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Abstract-In this work we present a self-organization matching 
approach to accomplish the recognition of handprinted characters 
drawn with thick strokes. This approach is used to flex the unknown 
handprinted character toward matching its object characters gradually. 
The extracted character features used in the self-organization 
matching are center loci, orientation, and major axes of ellipses which 
fit the inked area of the patterns. Simulations provide encouraging 
results using the proposed method. 

Index Terms-Handprinted character recognition, spatial topology 
distance, self-organizing map, neural networks, elastic matching. 

1 INTRODUCTION 
WE briefly review the handprinted character recognition tech- 
niques for thick strokes and discuss their difficulties. The difficul- 
ties are mainly arisen from the various flexible distortions pro- 
duced during handwriting. Robust techniques on the thinning 
method, correlation matching, elastic matching, and distance 
measurement are the main focuses for solving such difficulties. 

Most recognition systems extract features from the skeletons 
which are obtained by applying well thinning algorithms to the 
thick handprinted patterns. The skeletons are always obtained in 
advance to simplify the representation and to reduce the compu- 
tation cost. However, there is no evidence that human eyes per- 
form the same thinning process to the input pattern. The thinning 
process may not be the only choices. Besides, for a character with 
complex structure, it is hard to obtain correct features from its 
skeleton. This is because the thinning process often distorts the 
structure, especially in the intersections, joints, and the ends. There 
are serious spurious pixels always occurred in the intersections, 
turnings and forks. These pixels may mislead the features for fur- 
ther processing. 

So far many kinds of classification methods have been devel- 
oped based on various feature representations. One of the meth- 
ods is the correlation matching method. This method compares 
the unknown input pattern with all the standard template pat- 
terns in database and measures the distances between them ac- 
cording to certain distance measurement. Two major concerns of 
the correlation matching are ’where’ and ‘how‘ to measure the 
distance. For the first concern, the correspondence across feature 
points of those two character patterns must be found. One way 
in finding the correspondence is the elastic matching method[ll, 
[2], 131. The elastic matching is used for matching nonlinearly 
aligned point pairs. It provides a flexible correspondence be- 
tween feature points across two distorted patterns. Since the 
structure of a thinned skeleton could be much distorted, all elas- 
tic matching methods do not satisfactorily solve the topological 
correlation between two sets of feature points. The main prob- 
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lem in applying elastic matching is that they use simple attrib- 
utes for local feature points, such as position and slope informa- 
tions. To solve the second concern we must define distance 
measurement based on this correspondence. All common dis- 
tance measurements cannot be directly applied to a distorted 
structure effectively. 

To overcome the drawbacks of using the skeleton with im- 
proper information on local structure, we propose a robust fea- 
ture representation for the character pattern. The proposed rep- 
resentation is designed to capture the whole local information of 
a stroke to support the global structure of a character. The un- 
known input handprinted pattern is normalized, preprocessed 

and translated into N ellipses as its features, {e,,l 4 i 4 NI. See 
Fig. l a  for these ellipses. Each ellipse is fully extended within the 
local stroke region. The center locus of the ellipse is right on a 
preselected skeleton pixel. These N ellipses are used to represent 
the unknown pattern. The same processes are applied to the M 
standard (template) character patterns, each of which possesses 
cI ellipses, {gik, 1 I k I c,), 1 4 j 4 M .  We express each ellipse e, as a 
four-dimensional (4D) feature vector e, = [x , ,  y,, r,, e,]. These four 
parameters are shown in Fig. lb. The first two real numbers, xi 
and yi, denote the coordinate of the center of the ellipse, and is 

located on a regularly preselected skeleton pixel. The ri denotes 

the length of the major axis, and Oi denotes the orientation of the 
major axis. Each vector denotes a feature point in the 4D space. 
The two parameters Y, and 0, can provide constructive informa- 
tion. The improper information can be effectively removed by 
using these ellipses. Since the width of the stroke depends on the 
pen and provides little information on the structure, we neglect 
the minor axis in the vector. The same representation can also be 
obtained for the ellipse gl, to get the vector g i k .  We will use x 

and c, in the following context to denote the unknown hand- 
printed feature collection and the jth standard template feature col- 
lection respectively, then x = { e ,  1 2 i 4 NI and cj = kjr 1 5 k 2 cjI. 

(a) (b) (C) 

Fig. 1. The ellipses fitted in the stroke. (a) all ellipses in the character 
‘a’ (b) a fitted ellipse and its parameters (c) the feature representations 
for ‘a’. 

Our purpose is to develop a quantitative approach for idenhfylng 
the unknown pattem by using these ellipses. Later we will define a 
distance quantity, D(x, c), to measure the spatial topology distortion 

(or dissimilarity) between the unknown character x and each cr The 
recognition is done by calculating all D(x, c), 1 4 j 4 M and selecting 
the standard character c , which is closest to the unknown character, 

where D(x,cl,) =mini D(x, ci), 1 4 j I M. In order to obtain D(x, cI) 

we need two steps to do this. The first step involves an elastic match- 
ing to find the correspondence across the feature points of these two 
feature collections. A devised self-organizing map (SOM) is presented 
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to accomplish this elastic matching. This SOM preserves the spatial 
topology of a pattern during matching. With this SOM, we can 
achieve better mapping correspondence. The other step involves 
defining a distance measurement based on such correspondence. 

The rest of this correspondence is divided into four sections: 
Section 2 describes the method for obtaining the 4D representa- 
tions of a character pattern. Section 3 contains the details of the 
devised self-organizing map network. We may add constraints to 
the SOM network to improve performance. Simulations are included 
in Section 4. We draw brief conclusions in the last section. 

2 THE 4-D REPRESENTATION 
OF CHARACTER PATTERNS 

All characters must be normalized properly in advance. The features 
of an unknown handprinted pattern are represented by a set of 4D 
vectors {ei = [xi, yi, yi, 4],1 < i < N). These vectors are selected so that 
they could accurately capture all local stroke informations. We now 
show the way to obtain this 4D representation for a pattern. 

We regularly sample seed pixels from the skeleton as the cen- 
ters of the ellipses. We use the Voronoi method to obtain the 
skeleton. These seeds constitute the support of the character pat- 
tern. The seeds’ coordinates are the xi and yi components of the 4D 
vector. The seeds may be regularly selected with various methods. 
We will use either concentric sampling or grid sampling to select 
seeds in this work. 

The number of seeds selected is determined experimentally. 
Large number of seeds will result in heavy computational cost as 
well as redundant features but accurate result. On the other hand, 
too few seeds will not provide enough information about the char- 
acter pattern. Intuitively, the number of skeleton pixels of a char- 
acter should be large when the structure of the character is com- 
plex. Typically we select 100-200 seeds for each Chinese character 
according to the number of strokes of that character. In real appli- 
cations we find it still adequate when the number of seeds is less 
than 100. 

We then grow concentric circles with the center located on 
each seed. When the circle grown from seed i intersects with the 
outer boundary of a stroke at point f, we stop growing. The ra- 
dius of this circle, U, is fixed as half the length of the minor axis 
and we start growing ellipse from this circle by increasing the 
length of major axis. The orientation of the major axis is perpen- 
dicular to it. We grow the ellipse gradually according to the 

ellipse function -.-L- (‘ - )” +A (’ - )” - - 1, where b is half the length 
a2 b2 

of major axis. a is fixed during the growing process while b is 
increased gradually. The orientation of this ellipse may be 
slightly adjusted to obtain a better fitted ellipse within the local 
stroke. Fig. l b  shows a grown ellipse. The growing method is 
similar to the Voronoi process. This ellipse stops growing when 
it is totally confined by the outer boundary of the local stroke. 
The length and orientation of ,the major axis can be obtained to 
give the ri = 2b and 0, components of the 4D vector associated 
with this seed. Note that the orientation of the major axis ei 
should be considered the same as its opposite direction, i.e. ei + z, 
Thus we limit 0, in the range (0, z). 

These 4D representations for a character pattern generated 
by the above algorithm provide a lot of essential feature in- 
formation for our purpose. Fig. I C  depicts these representa- 
tions. The 0, component, which is the orientation of the major 
axis, provides very accurate local stroke orientation informa- 

tion. The Y ,  component indicates the extension and straight- 
ness of a local stroke. Small Y, may indicate the turnings, or 
ends, or joints of strokes. Spurious and noise pixels have 
much smaller Y,. This kind of representations can be used to 
identify different types of strokes in different regions of this 
4D space. 

3 THE DEVISED SOM NETWORK 
We start the elastic matching by devising a modified SOM net- 
work. The formal SOM network consists of neurons which are 
located on the regular grid points in a two dimensional square 
map. The locations of the neurons in the map constitute the neu- 
ron support. When using the SOM network to perform the elas- 
tic matching, each neuron will try to inatch an input feature 
point. When the network converge, a correspondence between 
the input feature patterns and neuron support is obtained. In our 
network, the geometry of the neuron support is not a fixed 
square. Each neuron is located in a seed position on the standard 
character plane. The geometry of the neuron support is roughly 
similar to that of the skeleton of the standard character with less 
pixels. 

The xk and yk components of gjk constitute a plane coordinate 
for locating the kth neuron in the character plane. This means the 
kth neuron of the SOM network is located right at the coordinate 
(xk, yk). The SOM network contains cj neurons. Each standard tem- 
plate character has its own neuron support. An example is shown 
in Fig. 2a. 

(a) (b) 
Fig. 2. T h e  SOM (a) neuron suppor ts  a n d  neighborhood for ‘a’ and ‘b’ 
(b) a n  input pattern e,,,. 

This assignment of the neurons’ positions has the property 
that it incorporates the topology correlation among the strokes 
of the standard template pattern into the neuron support. The 
neighbor neurons provide local and global topological informa- 
tion. This kind of structure information is hard to retain by other 
methods. 

The learning process of the standard SOM is also modified to 
cope with the topological receptive field requirement. Each neuron 
in the neuron support contains four synapses (or weights) which 
are initialized with the values of the corresponding 4D feature 
vector. We use wjk(t) to denote the weights of the kth neuron in the 
neuron support of the jth standard character pattern at learning 
time t .  We set wjk(0) = gjk.  For a set of unknown handprinted 

pattern features, {e ,  I1 5 n 5 NI, the SOM network performs the 
elastic matching by iteratively applying the following algorithm: 

1) Randomly select an en, from the set x = {e ,  I 1 < M 
2) Find the neuron k“ where 

NI 

lien, -Wik .  ( f ) l j  = minl<k<c, lien, -Wik (t)ll 

3) Update the weights w,,(t) by adding a factor 

Authorized licensed use limited to: National Taiwan University. Downloaded on March 18, 2009 at 05:22 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 9, SEPTEMBER 1996 943 

Awl,(t) = a[eE. -wlx(f)], fork€ U,,(t) (1) 

t = t + At and return to l(experimental1y 5 is 

where T is a predetermined total learning iteration. In the algo- 
rithm, U,,(t) is the neighborhood of neuron k* at time t and a is 
the learning rate. The network converges by iteratively applying 
this algorithm with decreasing learning rate a and neighborhood 

After the evolution at time T, each input pattem e, is matched to a 
neuron k. This is not a precise matching, i.e., e, = w,(n. From the 
topology preserving property of the SOM [41, this approximation can 
be considered as an elastic matching since the neighboring points of 

the vector e, are also within the proximity of the neuron support. 
Generally Uk* is defined as the set of neurons within a square or 

circle with center at neuron k . This simple selection is due to the lack 
of knowledge about the correlation among input feature points. The 
neighborhood is defined as all the neurons within an scaled ellipse 
which has center at neuron k". This elliptic neighborhood is geomet- 

rically similar to the input ellipse e,. in terms of r,. and On,. We use 
this scaled ellipse as the boundary of neighborhood U,*. This is 
shown in Fig. 2. The ellipse at the correct position of a similar char- 
acter pattem will allow more neurons being selected as neighbors. 
The local topology information of the input character pattern is en- 
forced by this neighborhood selection. The scaling factor of the el- 
lipse decreases as the convergence progress. 

Two examples are shown in Fig. 3. Fig. 3a shows the evolution 
when the input character pattern and standard template pattern 
are both 'a'. Fig. 3b displays the case that the input handprinted 
character pattern is 'a' and the template pattern is 'b'. The circles 
denote the neuron support and the squares denote the conver- 
gence result. We can easily observe that both neuron supports 
effectively match this input character pattern. The dashed lines 
connecting circles and squares show the matching correspondence 
during evolution. 

4) if t < T, 
within 50 - 100). 

U,, . 

t = O  t = T  

(b) 
Fig. 3. The evolution of the matching using SOM. 

With this correspondence, we can easily define a proper dis- 
tance measurement which measures the similarity between the 
input feature pattern and the neuron support. The distance meas- 
urement is defined as 

where wik is a 2D vector which contains the x, and yt components 

of wlk Remember that the neuron support is initialized by the 4D 
features of the standard template pattern, so w:, (0) represents the 

geometric shape of the Ith standard character. After time T, the 
weights of the neuron support contain values of matched input 
patterns. The distance is just the mean difference of the neurons' 
locations before and after elastic stretching. The two parameters r, 
and 6, are designed to assist the stretching. 

The unknown character pattern is classified as the standard 
character pattern f' if 

(3) 

The algorithm can be further improved by adding other constraints 
to isolate the unconnected strokes of the standard character. Such 
constraints are applied when the neurons are close in geometrical 
distance, but they are in separated strokes. This can be seen in Fig. 4. 
The neurons separated by a constraint line should not be considered 
as linked neighbors even if they are close geometrically. 

............ . ... .. 

constraint 
~ omitted boundary 

constraint 

Fig. 4. Constraint to isolate the unconnected strokes. 

We constructed a constraint set for each standard character to 
separate unconnected strokes in the standard character pattern. 
This constraint prevents the neurons in unconnected strokes being 
updated even they are close together and within the scaled 
ellipse's range. A proper constraint set can be obtained by finding 
the Voronoi boundary of the standard character strokes. An 
example of the Voronoi boundary is also shown in Fig. 4. The 
outer most boundary is omitted in our case. If two neurons are 
located at different sides of a Voronoi boundary (or more than one 
boundary), they cannot be considered as neighbors. 

4 SIMULATIONS 
In this section we give detailed simulations and compare the 
performance of the methods with and without constraints. The 
input handprinted character patterns are transformed to their 
4D and 2D representations. The input patterns are randomly 
selected from a standard database.' There are total 62 character 
classes and we select 50 input patterns for each class. We 
manually discard those input patterns with poor resolution or 
cannot be easily verified by humans. Each character may have 
several standard template patterns. Here we use only one stan- 
dard template for each character to simplify the simulations. 
Using grammars to improve the potential candidates is also 
omitted in our simulations. The performance is listed in Table 
1. In this table we name the method in this work as spatial to- 
pology distance method in 4-dimensional space or STD(4D) 

1. NIST Special Database 19. 
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method. The C-STD(4D) means the STD(4D) method with con- 
straint. There is a similar method [5] which does not contain 
the Y, and 0, parameters. We name the method in the reference 
[51 as STD(2D). In Table 1, the rejection rate is calculated using 
the credit threshold for each standard character pattern. Ap- 
parently the duration of the recognition process using 4D fea- 
tures are twice longer than that using 2D features. 

TABLE 1 
THEPERFORMANCE 

C-STD(4D) 3.6 sec 
C-STD 2D 1.9 sec 

The accumulated deformation vectors after elastic matchings 
are shown in Fig. 5. The total 50 handprinted character patterns 'a' 
are presented to the neuron supports of standard character pat- 
terns 'a' and 'b' separately. The deformation vectors are drawn 
with line segments and are overlaid to obtain the figure. Long line 
segments denote serious deformations and will lie across large 
area. By the density of the overlaid deformation vectors we can 
easily evaluate the correctness of matching. The high density areas 
indicate a large amount of overlaid lines. In Fig. 5a the hand- 
printed character pattern 'a' is presented to the neuron support of 
the standard character pattern 'a'. In Fig. 5b handprinted character 
a is presented to neuron support of the standard character pattern 
'b'. It is obvious that the area of high density in (b) is much larger 
than that in (a). This suggests that (b) contains many long line seg- 
ments and is resulted from very bad distortion matching for wrong 
topology. In opposite, the high density area in Fig. 5a is localized 
along the contour of the neuron support 'a'. In this case, the standard 
character pattern 'a' tends to be the choice of the classification. 

I I '  

serve that there is a gap m between the "mum of the correct 
matchings and the "um of the incorrect matchings The credit 
threshold is in the middle of t h  gap. Tlus suggests the handprmted 
character pattern can always be classified The simulations provide a 
sound support for the developlng of the 4D representations and the 
proposed SOM method 

2, bd 
I 

Fig. 6. The distributions of distance. 

5 DISCUSSIONS 
As for the biological interpretations of our method, the ellipses are 
very similar to the 'logons' proposed by D. Gabor [6], [7]. Logons are 
two-dimensional Gaussian-weighted sinusoids which are used as 
the basis functions for analyzing image signals. The logon is a natu- 
ral choice for use in image analysis since its compatibility with hu- 
man visual system [SI and the projection of a logon is a scaled ellipse 
in the plane. This provides the biologically plausible foundations for 
the 4D features. Furthermore, the receptive fields of human eyes' 
visual cells are generally ellipses. So these ellipses can be considered 
as the receptive fields of certain pseudo visual cells. 

The ellipse with long major axis is also similar to the directional 
bar excitation in the brain [9]. The ellipses with long yi configure 
the main structure of a character. Our method may provide bases 
for the perception of a character structure in our visual system. For 
complicated images, such as color images, the ellipses for the 
green, blue, red color can be the bases for extracting sophisticated 
features. Our method can be extended to capture other intra- 
ellipse and even inter-ellipse information. 

The proposed classification methods have been used to develop 
a prototype of automatic mailing address recognition system. This 
system recognizes isolated handprinted character patterns. The 
character patterns are written within formatted boxes to simplify 
the segmentation. Grammar rules of the addresses is incorporated 
into the recognition process to improve the accuracy and reduce 
the search. Fig. 7a shows the standard templates for the character 
'a' used in the system. Fig. 7b shows several typical handprinted 
characters which can be classified by the proposed method. 

(a) (b) 
Fig 5. The accumulated deformation vectors of neuron supports. 

The correctness of ths  classlficafion can be further ensured by m- 
veshgatmg the probability distribution of distances measured after 
many various m a t h g s .  The distribution of the measured distances 
is shown in Fig. 6 For each standard character pattern we show the 
distance distribution for both correct and mcorrect mput handprmted 
character pattems. Here a 'correct matchg '  is by p e r f o m g  elasbc 
matching between the handprmted and standard character patterns of 
the same class, e.g., handprmted character pattern and standard char- 
acter patterns are both 'A'. On the other hand, 'incorrect matching' is 

column of line segments for each standard character depicts the dis- 
tance distribuhon of correct matchings. The right column depicts the 
distribution of incorrect matchings The length of each horlzontal h e  
segment dlsplays the probabdity distribuhon of the distance We ob- 

matched between pattems of different classes, e.g , 'A' and 'B. The left 03) 
Fig. 7. (a) Templates for character 'a'. (b) handprinted characters 
which can be classlfled. 
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Document Image Decoding 
by Heuristic Search 

Anthony C. Kam and Gary E. Kopec, Member, IEEE 

Abstract-This correspondence describes an approach to reducing 
the computational cost of document image decoding by viewing it as a 
heuristic search problem. The kernel of the approach is a modified 
dynamic programming (DP) algorithm, called the iterated complete 
path (ICP) algorithm, that is intended for use with separable source 
models. A set of heuristic functions are presented for decoding 
formatted text with ICP. Speedups of 3-25 over DP have been 
observed when decoding text columns and telephone yellow pages 
using ICP and the proposed heuristics. 

Index Terms-Document image decoding, Markov models, heuristic 
search, dynamic programming. 

1 INTRODUCTION 
DOCUMENT image decoding (DID) is an approach to document rec- 
ognition that is based on an explicit communication theory view of 
the processes of document creation, transmission, and recognition 
121. In the DID model, a stochastic message source selects a finite string 
M from a set of candidate strings according to a prior probability 
distribution. An imager converts the message into an ideal binary 
image Q. A channel maps the ideal image into an observed image Z 
by introducing distortions due to printing and scanning, such as 
skew, blur, and additive noise. Finally, a decoder receives image Z 
and produces an estimate M of the original message according to a 
maximum a posteriori (MAP) decision criterion. 

Much of the recent work in DID has focussed on a class of 
combined source/imager models called separable Markov sources 
[4]. Loosely, a separable source is one that may be factored into a 
product of one-dimensional models that represent horizontal and 
vertical structure, respectively. MAP decoding of an image with 
respect to a separable model can be implemented using a nested 
dynamic programming (DP) algorithm called the separable Viterbi 
algorithm [41. 

The time complexity of separable Viterbi decoding is O(B, X H 
x W), where B, is the number of branches in the horizontal models 
and H and Ware the image height and width, respectively, in pix- 
els. The factor B, x W represents the cost of using the horizontal 
models to decode a single image row while the factor H arises 
because decoding is repeated at every row. Although the compu- 
tation grows only linearly with the number of image pixels, in 
absolute terms it can be prohibitive. For example, decoding an 
8.5 in x 11 in image scanned at 300 ppi using a simple text column 
model requires about 40 minutes. Thus, methods for decreasing the 
required computation are essential if DID is to become a widely- 
used approach to document image analysis. 

The basic source of complexity in image decoding is the need to 
decode every image row. If the horizontal models were run only 
along the actual text baselines, the cost would decrease by the 
factor f, where L is the number of text lines. For example, with 
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