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Abstract. We use the ‘‘magic TV’’ network with the maximum a
posteriori (MAP) criterion to restore a space-dependent blurred im-
age. This network provides a unique topological invariance mecha-
nism that facilitates the identification of such space-dependent blur.
Instead of using parametric modeling of the underlying blurred im-
age, we use this mechanism to accomplish the restoration. The res-
toration is reached by a self-organizing evolution in the network,
where the weight matrices are adapted to approximate the blur func-
tions. The MAP criterion is used to indicate the goodness of the
approximation and to direct the evolution of the network. © 1998
SPIE and IS&T. [S1017-9909(98)01001-0]

1 Introduction

Restoration of a blurred image can be solved by remov
the blurs, which are usually caused by an out-of-focus ca
era, linear motion, and the atmospheric turbulence, fr
the observed image. Blur identification methods have b
developed to estimate the unknown blur function in t
blurring model, where it is defined as the convolution of
original image with a point spread function~PSF! plus an
observation noise. Some methods have focused on sim
blurs.1,2 Many restoration methods based on the parame
techniques model the original image as a 2-D autoreg
sive moving average~ARMA ! process and impose certa
statistical assumptions on the image.3 Such methods formu
lated the blur identification problem into the parameter
timation problem. The results are widely diverse accord
to those assumptions made about the model and the im
Nonparametric methods4–6 that employ certain criteria an
solve the restoration problem under basic constraints on
PSF have achieved different results.

Several potential methods7,8 employ the entropy-related
criteria to solve the blur identification problem. In Ref.
the unknown blur function is considered as a probabi
density function and is solved under itsa priori knowledge.
Since the PSF serves as a density function, the constr
are made to the PSF, for example, nonnegativity, finite s
port, and energy preserving. The solution must obey th
constraints. In Ref. 8, the probability density of the PSF
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also taken into account for blur identification. Maximizin
entropy subject to these constraints gives a solution wh
the PSF tends to satisfya priori given properties.

We study space-dependent blur functions that also o
the preceding basic constraints. We use a self-organiz
network9 following the idea of the ‘‘magic TV’’ and use
the maximuma posteriori ~MAP! criterion to evolve the
network toward the solution. The ‘‘magic TV’’ provides
natural mechanism to utilize the invariant hidden topolo
in the image data. All blurs~candidates! that meet this in-
variant topology are learned in the network. This criteri
guides the network toward the solution.

In the following two sections, we briefly review the im
age and the blur model. The self-organizing network a
the MAP criterion are also introduced. Following the crit
rion, we derive the training rule for the network to reach t
unknown blur functions. Applications of the network a
presented in Sec. 4. The SNR improvement will be used
measure the restoration performance. Based on this m
sure, we make comparisons between the proposed appr
and other methods, including inverse filters, Wiener filte
constrained least squares, Kalman filters, and constra
adaptive restoration.

2 Network and the MAP Criterion

We devise a self-organizing network to learn the blur fun
tions. The self-organizing network containsN 5N3N
neurons arranged in a 2-D plane. Each neuroni, iPN , has
its own weight matrixWi , WiPMm3m . Each weight ma-
trix corresponds to a possible solution for an unknown b
matrix. For blurred imagexs ,xsPX ,X ,Rm, the corre-
sponding estimated image dataŷs ,ŷsPY ,Y,Rm, will be
restored by the best-matching weight matrixWc ,cPN ,
using

ŷs5Wc
21xs . ~1!

The components in the vectorxs are composed of the dat
in the m13m2 image matrixXs , m1•m25m, from one
rectangular region of the blurred image, i.e
xs[vec(Xs) in lexicographically ordered form,10 where the
vec(Xs) transforms the matrixXs into a vector by stacking

;
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Maximum a posteriori restoration
the columns ofXs one underneath the other. Solving th
unknown blur matrixWc in Eq. ~1! is an inverse problem o
the observation process

xs5Fsys1bs , ~2!

whereys is the original image data,Fs is the real space
dependent blur matrix, andbs is the noise vector. In Eq
~2!, each row ofFs corresponds to a PSF. The dataxs may
be contaminated by both the blur and the noise. We atte
to solve aŷs , which is close toys , ŷs.ys , from Eq. ~1!.

The object is to solve the best-matching matrixWc and
to derive the original undegraded image datays from the
observedxs . The difficulty with it is lack of knowledge
about both the unknown blur matrix and the original ima
data.1 Additional constraints are needed in recovering
image. The basic constraints on the PSF can be acc
plished easily by limiting and normalizing eachWi prop-
erly. The probability densities for all the possible can
dates Wi , iPN , can be estimated by counting th
excitation frequencies for all neurons. With these densi
and the noise model of Eq.~2!, we can construct an MAP
criterion.

The network is inspired by the ‘‘magic TV.’’9 It pro-
vides a platform and mechanism for exploring the hidd
topology under severe transformation. The topological
variance between the input image and the mapped imag
the major feature of this mechanism. We utilize this inva
ance to assist the restoration. This network is devised
self-organized mapping system, which could identify b
features from the input, i.e., the blurred image data. A
cording to the ‘‘magic TV,’’ a point source that is ran
domly excited in the input image plane will project a bl
feature on the output image plane when the blur apertur
in between the input and the output plane. The impl
topology order of these random point sources can
aligned in a 2-D plane according to their coordinates. T
excitations of the corresponding features can also
aligned in a similar topology on the network plane throu
a self-organizing scheme~see Fig. 1!. The noisy parts of the
blur functions do not have such hidden topology. They w
be screened out by the ‘‘magic TV’’ mechanism. Thus,
can regularly array these neurons on a rectangular p
with their weight matrices representing~responding to! the
blur features.

To achieve statistic average, we use the MAP criter
as the distance measure instead of the linear distance
in the formal self-organization.9 The MAP criterion is used
to select the best-matching neuronc and to derive the learn
ing rule accordingly to evolve the weights toward the u
known blur functions. Given a blurred image dataxs , we
plan to determine aWc that maximizes thea posteriori
probability. The best-matching neuronc among all neurons
is determined by

c5arg max
iPN

$p~Wiuxs!%. ~3!

According to the Bayesian analysis, thea posteriori
probability ofWi givenxs , p(Wiuxs), can be written in the
form
t

-

is

a

s

e

ed

p~Wiuxs!5
p~Wi!p~xsuWi!

p~xs!
}p~Wi!p~xsuWi!. ~4!

To use this criterion, both the conditional probabili
p(xsuWi) and thea priori probability p(Wi) should be ob-
tained in advance. The probabilityp(xs) is assumed to be a
known constant and is omitted from our approach.

To determine thea priori probability p(Wi), we count
the excitations~number of times of best-matching! for each
neuroni, when a batch of input$xs% are fed to the network.
These excitations are accumulated for each neuron.
then normalize these excitation frequencies. The norm
ized frequencyR̂i is then used as an estimatedp(Wi).

Assume the noise in Eq.~2! is white, zero-mean, and
with variancesn

2. With a ŷs estimated by Eq.~1!, the con-
ditional probabilityp(xsuWi) in Eq. ~4! can be formulated
as

p~xsuWi!}exp@2E~Wi!#, ~5!

where

E~Wi!5~xs2Wiŷs!
tD~xs2Wiŷs!, ~6!

and

D5diag~1/sn
2,1/sn

2,...,1/sn
2!. ~7!

3 Synapse Adaptation in the Network

With the MAP criterion, we derive the adaptation rules f
the weight matrices in a generalized self-organizat
sense.12 First, we determine the best-matching neuronc for
each blurred input dataxs using the formula

Fig. 1 (a) The concept of the ‘‘magic TV’’ for image restoration and
(b) the weight matrices in the self-organizing network.
Journal of Electronic Imaging / January 1998 / Vol. 7(1) / 87
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c5arg max
i

$p~Wiuxs!%

5arg max
i

$p~xsuWi!p~Wi!%

5arg max
i

$exp@2E~Wi!#R̂i%

5arg min
i

$E~Wi!2 log~R̂i!%. ~8!

The best-matching neuronc, which has the minimum value
of E(Wi)2 log(R̂i), will be further used. We then substitu
this Wc in Eq. ~1! to estimate a temporary value forŷs .

Then we tune the weight matrices to approach the p
sible blur matrices. The synapse adaptation rules are
rived by reducingE(Wc)2 log(R̂c) in Eq. ~8! with respect
to the tuning ofWc . We apply the steep descent method
updateWc . The weight matrices are adapted by

Wc
new5Wc1akcD•~xs2Wcŷs!ŷs

t

5Wc1a8kc~xs2Wcŷs!ŷs
t , ~9!

for the best-matching neuronc, wherea and a8 are the
adaptation rates, andkc is the scale factor for the adapta
tion, and by

Wi
new5Wi1a8ki~xs2Wiŷs!ŷs

t ~10!

'Wi1a8ki~Wc2Wi!ŷsŷs
t

'Wi1a8hci~Wc2Wi!, ~11!

for all iPH(c), iÞc, whereH~c! is the effective region of
the neighborhood functionhci in the self-organization.
Since the diagonal component ofD is an unknown constan
in Eqs.~9! and~11!, aD can be set to a new adaptation ra
a8. This unknown constant will not affect the choice ofc
in Eq. ~8!. From here on we setsn

251.
The value ofk in Eq. ~9! can be intuitively set to

kc[
1

sxs

2 , ~12!

wheresxs

2 is the variance of the dataxs . This means that

we update Eq.~9! safely in a smooth region and carefully
a rough region. Experiments show that this is a good
signment.

The valueki is introduced to scale the adaptation ofWi
in Eq. ~11!. If the distance between neuroni and neuronc is
large, the weight matrixWi could not be a candidate of th
current blur function. The scaling of the weight update
needed for accurate mapping. We can set the neighborh
function hci to keep the relationship betweenkc andki and
use it in the adaptation rule of Eq.~11! for Wi , iÞc. This
neighborhood function is assigned to a general lateral in
action function in formal self-organization. Furthermor
this adaptation rule has less computation load than tha
the rule in Eq.~10!.

After the adaptation by Eqs.~9! and ~11!, the weight
matrices are modified to satisfy the basic constraints on
88 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)
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PSF. By the self-organizing learning, various blur functio
in the rows are obtained for the space-dependent identifi
tion.

In summary, there are six steps in one training iterati

1. Find the best-matching neuronc by Eq. ~8! for a
given input dataxs .

2. Estimate the restored image dataŷs from Wc andxs
by Eq. ~1!.

3. Tune the values of the training parametersa andh.

4. Adjust the weight matrixWc by Eq. ~9!.

5. Adjust the weight matricesWi , iPH(c), iÞc, by
Eq. ~11!.

6. Modify the weight matrices with respect to the bas
constraints on the PSF, nonnegativity and energy p
serving.

Figure 2 shows a flow chart in an iteration.

4 Simulation Results

We now apply this approach to restore the blurred r
images in presence or absence of noise. The simulation
carried out for a scanned 64364 8-bit monochrome image
The original image in absence of noise is shown in Fig.
The image in Fig. 3 are sampled from the picture
‘‘Lena.’’ An image degraded by additive white Gaussia
noise with 20-dB signal-to-noise ratio~SNR! is shown in
Figure 4. The SNR in the noisy image is defined by

Fig. 2 System chart for self-organization.

Fig. 3 Original 64364 8-bit image for simulations.
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Maximum a posteriori restoration
SNR510 log10

sxs

2

sn
2 , ~13!

wheresxs

2 is the variance of the blurred imagexs andsn
2 is

the variance of the white Gaussian noise.
In the simulation network, there are 16316 neurons

with 1631631213121 weights, each neuron has a 1
3121-dimensional weight matrix, which resembles t
1213121 blur feature matrix. In this case,N516 andm1

5m2511. The initial weight matrices are set to various
normalized 2-D Gaussian-shaped functions. The total ite
tions are set to 500. In the training, the adaptation ratea8 is
kept constant in 0.1 and the effective region of the neig
borhood functionh shrinks gradually. All simulations are
executed on a personal computer with a 200-MHz proce
ing clock rate.

Without any information about the true PSF, assum
tions on the blur function are made. We assume that
support of the blur functionWi is larger than that of the true
PSF. The proper support size forWi can be decided from
experience.

Fig. 4 Image of Fig. 3 degraded by white Gaussian noise at 20 dB
SNR.

Fig. 5 (a) Image of Fig. 3 degraded by 939 blur functions and (b)
restored image for the degraded image in (a). The value of DSNR is
9.8068.
-

-

e

Since the true PSFs are totally unknown, the initi
weight matricesWi can be set to normalized random va
ues. With such initialization, the network will require mor
iterations to reach the optimal solution. To ease the conv
gence, we set the initial weight matrices to various norm
ized 2-D Gaussian-shaped functions. Before the traini
each neuron has a normalized 2-D Gaussian function w
random standard deviation (s1

2,s2
2). When the value (s1

2

1s2
2)1/2 is vary large, the blur function will be a uniform

function in the support area. Conversely, when the value
small, the blue function will be similar to an impulse func
tion. All trained results are not significantly affected b
such initialization.

The blurred images and the restored images are sho
in Figs. 5 to 9. In part~a! of each figure, the blurred image
is generated using different blur matrices where each row
assigned to a normalized 2-D ‘‘noisy’’ Gaussian functio
where the noise is set to white and random with a stren
of 30-dB SNR. The images from Fig. 3 degraded by
39 and 737 blur functions are shown in Fig. 5~a! and Fig.
6~a!, respectively. The image of Fig. 3 degraded by 737
blur functions in presence of noise at 30 dB SNR is show
in Fig. 7~a!. The image of Fig. 4 degraded by 737 blur
functions is shown in Fig. 8~a!. The image of Fig. 4 de-
graded by 737 blur functions in presence of noise at 30 d
SNR is shown in Fig. 9~a!. Part~b! of each figure shows the
restored image. The average computation time costs 1.1
for each case. The learning curves for the five cases
shown in Figs. 10~a! to 10~e!. The averaged values o

Fig. 6 (a) Image of Fig. 3 degraded by 737 blur functions and (b)
restored image for the degraded image in (a). The value of DSNR is
3.3094.

Fig. 7 (a) Image of Fig. 3 degraded by 737 blur functions in pres-
ence of white Gaussian noise at 30 dB SNR and (b) restored image
for the degraded image in (a). The value of DSNR is 3.2535.
Journal of Electronic Imaging / January 1998 / Vol. 7(1) / 89
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E(Wc) for all xs are plotted to display the learning beha
ior.

The convergence rate is related to the setup of the tr
ing parameters, including the total iterations, the adapta

Fig. 8 (a) Image of Fig. 4 degraded by 737 blur functions and (b)
restored image for the degraded image in (a). The value of DSNR is
7.6621.
90 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)
-

rate, and the neighborhood function. In all our simulatio
the weight matrices are always converged and approxim
the true blur functions. The learning curves are always
clined and stabilized after certain iterations. During ea

Fig. 9 (a) Image of Fig. 4 degraded by 737 blur functions in pres-
ence of white Gaussian noise at 30 dB SNR and (b) restored image
for the degraded image in (a). The value of DSNR is 5.7993.
Fig. 10 The learning curves for the five cases in Figs. 5 to 9, respectively.
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Maximum a posteriori restoration
Fig. 11 Original 2563256 8-bit ‘‘Cameraman’’ image.

Fig. 12 Image of Fig. 11 degraded by white Gaussian noise at 30
dB SNR.

Fig. 13 (a) Image of Fig. 11 degraded by 535 blur functions and
(b) restored image for the degraded image in (a). The value of DSNR
is 8.4989.
iteration, we calculate the averaged values ofE(Wc) over
all sample input to indicate the goodness of the train
results. The convergence rate is mainly related to the v
ance of the image data and the initialization of the weig
matrices.

SNR improvement is a popular measurement for the r
toration performance. SNR improvement is defined as

DSNR510 log10

(siys2xsi2

(siys2 ŷsi2 , ~14!

whereiys2xsi measures the distance between the samp
blurred dataxs and its corresponding original image da
ys , and iys2 ŷsi measures the distance between the
stored dataŷs and the original image datays . In the simu-
lations, SNR improvements for the five cases are 9.80
3.3094, 3.2535, 7.6621, and 5.7993, respectively.

To compare with other methods, this approach is tes
with the standard 2563256 8-bit monochrome camerama
image~Fig. 11!. Figure 12 shows the ‘‘Cameraman’’ imag
degraded by additive white noise at 30 dB SNR. There
16316 neurons in the network. Each neuron has a
349-dimensional weight matrix. In this case,N516 and
m15m257. The blurred images and the restored imag
are displayed in Figs. 13 to 17. The noise in the 2-D Gau
ian blur function is set to white and random with streng
40 dB SNR. The images from Fig. 11 degraded by 535
blur functions and 333 blur functions are shown in Fig
13~a! and 14~a!, respectively. The image of Fig. 11 de
graded by 333 blur functions in presence of noise at 40 d
SNR is shown in Fig. 15~a!. The image of Fig. 12 degrade
by 333 blur functions is shown in Fig. 16~a!. The image of
Fig. 12 degraded by 333 blur functions in presence o
noise at 40 dB SNR is shown in Fig. 17~a!. Part~b! of each
figure shows the restored image. The SNR improveme
for the five cases are 8.4989, 4.0347, 4.0285, 4.1148,
4.0756, respectively. The average computation time co
3.25 h for each case.

Comparisons are also made with the results produ
using other existing methods. These methods include
verse filters, Wiener filters, constrained least squares, K
man filters, and constrained adaptive restoration.13 These
are classical deblurring methods. The types of blur fu
tions are knowna priori in these methods. The SNR im

Fig. 14 (a) Image of Fig. 11 degraded by 333 blur functions and
(b) restored image for the degraded image in (a). The value of DSNR
is 4.0347.
Journal of Electronic Imaging / January 1998 / Vol. 7(1) / 91
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Fig. 15 (a) Image of Fig. 11 degraded by 333 blur functions in
presence of white Gaussian noise at 40 dB SNR and (b) restored
image for the degraded image in (a). The value of DSNR is 4.0285.

Fig. 16 (a) Image of Fig. 12 degraded by 333 blur functions and
(b) restored image for the degraded image in (a). The value of DSNR
is 4.1148.

Fig. 17 (a) Image of Fig. 12 degraded by 333 blur functions in
presence of white Gaussian noise at 40 dB SNR and (b) restored
image for the degraded image in (a). The value of DSNR is 4.0756.

Table 1 Restoration performance for different methods.13

Methods DSNR

Inverse Filters 216.5

Wiener Filters 5.9

Constrained Least Squares 6.2

Kalman filters 5.6

Constrained Adaptive Restoration 8.1

Our Approach 4.95
92 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)
provements of the blurred cameraman image for e
method are listed in Table 1 for comparisons.

From the simulation results, this approach is robust
the noise in either the observation process, the blur fu
tion, or the image data. Comparing the restored result
Fig. 6~b! with those in Figs. 7~b! and 8~b!, we find that the
noise in the observation process~at 30 dB SNR! causes
more difficulty in restoration than the noise in the ima
data~at 20 dB SNR!. Furthermore, this approach has larg
SNR improvements for the cases without the observa
noise.

In deriving the learning rule, we attempt to reduce t
observation noise. The best-matching neuronc for input xs

is the neuron that has the minimumE(Wi)2 log(R̂i) value.
This E(Wi) is the distance betweenxs andWiŷs . Minimiz-
ing thisE(Wi) will reduce the observation noise optimally
The neuron with the minimumE(Wi) value may not win
the competition. Hence the learning rule is not the optim
rule for reducing the observation noise. The valueR̂i ,
which is used to estimate thea priori probability p(Wi), is
introduced in the termE(Wi)2 log(R̂i) by Eq. ~4!. This R̂i
makes the degraded image with the observation noise
ficult to restored. We may prefer the neurons with eq
probabilities to improve the performance.
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