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Abstract. We use the “magic TV” network with the maximum a
posteriori (MAP) criterion to restore a space-dependent blurred im-
age. This network provides a unique topological invariance mecha-
nism that facilitates the identification of such space-dependent blur.
Instead of using parametric modeling of the underlying blurred im-
age, we use this mechanism to accomplish the restoration. The res-
toration is reached by a self-organizing evolution in the network,
where the weight matrices are adapted to approximate the blur func-
tions. The MAP criterion is used to indicate the goodness of the
approximation and to direct the evolution of the network. © 1998
SPIE and IS&T. [S1017-9909(98)01001-0]

1 Introduction

Restoration of a blurred image can be solved by removing
the blurs, which are usually caused by an out-of-focus cam-
era, linear motion, and the atmospheric turbulence, from

the observed image. Blur identification methods have been

developed to estimate the unknown blur function in the
blurring model, where it is defined as the convolution of an
original image with a point spread functig®SH plus an
observation noise. Some methods have focused on simpl
blurs}? Many restoration methods based on the parametric
techniques model the original image as a 2-D autoregres
sive moving averagéARMA) process and impose certain
statistical assumptions on the imagguch methods formu-
lated the blur identification problem into the parameter es-

also taken into account for blur identification. Maximizing
entropy subject to these constraints gives a solution where
the PSF tends to satisfy priori given properties.

We study space-dependent blur functions that also obey
the preceding basic constraints. We use a self-organizing
networK following the idea of the “magic TV" and use
the maximuma posteriori (MAP) criterion to evolve the
network toward the solution. The “magic TV” provides a
natural mechanism to utilize the invariant hidden topology
in the image data. All blur¢candidatesthat meet this in-
variant topology are learned in the network. This criterion
guides the network toward the solution.

In the following two sections, we briefly review the im-
age and the blur model. The self-organizing network and
the MAP criterion are also introduced. Following the crite-
rion, we derive the training rule for the network to reach the
unknown blur functions. Applications of the network are
presented in Sec. 4. The SNR improvement will be used to
measure the restoration performance. Based on this mea-

sure, we make comparisons between the proposed approach

and other methods, including inverse filters, Wiener filters,
constrained least squares, Kalman filters, and constrained
adaptive restoration.

2 Network and the MAP Criterion

timation problem. The results are widely diverse according We devise a self-organizing network to learn the blur func-
to those assumptions made about the model and the imagdions. The self-organizing network containg =NXxN

Nonparametric metho8i° that employ certain criteria and

neurons arranged in a 2-D plane. Each neuror. /", has

solve the restoration problem under basic constraints on théts own weight matrixwW;, W;e M. Each weight ma-

PSF have achieved different results.
Several potential methof® employ the entropy-related

trix corresponds to a possible solution for an unknown blur

matrix. For blurred imageg,xse.%2,.2°CR™, the corre-

criteria to solve the blur identification problem. In Ref. 7, ghonding estimated image data yse 7, 7/CR™, will be

the unknown blur function is considered as a probability
density function and is solved under &spriori knowledge.

Since the PSF serves as a density function, the constraints

are made to the PSF, for example, nonnegativity, finite sup
port, and energy preserving. The solution must obey thes

= We Ixs.

restored by the best-matching weight mat,,ce./",
using

oY)

constraints. In Ref. 8, the probability density of the PSF is The components in the vectag are composed of the data
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in the m;Xm, image matrixXs, m;-my,=m, from one
rectangular region of the blurred image, i.e.,

Xs=vec(X,) in lexicographically ordered forrtf, where the
vec(Xs) transforms the matriXg into a vector by stacking
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the columns ofXg one underneath the other. Solving the
unknown blur matriX\V, in Eq. (1) is an inverse problem of
the observation process

‘ Ys
Xs=Fgys+Dg, 2 =
wherey; is the original image datée;, is the real space-
dependent blur matrix, anl; is the noise vector. In Eq.
(2), each row ofF corresponds to a PSF. The datamay

be contaminated by both the blur and the noise. We attempt i facion o gy
to solve ays, which is close toys, Ys=Ys, from Eq.(1).
The object is to solve the best-matching matfk and
to derive the original undegraded image dgiarom the AN
observedxs. The difficulty with it is lack of knowledge /%' FON
about both the unknown blur matrix and the original image S o
datal Additional constraints are needed in recovering the ﬂ /z
image. The basic constraints on the PSF can be accom- X5 v
plished easily by limiting and normalizing ea®M; prop- A

erly. The probability densities for all the possible candi-
dates W;, ie./’, can be estimated by counting the
excitation frequencies for all neurons. With these densitiesFig- 1 (a) The concept of the “magic TV" for image restoration and
and the noise model of qu), we can construct an MAP (b) the weight matrices in the self-organizing network.
criterion.

The network is inspired by the “magic TV.® It pro-
vides a platform and mechanism for exploring the hidden
topology under severe transformation. The topological in- (W|xg) = POWi) p(xe| W) o< p(W,) p(xJW,) (4)
variance between the input image and the mapped image ig nes p(Xs) : s
the major feature of this mechanism. We utilize this invari-
ance to assist the restoration. This network is devised as &0 use this criterion, both the conditional probability
self-organized mapping system, which co_uld identify blur p(xJW,) and thea priori probability p(W;) should be ob-
features from the input, i.e., the blurred image data. Ac- tained in advance. The probabilib(x) is assumed to be a
cording to the “magic TV,” a point source that is ran- known constant and is omitted from our approach.

To determine the priori probability p(W,;), we count
i b he i 4 th I he imolici She excitationgnumber of times of best-matchinfpr each
in between the input and the output plane. The implicit neuroni, when a batch of inpux,} are fed to the network.

zfﬂgg%nogd;_:j Ofla':]:saicga:ggnorqoﬁﬁgtr sg(;“'rrdciiztecsnﬂ?:These excitations are accumulated for each neuron. We
9 P 9 : then normalize these excitation frequencies. The normal-

excitations of the corresponding features can also be, ~ .

aligned in a similar topology on the network plane through Z€d frequenciR; is then used as an estimatp(\W,).

a self-organizing schenisee Fig. 1. The noisy parts of the ~Assume thez noise in Ed2) is white, zero-mean, and

blur functions do not have such hidden topology. They will With variancesy,. With ay; estimated by Eq(1), the con-

be screened out by the “magic TV mechanism. Thus, we ditional probability p(xs|W;) in Eq. (4) can be formulated

can regularly array these neurons on a rectangular planes

with their weight matrices representirigesponding tbthe

blur featur_es. o  p(xd Wy cexd —E(W;)], (5)
To achieve statistic average, we use the MAP criterion

as the distance measure instead of the linear distance useghere

in the formal self-organizatiohThe MAP criterion is used

to select the best-matching neuroand to derive the learn-

)= (x.— WUt —W.V
ing rule accordingly to evolve the weights toward the un- E(Wi) = (Xs—Wiys) D(Xs—Wiys), (6)
known blur functions. Given a blurred image datg we and
plan to determine aV. that maximizes thea posteriori
probability. The best-matching neuraramong all neurons ,
is determined by D=diag l/aﬁ,l/tfﬁ,...,l/o’ﬁ). (7)
= W, .
carg E,‘,’j".‘{p( o)} ® 3 Synapse Adaptation in the Network

With the MAP criterion, we derive the adaptation rules for
According to the Bayesian analysis, tlze posteriori the weight matrices in a generalized self-organization
probability of W; givenxs, p(Wj|xs), can be written in the  sensé? First, we determine the best-matching neucdor
form each blurred input date; using the formula
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c=arg rT:aX{p(Wi|Xs)}
=arg rr?ax{p(xsl Wi p(Wp)}
=arg max{ext - E(W)IR}
()

=arg min{E(Wi)—Iog(lii)}.

The best-matching neuran which has the minimum value
of E(W;) —log(R), will be further used. We then substitute
this W, in Eq. (1) to estimate a temporary value fg.

Then we tune the weight matrices to approach the pos-
sible blur matrices. The synapse adaptation rules are de-

rived by reducingE(W,) —log(R,) in Eg. (8) with respect
to the tuning ofW,.. We apply the steep descent method to
updateW,. The weight matrices are adapted by

WgeW: W+ akD- (Xs— chs)yts
=W+ a'k(Xs— chs) S\/ts ) €)

for the best-matching neuroty where @ and o’ are the
adaptation rates, ankl. is the scale factor for the adapta-
tion, and by

W= W, + a’ki(Xs—Wi)A/s)g/ts (10
~Wi+ a' ki(We— W) ye
~ Wi+ o’ hg(We— W), (0

forallie.7Z(c), i#c, where7(c) is the effective region of
the neighborhood functiorh; in the self-organization.
Since the diagonal componentBfis an unknown constant
in Egs.(9) and(11), aD can be set to a new adaptation rate
a'. This unknown constant will not affect the choice of
in Eq. (8). From here on we setﬁzl.

The value ofk in Eq. (9) can be intuitively set to

1

kcE 7, (12)
O'Xs

whereo? is the variance of the data. This means that

XS
we update Eq(9) safely in a smooth region and carefully in

a rough region. Experiments show that this is a good as-

signment.

The valuek; is introduced to scale the adaptation\Wf
in Eq. (11). If the distance between neuroand neurorct is
large, the weight matriXV; could not be a candidate of the
current blur function. The scaling of the weight update is

needed for accurate mapping. We can set the neighborhood

function h; to keep the relationship betwe&pandk; and
use it in the adaptation rule of E(QL1) for W;, i#c. This

neighborhood function is assigned to a general lateral inter-

action function in formal self-organization. Furthermore,

this adaptation rule has less computation load than that of

the rule in Eq.(10).
After the adaptation by Egg9) and (11), the weight

matrices are modified to satisfy the basic constraints on the
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Fig. 2 System chart for self-organization.

PSF. By the self-organizing learning, various blur functions
in the rows are obtained for the space-dependent identifica-
tion.

In summary, there are six steps in one training iteration:

1. Find the best-matching neuranby Eg. (8) for a
given input datax;.

2. Estimate the restored image dgtafrom W, and X,

by Eq.(1).

. Tune the values of the training parameterandh.

. Adjust the weight matri3V; by Eq. (9).

5. Adjust the weight matricedV,, ie.7(c), i#c, by
Eq. (11).

. Modify the weight matrices with respect to the basic
constraints on the PSF, nonnegativity and energy pre-
serving.

»

Figure 2 shows a flow chart in an iteration.

4  Simulation Results

We now apply this approach to restore the blurred real
images in presence or absence of noise. The simulations are
carried out for a scanned 844 8-bit monochrome image.
The original image in absence of noise is shown in Fig. 3.
The image in Fig. 3 are sampled from the picture of
“Lena.” An image degraded by additive white Gaussian
noise with 20-dB signal-to-noise rati®NR) is shown in
Figure 4. The SNR in the noisy image is defined by

Fig. 3 Original 64X 64 8-bit image for simulations.
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Fig. 4 Image of Fig. 3 degraded by white Gaussian noise at 20 dB
SNR.

0_2

SNR=10 logyp —2, (13)
Un

wherecr)z(S is the variance of the blurred image and aﬁ is

the variance of the white Gaussian noise.

In the simulation network, there are X86 neurons
with 16X 16X 121X 121 weights, each neuron has a 121
X 121-dimensional weight matrix, which resembles the
121X 121 blur feature matrix. In this casl,=16 andm;
=m,=11. The initial weight matrices are set to variously

(@)

(b)

Fig. 6 (a) Image of Fig. 3 degraded by 7 X7 blur functions and (b)
restored image for the degraded image in (a). The value of Agyg IS
3.3094.

Since the true PSFs are totally unknown, the initial
weight matricesW, can be set to normalized random val-
ues. With such initialization, the network will require more
iterations to reach the optimal solution. To ease the conver-
gence, we set the initial weight matrices to various normal-
ized 2-D Gaussian-shaped functions. Before the training,
each neuron has a normalized 2-D Gaussian function with
random standard deviationrf,05). When the value ¢2
+02)*2 is vary large, the blur function will be a uniform
function in the support area. Conversely, when the value is
small, the blue function will be similar to an impulse func-
tion. All trained results are not significantly affected by
such initialization.

The blurred images and the restored images are shown
in Figs. 5 to 9. In parta) of each figure, the blurred image
is generated using different blur matrices where each row is
assigned to a normalized 2-D “noisy” Gaussian function
where the noise is set to white and random with a strength

normalized 2-D Gaussian-shaped functions. The total itera-of 30-dB SNR. The images from Fig. 3 degraded by 9

tions are set to 500. In the training, the adaptation setes

kept constant in 0.1 and the effective region of the neigh-

borhood functionh shrinks gradually. All simulations are

X9 and 7X 7 blur functions are shown in Fig(& and Fig.
6(a), respectively. The image of Fig. 3 degraded by 7
blur functions in presence of noise at 30 dB SNR is shown

executed on a personal computer with a 200-MHz process+in Fig. 7(a). The image of Fig. 4 degraded byx7 blur

ing clock rate.

Without any information about the true PSF, assump-

functions is shown in Fig. @. The image of Fig. 4 de-
graded by & 7 blur functions in presence of noise at 30 dB

tions on the blur function are made. We assume that theSNR is shown in Fig. @). Part(b) of each figure shows the

support of the blur functiolw; is larger than that of the true
PSF. The proper support size f&/; can be decided from
experience.

(b)
Fig. 5 (a) Image of Fig. 3 degraded by 9x9 blur functions and (b)

restored image for the degraded image in (a). The value of Agyg is
9.8068.

(a)

restored image. The average computation time costs 1.17 h
for each case. The learning curves for the five cases are
shown in Figs. 1) to 10e€). The averaged values of

(@) (b)

Fig. 7 (a) Image of Fig. 3 degraded by 7 X7 blur functions in pres-
ence of white Gaussian noise at 30 dB SNR and (b) restored image
for the degraded image in (a). The value of Ag\g is 3.2535.

Journal of Electronic Imaging / January 1998/ Vol. 7(1)/89
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(b) (@) (b)

Fig. 8 (a) Image of Fig. 4 degraded by 7 X7 blur functions and (b) Fig. 9 (a) Image of Fig. 4 degraded by 7 X7 blur functions in pres-
restored image for the degraded image in (a). The value of Agyg is ence of white Gaussian noise at 30 dB SNR and (b) restored image
7.6621. for the degraded image in (a). The value of Ag\g is 5.7993.

E(W,) for all x5 are plotted to display the learning behav- rate, and the neighborhood function. In all our simulations,

ior. the weight matrices are always converged and approximate
The convergence rate is related to the setup of the train-the true blur functions. The learning curves are always de-

ing parameters, including the total iterations, the adaptationclined and stabilized after certain iterations. During each

E(We) ) ) ) ! E(We),
2501 1 250
200t 1 200
150 1 150
100 1 100
50 1 50
0 i - Y ) pamtt 0 . . ooty 7 A
100 200 300 400 500t 100 200 300 400 500t
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200
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100}
501
0 n " 2 1 1 I
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(¢ (d)
E(We
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100
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100 200 300 400 500t
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Fig. 10 The learning curves for the five cases in Figs. 5 to 9, respectively.
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Fig. 11 Original 256 256 8-bit “Cameraman” image.

Fig. 12 Image of Fig. 11 degraded by white Gaussian noise at 30
dB SNR.

(@)

Fig. 13 (a) Image of Fig. 11 degraded by 5X5 blur functions and
(b) restored image for the degraded image in (a). The value of Ag\g
is 8.4989.

(a) (b)

Fig. 14 (a) Image of Fig. 11 degraded by 3 X3 blur functions and
(b) restored image for the degraded image in (a). The value of Ag\g
is 4.0347.

iteration, we calculate the averaged value€¢(¥W.) over
all sample input to indicate the goodness of the training
results. The convergence rate is mainly related to the vari-
ance of the image data and the initialization of the weight
matrices.

SNR improvement is a popular measurement for the res-
toration performance. SNR improvement is defined as

Sdlys— x4
ASNR: 10 IOQ_O m, (14)

wherel|ly;— X4| measures the distance between the sampled
blurred dataxs and its corresponding original image data
yYs, and|lys—y4| measures the distance between the re-
stored datay, and the original image data . In the simu-
lations, SNR improvements for the five cases are 9.8068,
3.3094, 3.2535, 7.6621, and 5.7993, respectively.

To compare with other methods, this approach is tested
with the standard 256256 8-bit monochrome cameraman
image(Fig. 11). Figure 12 shows the “Cameraman” image
degraded by additive white noise at 30 dB SNR. There are
16X 16 neurons in the network. Each neuron has a 49
X 49-dimensional weight matrix. In this casd=16 and
m;=m,=7. The blurred images and the restored images
are displayed in Figs. 13 to 17. The noise in the 2-D Gauss-
ian blur function is set to white and random with strength
40 dB SNR. The images from Fig. 11 degraded by
blur functions and X3 blur functions are shown in Fig.
13(a) and 14a), respectively. The image of Fig. 11 de-
graded by X 3 blur functions in presence of noise at 40 dB
SNR is shown in Fig. 1&). The image of Fig. 12 degraded
by 3X 3 blur functions is shown in Fig. 16). The image of
Fig. 12 degraded by 83 blur functions in presence of
noise at 40 dB SNR is shown in Fig. &). Part(b) of each
figure shows the restored image. The SNR improvements
for the five cases are 8.4989, 4.0347, 4.0285, 4.1148, and
4.0756, respectively. The average computation time costs
3.25 h for each case.

Comparisons are also made with the results produced
using other existing methods. These methods include in-
verse filters, Wiener filters, constrained least squares, Kal-
man filters, and constrained adaptive restoratiolhese
are classical deblurring methods. The types of blur func-
tions are knowra priori in these methods. The SNR im-
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(a) (b)

Fig. 15 (a) Image of Fig. 11 degraded by 3X3 blur functions in
presence of white Gaussian noise at 40 dB SNR and (b) restored
image for the degraded image in (a). The value of Agyg is 4.0285.

(b)

Fig. 16 (a) Image of Fig. 12 degraded by 3 X3 blur functions and
(b) restored image for the degraded image in (a). The value of Agyg
is 4.1148.

(a) (b)

Fig. 17 (a) Image of Fig. 12 degraded by 3X3 blur functions in
presence of white Gaussian noise at 40 dB SNR and (b) restored
image for the degraded image in (a). The value of Ag\g is 4.0756.

Table 1 Restoration performance for different methods.*3

Methods Agnr
Inverse Filters —16.5
Wiener Filters 5.9
Constrained Least Squares 6.2
Kalman filters 5.6
Constrained Adaptive Restoration 8.1
Our Approach 4.95

92/ Journal of Electronic Imaging / January 1998/ Vol. 7(1)

provements of the blurred cameraman image for each
method are listed in Table 1 for comparisons.

From the simulation results, this approach is robust to
the noise in either the observation process, the blur func-
tion, or the image data. Comparing the restored results in
Fig. 6(b) with those in Figs. @) and 8b), we find that the
noise in the observation procetst 30 dB SNR causes
more difficulty in restoration than the noise in the image
data(at 20 dB SNR. Furthermore, this approach has larger
SNR improvements for the cases without the observation
noise.

In deriving the learning rule, we attempt to reduce the
observation noise. The best-matching neurdar input xs
is the neuron that has the minimua{W,) —log(R) value.
This E(W,) is the distance betweeq andW,y,. Minimiz-
ing thisE(W,;) will reduce the observation noise optimally.
The neuron with the minimunk(W,;) value may not win
the competition. Hence the learning rule is not the optimal
rule for reducing the observation noise. The vaRg
which is used to estimate tteepriori probability p(W;), is
introduced in the terniE(W,;) —log(R) by Eg. (4). ThisR,
makes the degraded image with the observation noise dif-

ficult to restored. We may prefer the neurons with equal
probabilities to improve the performance.
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