially almost uncorrelated, then R I 2  
= R{ = 0. In this case, H ( i j C E ,  p )  = H (  p ,  QRCE)  = 0 ,  
and both separable models will be good fits to the original 
density. Notice, in fact, that both methods also give vir- 
tually the same answer, since R I ,  - R12RG1R21 = R I ' .  
On the other hand, if the variables are highly correlated, 
then R I  I - R12 RG1 Rz l  = 0 ,  the cross-entropy values H 
are large, and both separable approximations are equally 
poor. Note that in this case, CE assigns nearly zero vari- 
ance to the variables, while RCE assigns variance R;;. 

E. Example 2-Invertible Transformations 

form. Then 
Suppose M = N and T is a square and invertible trans- 

We can easily apply these ideas to power spectrum es- 
timation. Let x (  t )  be a complex-valued, multidimen- 
sional, stationary vector Gaussian random process, with 
zero mean and with stationary covariance kernel R ( t ) .  
Assume that each sample x ( t )  is a vector of length p ,  and 
that the process is defined for all t in a hypercube, - U 5 
t I U .  

E [ x ( t ) ]  = 0 for - U  I t I U 

E [ x ( t I ) x H ( t 2 ) ]  = R ( t ,  - t 2 )  for - U  I t , ,  t2 I U .  

( 4 . 1 )  

We will assume that R ( t )  is known for all t .  (The deri- 
vation for real-valued x ( t ) would be slightly different, but 
the results would look the same.) Let us define X (  CO)  as 
the multidimensional vector Fourier Transform of X (  t )  
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over the known domain 

x(o> = j" - U  x ( t )e - jw"dt .  (4 .2 )  

Also, let P (  o) be the Fourier Transform of R ( t )  
r m  

P ( o )  = 1 -m R(t)e-@""'dt. (4 .3 )  

Now suppose we measure a selected set of samples of 
this random process, x,, = x ( t n ) ,  where the samples t, 
may be uniformly or nonuniformly distributed in the do- 
main [ - U ,  U ] .  The vector of samples x will be a zero 
mean Gaussian random variable with covariance matrix 
R, having elements [ R r l k , /  = R ( t k  - t , ) .  The covariance 
matrix R., is positive definite and symmetric. If the sam- 
ples tn are uniformly spaced on a rectilinear grid and or- 
ganized in raster scan fashion, then R, will also be block 
Toeplitz. 

Let us consider forming estimates of P selected fre- 
quency samples ok of the Fourier Transform X( CO,) using 
the given L data samples x,,. We will form each estimate 
yk of X (  ok)  by taking an appropriate linear combination 
of the data samples 

(4 .4 )  

Let Tk(  U) be the transform of the kth set of coefficients 

(4 .5 )  

in which the frequency component estimates y, were mod- 
eled as exactly independent random variables. Hopefully, 
the variance of y, in this separable approximation would 
then be a good estimate of P (  ok) .  The separability of the 
model, moreover, will often simplify further analysis of 
the expected characteristics of the process. 

To find a good separable model, we can apply the CE 
and RCE methods discussed in the previous sections. Col- 
lect the samples yk into a vector y,  and the elements T,,n 
into a matrix T .  Assume that P = L and that T is invert- 
ible. In the following subsections, we will compute the 
CE and RCE separable approximations, and show that the 
corresponding variances of y, can be treated as estimates 
of the power spectrum. 

A .  Reverse Cross-Entropy Spectral Estimation 

The RCE estimate is somewhat easier to interpret, so 
we will treat it first. Each y, is constructed by filtering the 
data x,, through a filter Tk,, ,  as in (4.4).  The RCE separable 
approximation models the density dk ( yk)  as the marginal 
density ofyk.  If we define pRcE( a,) as the variance ofy,, 
then (3.28) shows that 

RCE: Bk(yk) = N ( o ,  p R C € ( U L ) )  

where 

Applying Parseval's theorem to (4.4),  we can show that 

yk = p j T , ( o ) X ( o ) d o .  (4 .6 )  

To show that this is a reasonable power spectrum esti- 
mate, note that (4.7) implies that I m  

(27r) -m . 
Thus, yk will be a good approximation to X(o,) if we 
choose coefficients Tk,,, such that Tk( o) is a good ap- 
proximation to an impulse centered at w,. Furthermore, 
because the samples yk are linear combinations of Gauss- 
ian random variables, x,,, they will also be Gaussian ran- 
dom variables with mean and covariance 

I pRCE(o, )  = 1 T , ( ~ ) P ( ~ ) T F ( ~ )  do. ( 4 . 9 )  
(27r) --OD 

Thus, the Reverse Cross-Entropy method is equivalent to 
a classical windowing approach for estimating the power 
spectrum. If the Tk ( o ) are good bandpass filters centered 
at w k ,  then the estimate formed from the linear combi- 
nation of correlations in (4.8) equals an average of the 
power spectrum values around ok. For proper scaling in 
the RCE method, it seems reasonable to scale the filters 
Tk( o) such that if the actual power spectrum is flat, P (  w )  
= Po, then PRcE( o) = Po also. Applying this require- 
ment to (4.9) gives the normalization constraints 

1 
= - 1 T , ( o ) P ( o ) T F ( o )  do. (4 .7 )  I m  

(27ry --OD ~ j T , ( o ) P o T ~ ( w > d o  
( 2 4  -m 

Thus, if the filters Tk ( o ) are designed with minimal over- 
lap, then the correlation between different samples Y k  and 
yl will be minimal. In other words, the samples y, will be 

= Tk,,,PoT:,, = Po for all Po. (4 .10)  
n 

nearly independent zero-mean Gaussian random variables 
with variance related to the power spectrum sample 

A particularly good choice for the 
windowed 

Tk,n would be 

1 It would be convenient for many estimation problems T - -jw:t,, 
P ( O k ) .  

if we could approximate this actual distribution with one 
I (4.11 ) JL e 
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where the normalization factor 1 /& is chosen to satisfy 
(4.10). With this choice 

and so the RCE power spectral density estimate is iden- 
tical to a classical Bartlett (triangular) windowed peri- 
odogram estimate. 

The difficulty with the RCE power spectrum is that, in 
general, the filters T k ( w )  overlap, so that R,, = TR,TH is 
far from diagonal. Leakage between the different filters 
implies that even if all the power in t,he actual power spec- 
trum is concentrated near wk, our PRCE ( w ) will be non- 
zero over a wide range of frequencies. This is the familiar 
problem with sidelobe leakage in classical periodogram 
estimation. 

B. Cross-Entropy Spectral Estimation 

In the CE method, the component density 4, ( y ,  ) is es- 
timated as equal to the conditional density of y L  given that 
all the remaining components :re exactly equal to their a 
posreriori mean. If we define PcE( w k )  as the variance of 
y k  in this separable approximation, then (3.28) implies that 

CE: 4 L ( Y l )  = N(O9 F C E b L ) )  

where 

(4.12) 

The form of this estimate is highly reminiscent of a win- 
dowed form of Capon's MLM estimation method, in 
which columns of the inverse filter matrix T-I replace the 
directional vectors in Capon's method. A simple interpre- 
tation of this effect is difficult, however, since the kth col- 
umn of T- '  will depend, in a nonlinear fashion, on the 
choice of all the filters TI(  w ), and the elements of 
R,-' depend nonlinearly on all the given correlations 

The key to understanding this formula is to recognize 
that this is the conditconal variance of y k  given the re- 
maining components. p , , ( ~ ~ )  is thus the expected power 
in y ,  which cannot be predicted from knowledge of the 
other frequency estimates. This estimator therefore tends 
to minimize leakage from other frequency bands. A side 
effect of this leakage cancellation, however, is that leak- 
age from the kth filter into adjacent filters will be used to 
partially predict the power in Y k ,  thus artificially reducing 
the power estimate PcE( w k )  below its proper value. This 
argument supports our observation in (3.14), which in this 
context implies that 

R(tn  - tm). 

(4.13) 

It would be appropriate to choose different filter scaling 
for the CE method to compensate for this effect. In par- 
ticular, i f P ( w )  is flat, P ( w )  = Po, then R ( t )  = P 0 6 ( t )  
and R, is block diagonal. If we require that p,( w ) = Po 
in this case, then formula (4.12) suggests that we scale T 
such that 

[ Tp1If l : ,P i1  [ = P t l  for all Po. (4.14) 

A particularly useful set of filters Tk, for the CE method 
is found by designing them so that they do not overlap at 
their center frequencies 

n 

Tk(0 , )  = &6k,/I for all k, 1 (4.15) 

where & is a scaling factor chosen to satisfy (4.14). The 
advantage of this idea is that if the signal is actually a sum 
of complex exponentials at frequencies w k  with gains xk 

(4.16) 
h 

then it is easy to show that 

yk = (4.17) 

Thus, each filter output would only reflect the amplitude 
of the frequency component at w k ,  and would be insen- 
sitive to frequency components at the other frequencies 
0,. Another nice property of this method is that if we 
write (4.15) in matrix form, then we find that 

TW = &I (4.18) 

where W is a block DFT matrix, [ W ] , , ,  = eJo'fAI.  Substi- 
tuting the resulting formula for T- '  into (4.12) 

pCE(wL)  = L C [ R ~ ' ] n , , l ~ e p J W A ( f " p * i ' ~ )  ] - I .  (4.19) 

For this choice of filters, the CE power spectrum is ex- 
actly equal to Capon's MLM estimator. As is well known, 
this MLM method exhibits less sidelobe leakage than the 
periodogram (RCE) estimates. 

[ n , m  

V.  FILTER DESIGN-UNIFORM SAMPLING 
When the samples tn and wk are selected on uniform 

rectilinear grids, with the number of time samples equal 
to the number of frequency samples, L = P ,  and the power 
spectrum is band-limited with the Nyquist frequency, then 
it is easy to design good bandpass filters T k ( w ) .  In par- 
ticular, it is easy to show that the rectangular windowed 
filters suggested in (4.11) for the RCE method are iden- 
tical to the "nonoverlapping" filters suggested in (4.15) 
for the CE method. In fact, this T matrix is orthonormal, 
with T-I = T H  = W / & .  The formula for the CE method 
becomes identical to the triangular Bartlett periodogram 
estimate, and the RCE method is identical to Capon's 
MLM method. 

An interesting interpretation of these separable approx- 
imations results if we transform the separable densities 
qCE( y )  and qRCE( y )  back into densities on the variable x 
= T - l y :  q C E ( x )  and G R C E ( x ) .  The original density p ( x )  
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= N (  0, R, )  has a block Toeplitz covariance matrix R , .  
Using the fact that T - ’  = T H ,  the separable approxima- 
tions can be shown to correspond to 

&(x) = ~ ( 0 ,  T ~ A ~ ~ T )  (5.1) 

4 R C E ( X )  = N ( O ,  THARCET) ( 5 . 2 )  

and 

where ACE and ARCE are block diagonal matrices with di- 
agonal block elements PcE( ak) and PRCE( ak), respec- 
tively. The formulas for the covariance matrices in (5.1) 
are thus in Jacobian normal form. The columns of T H ,  
which are complex exponentials, are the eigenvectors of 
the matrix, and the diagonal elements of the A, which are 
uniformly spaced power spectrum sample estimates, are 
the eigenvalues. The resulting covariance matrices are 
thus different block circulant approximations to the orig- 
inal Toeplitz covariance matrix R,, in which each block 
row is equal to the previous block row rotated right one 
entry. This is particularly fortuitous, since it is well known 
that as the size L of a noncirculant Toeplitz matrix R, goes 
to infinity, the eigenvalues of R, will approach uniformly 
spaced samples of the power spectrum, and the eigenvec- 
tors will approach uniformly spaced complex exponen- 
tials [ lo] ,  [ 1 1 1 .  In the limit as L .--* 00,  we would therefore 
expect both separable approximations to be identical to 
the original model. 

VI. FILTER DESIGN-NONUNIFORM SAMPLING 
Achieving good spectral estimates with nonuniformly 

spaced samples til, unfortunately, is much more difficult 
[12], [13]. The fundamental difficulty is that when the t,, 
are distributed in a grossly nonuniform manner, then it is 
difficult, if not impossible, to design good bandpass filters 
with nonzero coefficients Tk,l ,  located at t,!. Furthermore, 
since the Nyquist theorem does not apply, it is hard to 
select a natural band-limited assumption for the problem, 
and therefore it is not even obvious how to choose the 
frequencies w k .  Another problem is that we will not be 
able to apply our elegant interpretation of these methods 
as circulant matrix approximations to Toeplitz covariance 
matrices, since the nonuniformly sampled covariance ma- 
trix R, will not be Toeplitz. 

We have tried a large number of filter design strategies 
for various nonuniform grids tn,  but have not had much 
success in achieving good results for both the CE and RCE 
methods simultaneously. A key difficulty is that in the 
nonuniform sampling case, the filters in (4.11) are quite 
different from those in (4.15). Experimental evidence 
suggests that the rectangular filters suggested in (4.11) for 
the RCE method work acceptably for RCE, but they lead 
to an ill-conditioned T - ’  matrix and give poor results for 
CE. Similarly, the nonoverlapped filters suggested in 
(4.15) for CE work well for CE, but generally lead to an 
ill-conditioned T matrix and give poor results for RCE. 

Other design strategies we have tried include using 
warped sinc functions to interpolate reasonable bandpass 
filters Tk(  a), and iterative design techniques which iter- 

ate between the time and frequency domains to find a low- 
pass filter shape with nonzero coefficients in the appro- 
priate places. It is possible to find filters which work well 
in either the CE or the RCE methods; for example, the 
nonoverlapping filter designs in (4.15) work well for CE 
and give the same result as Capon’s MLM method. Un- 
fortunately, we could not find filters which work well in 
both methods. This is clearly a topic for further research. 

VII. CONCLUSIONS 
In this paper, we have applied two different cross-en- 

tropy criteria to the power spectrum estimation problem. 
In each case, given L samples of data, we build L linearly 
independent filters to estimate the signal transform at L 
different frequency samples ak. Provided these filters are 
designed to be good bandpass filters with minimal over- 
lap, their outputs will be good estimates of the signal 
transform at ak, and their outputs will be nearly indepen- 
dent Gaussian random variables with covariance related 
to the power spectrum. In our cross-entropy methods, we 
force two different “optimal” separable approximations 
to the actual model, in which these filter outputs are ap- 
proximated as being exactly independent. One of these 
methods yields an estimate of the variance of each filter 
output which is similar to a windowed periodogram esti- 
mate. The other method yields an estimate of the variance 
which is similar to Capon’s MLM spectral estimate. In 
the case of uniformly sampled data, uniform frequency 
samples, and rectangular filters, we get exactly a trian- 
gular window Bartlett spectral estimate and Capon’s MLM 
estimate. The solutions in this case can be viewed as 
building circulant approximations to the original Toeplitz 
covariance matrix R,r. 

The key to getting good spectral estimates from the CE 
and RCE methods is to choose the transform matrix T 
carefully. In designing T ,  we need to keep several goals 
in mind. The samples y k  must be accurate and robust es- 
timates of X( ak), and the variance of each y a  must be an 
accurate estimate of the power spectrum P ( a , ) .  At the 
same time, the y k  must be chosen to be as independent of 
each other as possible, so that R,. is almost block diagonal, 
and so that our separable appro.ximation is valid. 

One difficulty with both methods is that, given L sam- 
ples of x,,, they estimate at most L samples from the power 
spectrum, y,. This appears to be a fundamental statement 
about the achievable spectral resolution: given L data 
samples, only L independent frequency samples can be 
estimated. In many applications, however, it would be 
useful to interpolate between these known samples to get 
a continuous power spectrum estimate at all frequencies. 
A related difficulty is involved in choosing the set of L 
frequencies of interest, ak. If we change only one of these 
frequencies, and then redesign T for the new set, we may 
get somewhat different estimates of the power at all the 
frequencies. 

For the special case of uniform spatial and frequency 
samples with rectangular windows, these issues are easily 
resolved. Fortunately, in this case, the spectral estimation 
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formulas at frequency or; depend only on cor;, and do not 
explicitly refer to the remaining L - 1 samples. Simply 
by replacing ok with a general frequency parameter w, 
we can convert these formulas into a continuous power 
spectrum estimate. 

For nonuniformly sampled data, unfortunately, it is dif- 
ficult to achieve all the design goals for these methods. 
Designing good bandpass filters on a nonuniform grid, for 
example, is often difficult or impossible. The aliasing that 
occurs cannot be simply expressed as a periodic summa- 
tion at the Nyquist frequency, but is a more complex dis- 
tortion of the spectrum. Picking a good set of frequencies 
to force to be independent is difficult. Theorems are 
needed to show that a separable approximation is asymp- 
totically correct in the limit as the size of the nonuni- 
formly sampled, non-Toeplitz covariance matrix R, goes 
to infinity. Perhaps a better method might force selected 
samples of the Laplace transform to be independent ran- 
dom variables, where the samples are not necessarily lo- 
cated on the imaginary axis. Although we have tried sev- 
eral strategies for designing nonuniform filters for grossly 
nonuniformly sampled data, we have been unable to get 
good spectral estimates from both methods with the same 
filter matrix T. The key to good performance, undoubt- 
edly, will be adaptively design the T filter matrix using 
the given covariance matrix R, in a manner similar to that 
used by Capon in deriving MLM. Much work remains to 
be done on modifying this idea for the cross-entropy spec- 
tral estimation techniques. 

APPENDIX A 
DERIVATION OF CE METHOD 

To solve (3.3), let us focus on the ith density q, ( y, ). 
We can rewrite (3.3) as 

+ other terms (A.1)  

where the other terms do not depend on q l ,  and where: 

1% +I(YJ = s logP(Y,({Y, , j  f '1) / = I  fr 4/(Y,) dy,. 
J" 

(A .2 )  

[i i f y  is real 
E =  

( I  i f y  is complex 

and where E [ . I q / ]  is the expectation with respect to den- 
sity q J .  The minimum of H (  q, p )  over qi must occur at 
the value which minimizes (A. I) subject to the constraint 
that q, ( yi) dyi = 1 .  Equation (A. l ) ,  however, is strictly 
convex in qi, and thus it is easy to show that the unique 
minimum is 

4 i ( Y l >  = Ki+i(Yi) (A .5 )  

where Ki is a normalization constant. Formula (A.3) then 
implies that the gi ( yi)  are Gaussian 

All that remains is to solve for the FI values. Note that 
p, = E [  Y, I Q,]. Substituting this into (A.4), multiplying 
both sides by [ R;'],., , and rearranging, gives 

- 

P 

c [R,'l1, (I, - m,,) = 0 f o r i  = 1; - , P. 
J = I  

(A.7)  

Combining terms into matrices and vectors in the obvious 
way, 

R\-'(ji - m,) 0. ('4.8) 

Since RIp1 is assumed to be full rank, 

The U posterior means Fi must therefore exactly equal to 
the a priori means m,,,, and thus the probability density 
estimate qcE which minimizes the Shore-Johnson cross- 
entropy is as given in (3.4). 

APPENDIX B 
CROSSENTROPY FOR THREE UNKNOWNS 

Consider a problem with three real-valued unknowns 
with covariance matrix 

0 PI3 Substituting the formula for the conditional density [de- 
rived from (2.6)] into this and evaluating the expectations R, = Cov (:/) = (: l p ; ) .  (B.1) 

PI3 P23 over y , ,  * * . 1 Y, - 1 7  Y, + I .  . . . ,Y/J  gives 

Then 
log +,(Y,> = -'E(Y, - Ff)HIR;ll,.,(Yf - P I )  + constant 

where 
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Equations (3.6) and (3.12) show that 

Subtracting gives 

P13P23 (B.4) 
1 - d 3  - PI3 

Thus, the difference between the cross-entropy measures 
of the two separable approximations can be arbitrarily 
large in a positive direction. If we had started instead with 
a covariance matrix Ry with the formula in (B.2), then the 
difference would have been arbitrarily large in a negative 
direction. Thus, for three or more unknowns, the value of 
the minimum cross-entropies for the CE and RCE meth- 
ods can be arbitrarily different. 
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