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Abstract. This paper presents a method to expand the basins of stable patterns in
associative memory. It examines fully-connected associative memory geometrically and
translate the learning process into an algebraic optimization procedure. It finds that

locating all the patterns at certain stable corners of the neurons’ hypercube as far from
the decision hyperplanes as possible can produce excellent error tolerance. It then
devises a method based on this finding to develop the hyperplanes. This paper further

shows that this method leads to the hairy model, or the deterministic analogue of the
Gibb’s free energy model. Through simulations, it shows that this method gives better
error tolerance than does the Hopfield model and the error-correction rule in both

synchronous and asynchronous modes.
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1. Introduction

Neural networks have facilitated recognition, classification, mapping,
and many other tasks. One of these networks is auto-associative
memory (AM). Auto-AM is a mechanism used to store patterns: when a
reasonable subset of a certain pattern is received with the other part
corrupted, it has the ability to recover that pattern. The fully connected
network is a common architecture for auto-AM. The interconnected
weights between processing neurons provide feedback for recurrent
evolution of the network.

There are many models and algorithms for training this network
that improve its accuracy, efficiency and capacity. One of these is
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the famous network proposed by Hopfield (Hopfield, 1982). It
applies the Hebb’s postulate of learning in (Hebb, 1949) to generate
weights. Another method commonly used to train auto-AM is the
error-correction learning rule in (Widrow and Hoff, 1960). It adjusts
interconnected weights only when the output is not the expected result.
Several advanced designs have achieved varying degrees of success
(Gardner, 1987,1989; Kanter and Sompolinsky, 1987; Tao et al.,
2001).

The learning algorithm for the Boltzmann machine in (Ackley, 1985)
can drastically improve both the tolerance of noisy patterns and loading
capacity in the network by introducing both hidden neurons and a
thermal annealing process. This algorithm is obtained by tuning the
weights so as to minimize an entropy measure, G. Due to use of the
noisy clamping technique and the annealing process, the computation
cost is very high. The reason for augmenting the noisy clamping tech-
nique is that the cross entropy measure, G ¼

P
a pa ln pa= �pa, cannot

regulate any noisy pattern which is not included in the training set. This
is because the term inside the summation sign,

P
a, is zero for an absent

training pattern, which has pa ¼ 0. It is hard to exhaustively include all
the noisy patterns in the training set when a pattern size is large. Note
that pa is the probability of the ath state of the visible units when their
states are determined by the environment, and that �pa is the corre-
sponding probability when the network is running freely with no
environmental input. A reversed measure, GR ¼

P
a �pa ln �pa=pa, is used

in (Liou and Lin, 1989) to derive the learning algorithm for the machine
without using the noisy clamping technique. This is because the term
inside the sign,

P
a, is infinitely large (infinite cost) for every noisy

pattern not included in the training set. This reversed measure gives
excellent tolerance for noisy patterns. The annealing cost is still heavy.
There is a perfect design for the hidden neurons in (Liou and Sou,
2003). The design in (Liou and Yuan, 1999) provides a biologically
plausible solution for the tolerance ability without any hidden neuron
and annealing process. This work will present a method to further
explore the idea behind this design and formulate it for finite memory
loading. The goal is somewhat similar to that of Gardner for extensive
memory loading in (Gardner, 1989). This work will use the same
experimental simulations as those in (Liou and Yuan, 1999) to ease
comparison.

One of the fully connected network’s features is that it can be viewed
as a geometrical hypercube (Li et al., 1989); therefore, the learning
problem of auto-AM can be transformed into a geometric optimization
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problem. This work will explore learning algorithms based on this point
of view. First, this work will briefly introduce the notations and the
geometrical interpretation (Cover, 1965). Then, this work will present
the learning method in detail. Computer simulations and discussions
will be given at the end of the paper.

Auto-AM is a fully connected network with N neurons. Each neuron
i has N weights connecting it to all the neurons j, including itself, a
threshold hi, and a state value vi. The state value is updated according to
the rule

viðtþ 1Þ ¼ sgn
XN

j¼1
wijvjðtÞ � hi

" #

; ð1Þ

or in matrix form,

Vðtþ 1Þ ¼ sgn WTVðtÞ � h
� �

; ð2Þ

where W is an N�N weight matrix, h is an N� 1 threshold vector,
VðtÞ is an N� 1 vector representing the state at evolution (or itera-
tion) time t, and sgn( ) is the signum function returning 1 with input
greater than or equal to zero and )1 with negative input. In the
learning phase, the network is trained by P patterns Xk, k ¼ 1; . . . ;P,
using various learning algorithms. In the retrieving phase, the input is
presented to the network as V(0). If (2) is applied to all the neurons in
each evolution, then this network is said to operate in synchronous
mode; if (1) is applied to only one neuron, then this network is said to
operate in asynchronous mode. This work will focus on the synchro-
nous mode and discuss the asynchronous mode with respect to
the experiments. Then, the network operates repeatedly according to
(1) or (2) until evolution converges to a stable state or falls into a
limitcycle (Bruck, 1990). A stable state meets the following require-
ment:

VðtÞ ¼ sgn WTVðtÞ � h
� �

ð3Þ

no matter whether the network is operating in synchronous mode or
asynchronous mode.

Each neuron has a bipolar state value (a bit), and there are 2N

states in total. Therefore, one may view the whole network as an
N-dimensional (N-D) hypercube with each state located at a corner.
Any two neighboring corners differ in only one neuron state, or with a
Hamming distance of two for a bipolar neuron. For example, Figure 1
shows a 3-D cube corresponding to a network with three neurons. The
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current state is located at one corner and serves as the next input to
the network. After updating according to (1) or (2), the current state
either moves to another corner or stays at the original corner. Corners
that always remain unchanged are stable states. The patterns one
intends to save are located at certain stable corners. The goal of AM is
to evolve an initial state to a nearby stable corner where a pattern is
stored.

In the hypercube, the state of each neuron i is determined by an
(N� 1)-D decision hyperplane with the equation

wi1v1 þ wi2v2 þ wi3v3 þ � � � þ wiNvN � hi ¼ 0; i ¼ 1; . . . ;N: ð4Þ
The N� 1 weight vector Wi ¼ ðwi1;wi2; . . . ;wiNÞT of neuron i is the

normal vector of the corresponding hyperplane, and this hyperplane
divides the hypercube into a positive part (division) to which the normal
vector points and a negative division. We require that the length of the
vectorWi, jWij, be normalized to one. In most cases, jhij is less than

ffiffiffiffi
N
p

,
the half diagonal length of the hypercube. The learning process adjusts

Figure 1. A neuron represents a plane (the shadow part) dividing the cube into positive

and negative divisions (sides). In this figure, (1,1,1), (1,�1,1), (1,1,�1), and (�1,1,1) are
in the positive division, while other corners are in the negative divisions.
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the hyperplane to make all the patterns stable. That is, when the ith bit
of a pattern is equal to 1, this stable pattern should be located in the
positive division of the ith hyperplane; on the other hand, if its ith bit
equal to �1, it should be located in the negative division. Such division
is exactly the same as the binary coded division for multilayer networks
in (Liou and Yu, 1995).

The basin of a stable pattern is defined as the collection of all patterns
which will evolve to this stable pattern eventually using the dynamic
equation (2). We subdivide a basin according to the number of iterations,
k. Therefore, the basin-k of a stable pattern contains all the noisy patterns
that will evolve to this stable pattern in k iterations. The basin-0 contains
the stable pattern only. All such basins, fbasin-k; k ¼ 0; 1; 2; . . .g, con-
stitute the entire basin of a stable pattern.

When the neighboring cube corners are the noisy patterns (in terms
of the Hamming distance) of a stable pattern and are in the same
division as that in which this stable pattern is located for every decision
hyperplane, they can be restored to this stable pattern in a single evo-
lution (iteration) by using the dynamic equation (2). Therefore, they are
in basin-1 of this stable pattern, and they are the only patterns in basin-
1. The division of a stable pattern contains both basin-1 and basin-0 of
this stable pattern. Each division is enclosed by decision hyperplanes.
All the basins except for the basin-0 are separated from each other by
hyperplanes. Note that each state (the signs of the state’s elements) in
basin-1 indicates a unique division of basin-2 which contains noisy
patterns that will evolve to the stable pattern in two iterations. All
divisions indicated by the states in basin-1 constitute basin-2. Each state
in basin-2 indicates a division of basin-3, and so on. When one increases
the number of states in basin-1, one increases the number of divisions in
basin-2 indirectly, and so on. This means that whenever one increases a
state in the basin-i of a stable pattern, one increases a whole division in
its basin-ðiþ 1Þ. This is in some sense similar to a chain reaction or a
positive feedback system. Such reaction would be a dominant evolution
in any system. This kind delicate reaction mechanism, which is different
from the random boolean network in (Kauffman, 1991), has evolu-
tionary implications and can serve as the foundation for exploring the
biological evolution. We expect that the increase of the number of states
in basin-1 will increase the overall basin for a stable pattern indirectly
and increase the number of noisy patterns with low iteration numbers.
We hope that this chain-like reaction will exhaust all the states for stable
patterns and leave no limit cycles. This is beneficial for restoration. The
noisy patterns in basin-1 are close to their stable pattern and are in line
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with the Hamming distance neighbors. Hence, this work formulates a
method as attempts to tune the hyperplanes and enlarge the basin-1
divisions of stable patterns without damaging the stability of those
patterns.

2. Optimal hyperplane

Since each decision hyperplane can be adjusted separately based on the
above idea, this work will only discuss neuron i. For neuron i, one has P
equations:

wi1X
k
1 þ wi2X

k
2 þ � � �

þwiNX
k
N � hi ¼WT

i X
k � hi > 0 if Xk

i ¼ 1
wi1X

k
1 þ wi2X

k
2 þ � � �

þwiNX
k
N � hi ¼WT

i X
k � hi < 0 if Xk

i ¼ �1

8
>><

>>:
k ¼ 1; . . . ;P:

ð5Þ
We discard the case in (5), where WT

i X
k � hi ¼ 0 because it rarely

happens in analog operation. Whenever we say that the ith hyperplane
is stable, it means that all P patterns on the right (stable) side (divi-
sion) of the hyperplane satisfy (5). This hyperplane is not stable
whenever there is a pattern in the wrong division. This work will
explore the flexible space in between the two pattern sets,
fXk; k ¼ 1; . . . ;P; and Xk

i ¼ 1g and fXk; k ¼ 1; . . . ;P; and Xk
i ¼ �1g,

in order to locate the decision hyperplane under the stability condi-
tions in (5). We will suppose that both sets are not empty. There exits
at least one pattern in each set. For computational convenience, we
multiply every element in the second equation by �1 and obtain new
equations:

ski ¼ wi1X
k
1 þwi2X

k
2 þ � � �

þwiNX
k
N � hi ¼WT

i X
k � hi > 0 if Xk

i ¼ 1
ski ¼ �wi1X

k
1 �wi2X

k
2 � � � �

�wiNX
k
N þ hi ¼ �WT

i X
k þ hi > 0 if Xk

i ¼ �1

8
>><

>>:
k ¼ 1; . . . ;P:

ð6Þ

Note that Wi is a normalized normal vector. ski is the distance
(Euclidean distance) between the kth pattern and the ith decision
hyperplane, which is positive when the kth pattern is on the correct
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(stable) side of the ith hyperplane. By (6), when a hyperplane has a large
value of ski ; it can tolerate many more perturbations in the states Xk and
keep the inequality. Since Wi is a normalized normal vector, the
threshold hi will be the major parameter used in increasing the value of
ski .

We expect that increasing ski will enlarge the division overall and
improve the tolerance ability. This work devises techniques to tune
weights to make these distances, fski g, as large as possible. To achieve
this goal, we maximize the minimum of fski ; k ¼ 1; . . . ;Pg to improve
the hyperplane’s tolerant ability for those Hamming distance neigh-
bors as possible. This work presents a method to do this in the
following.

2.1. Method

The method uses the gradient ascent to increase the distance ski . We
consider ðski Þ

2 in this method. ðski Þ
2 is as follows:

ðski Þ
2 ¼ ðwi1X

k
1 þ wi2X

k
2 þ � � � þ wiNX

k
N � hiÞ2

¼
XN

l¼1
w2
il

 !

þ h2i þ
XN

l¼1

XN

l0¼1;l0 6¼l
wilwil0X

k
l X

k
l0 � 2hi

XN

l¼1
wilX

k
l

 !

:

ð7Þ

There are Nþ 1 variables in (7). Each variable has degree two
(quadratic form) and a positive leading coefficient. Since this work
requires that the normal vector Wi be normalized, the term

PN
l¼1 w

2
il is

equal to 1. This work applies the partial derivative to ðski Þ
2:

oðski Þ
2

owij
¼ 2

XN

l¼1;l 6¼j
wilX

k
j X

k
l � 2hiX

k
j

¼ 2Xk
j

XN

l¼1;l 6¼j
wilX

k
l � hi

 !

¼
2Xk

j ðski � wijX
k
j Þ ¼ 2ðski Xk

j � wijÞ if Xk
i ¼ 1;

2Xk
j ð�ski � wijX

k
j Þ ¼ 2ð�ski Xk

j � wijÞ if Xk
i ¼ �1;

(

ð8Þ
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oðski Þ
2

ohi
¼ �2

XN

l¼1
wilX

k
l þ 2hi

¼ �2
XN

l¼1
wilX

k
l � hi

 !

¼ �2ski if Xk
i ¼ 1;

2ski if Xk
i ¼ �1:

(

ð9Þ

In (8, 9), we see that for the case Xk
i ¼ 1, when 2ðski Xk

j � wijÞ (or
�2ski ) is positive, increasing wij (or hi) will increase ðski Þ

2, and when
2ðski Xk

j � wijÞ (or �2ski ) is negative, increasing wij (or hi) will decrease
ðski Þ

2. wij must be tuned (or trained) according to the following equa-
tions to increase ðski Þ

2:

wijðtþ 1Þ ¼ wijðtÞ þ e1
oðski Þ

2

owij

¼
wijðtÞ þ 2e1ðski ðtÞXk

j � wijðtÞÞ if Xk
i ¼ 1;

wijðtÞ þ 2e1ð�ski ðtÞXk
j � wijðtÞÞ if Xk

i ¼ �1:

(

ð10Þ

hiðtþ 1Þ ¼ hiðtÞ þ e2
@ðski Þ

2

@hi

¼ hiðtÞ � 2e2ski ðtÞ if Xk
i ¼ 1;

hiðtÞ þ 2e2ski ðtÞ if Xk
i ¼ �1;

(

ð11Þ

where the training rates e1 and e2 are small positive constants. Note that
t denotes the training iteration. Substituting wijðtþ 1Þ and hiðtþ 1Þ into
(6), we obtain

ski ðtþ 1Þ ¼ WT
i ðtþ 1ÞXk � hiðtþ 1Þ if Xk

i ¼ 1,
�WT

i ðtþ 1ÞXk þ hiðtþ 1Þ if Xk
i ¼ �1:

�

ð12Þ

Since ðski Þ
2 cannot indicate which division the kth pattern belongs to,

(10, 11) always increase the distance between the kth pattern and the
hyperplane but cannot correct the incorrect division of the hyperplane.
ski ðtÞ must be kept positive during the whole training process. This work
monitors the value of ski ðtÞ to ensure positivity. Its positivity can always
be preserved by tuning down the training rates. The initial wijð0Þ and
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hið0Þ must be set so as to make all the patterns stable (Li et al., 1989) to
ensure positivity. They are set as follows:

wij ¼
1 if i ¼ j;

0 if i 6¼ j;

�

hi ¼ 0:

ð13Þ

We set the initial weights according to (13) when the number of pat-
terns is very large, 2N � PoN. These weights can store stable patterns
up to the network limit, 2N. When the number of patterns is comparable
to that of neurons, 2NoP � N, we present the following hyperplane.

We select a pair of patterns fcp; cng from each of the two sets,
fXk; k ¼ 1; . . . ;P; and Xk

i ¼ 1g and fXk; k ¼ 1; . . . ;P; and Xk
i ¼ �1g,

where cp is a pattern in fXk; k ¼ 1; . . . ;P; and Xk
i ¼ 1g and cn is a

pattern in the other set. This pair is the closest pair (in terms of the
Euclidean distance) among all the pairs between the two sets. The
weights of the hyperplane are set as

wij ¼ cp
j
� cnj ; normalize Wi;

hi ¼
XN

j¼1
wij

c
p
j þ cnj
2

 !

: ð14Þ

This hyperplane is right in the middle between the two patterns of the
closest pair. It is perpendicular to the line section connecting the two
patterns fcp; cng and passes the center of this section. cp � cn is the
direction of the normal vector of this hyperplane, see (Eqs. 8–11, Liou
and Yuan, 1999). Further studies show that this hyperplane preserves all
the merits of Hebb’s postulate and the stability. We have sought such a
simple crystal memory for the Hopfield network for 15 years. This novel
memory can serve as the foundation for exploring the physiological
implications. We will use this hyperplane and (13) in all auto-AM
simulations to start the training iteration.

In each training iteration, this method calculates all the distances,
fski ; k ¼ 1; . . . ;Pg, using (6) or (12) and use the pattern with minimal ski in
(10) and (11) to improve the position of the decision hyperplane. This
pattern is in some sense close to the support vector in (Boser, 1992). This
method sets the hyperplane in the first iteration as in (14) or (13). WiðtÞ
must be normalized after each iteration. The iteration stops whenever ski
shows no more improvement. This method is applied to adjust the ith
hyperplane only when the ith bits of all P patterns are not equal. When
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the ith bits of all P patterns are equal (backbone bit), we may locate the
hyperplane directly without training. This method sets this hyperplane
outside the hypercube through proper division. An easy way to do this is
to set hi greater than

ffiffiffiffi
N
p

. Figure 1 shows the training result for two
patterns, (1,1,1) and (�1,�1,�1). All three optimal hyperplanes are
almost coincident. All N hyperplanes can be trained in sequence or in
parallel. After training, this method finds the closest hyperplane to each
stable pattern corner and use that hyperplane to determine the basin
radius for that pattern. The basin-1’s border can be traced along the
corners near the hyperplanes which enclose this pattern corner.

3. Experiments I: Auto-associative memory

This work performed simulations to compare the performance of the
Little model (LM) in (Little, 1974), the error-correction rule (ECR) in
(Widrow and Hoff, 1960), the Runge–Kutta method (RK) in (Tao et al.,
2001), and the proposed expanded associative memory (EAM) in syn-
chronous mode. Several issues, such as the number of stable states, the
number of limit cycles, and the achieved fault tolerance, will be
discussed. The networks, LM, ECR, and EAM, are all applied with a
fully-connected network structure in synchronous mode. The difference
between these three networks lies at the learning phase. This work also
implemented a pattern recognition application. In all the simulations,
this method sets e1 ¼ e2 ¼ 0:00055 in EAM. This work uses fourth-order
Runge–Kutta method in RK. The simulations set the same time steps,
0.01 and 0.1, as those used in (Tao et al., 2001). The stopping criterion
for RK is according to the difference between the updated new value and
its old value. Whenever the difference is less than 0.000005, the simula-
tions stop RK. Below, this work briefly reviews these networks.

3.1. Hopfield model (HM)

The Hopfield Model is constructed by using the outer product rule to
compute the weights as follows:

wij ¼
1
N

PP

k¼1
Xk

i X
k
j if i 6¼ j,

0 if i ¼ j:

8
<

:
ð15Þ

Several characteristics are worth noting. Elements on the diagonal of
the weight matrix, wii, are zero. This means that all the neurons have no
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self-feedback, and this has the effect of reducing the spurious stable
states for the reason that overlarge self-feedback will tend to cause
neurons to retain their previous states. This self-feedback has been
discussed previously in (Kanter and Sompolinsky, 1987; Wilde, 1997).
The zero-diagonal and symmetric weight matrix cause the HM to
always converge to a stable state in asynchronous dynamics. However,
the model we are interested in is called the Little model and is similar to
HM. It differs from HM only in that it uses synchronous dynamics. This
causes the network to always converge not only to a stable state, but
also to a limit cycle of length two.

3.2. Error-correction rule (ECR)

ECR adjusts weights proportional to the error term (Xk
i � viðtÞ). At the

beginning, the simulation randomly assigns initial values to all the
weights and then adjust all the weights according to following equations:

wijðtþ 1Þ ¼ wijðtÞ þ gðXk
i � viðtÞÞXk

j ;

hiðtþ 1Þ ¼ hiðtÞ � gðXk
i � viðtÞÞ;

viðtÞ ¼ sgn
XN

j¼1
wijðtÞXk

j � hiðtÞ
" #

; ð16Þ

where g is a positive constant which determines the rate of learning. The
pattern Xk used to train the network is chosen randomly from among all
the patterns. Adjustment continues until there is no more error.

3.3. Experimental results

Table 1 lists experimental results for (N ¼ 5;P ¼ 5Þ, ðN ¼ 5;P ¼ 3Þ,
ðN ¼ 10;P ¼ 5Þ and ðN ¼ 10;P ¼ 3Þ, respectively. In each experiment,
the simulations presented 10 sets of randomly produced patterns to the
four networks and then got the averaged results. We explain each row
item below:

SP (#of Stored Patterns (=P)): given P patterns, the number of patterns
successfully stored.
SS (#of Stable States (=2N)): the number of stable states.
TS (#of States to Stable (=2N)): the number of transient states con-
verging to all stable states.
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Table 1. Comparison among Little model (LM), error-correction rule (ECR), expanded
associative memory (EAM) and Runge–Kutta method (RK)

LM ECR EAM RK

N ¼ 5, P ¼ 5

SP (/5) 1.8 5 5 5

SS (/32) 4.2 15.2 17.6 5

TS (/32) 14.6 16.8 14.4 29

C 2.7 0 0 0

IC (/32) 5.4 0 0 0

TC (/32) 7.8 0 0 0

R (/25) 3.2 3.9 5.0 15.4

Time secs 0.03 0.02 0.11 5136

N ¼ 5, P ¼ 3

SP (/3) 2.4 3 3 3

SS (/32) 5.2 7.1 5.0 2.8

TS (/32) 13.0 24.9 27.0 29.1

C 5.5 0 0 0

IC (/32) 11 0 0 0

TC (/32) 2.8 0 0 0

R (/15) 4.0 4.0 10.5 12

Time secs 0.03 0.02 0.07 1570

N ¼ 10, P ¼ 5

SP (/5) 1.9 5 5 5

SS (/1024) 5.0 43.9 52.7 5

TS (/1024) 744.8 978.4 971.3 993.6

C 44.3 0.2 0 0

IC (/1024) 88.6 0.4 0 0

TC (/1024) 185.6 1.3 0 0

R (/50) 12.1 13.5 39.6 48.6

Time secs 0.12 0.11 0.39 2115629

N ¼ 10, P ¼ 3

SP (/3) 2.6 3 3 3

SS (/1024) 6.8 20.2 6.2 3

TS (/1024) 553.4 1003.2 1017.8 903

C 84.9 0.2 0 0

IC (/1024) 169.8 0.4 0 0

TC (/1024) 294.0 0.2 0 0

R (/30) 21.3 8.6 29.2 29.6

Time secs 0.11 0.1 0.27 625077
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C (#of Cycles): the number of limit cycles.
IC (#of States in Cycles ð=2N)): the number of states involved in all
limit cycles. (� 2C)
TC (#of States to Cycles (=2N)): the number of transient states falling
into limit cycles.
R (Recovery (=NP)): given NP 1-bit-error patterns, the number of
patterns converging to the original stored patterns.
Time in seconds: total cpu time on an IBM PC including training and
restoration for the 10 sets of patterns.

The given patterns can be successfully memorized using ECR, EAM,
and RK. RK gives better results with expensive cpu time. It has a non-
Hebbian structure. These patterns are guaranteed to be saved by EAM
because they are the conditions of (6). LM has rather limited capacity,
so it cannot even store three patterns in a ten-neuron network in all
cases, and neither can HM. Many researchers have pointed out that the
maximum number of patterns stored in HM is N=4 lnN (McEliece et al.,
1987). There are advanced designs for storing N different patterns with
large basins in a straightforward way (Gardner, 1987; Kanter and
Sompolinsky, 1987; Li et al., 1989). Many of them derive symmetric
weight matrices. The EAM derives asymmetric matrices with nonzero
diagonal elements and still keeps Hebb’s postulate.

Although the number of stable states in LM is the smallest in many
cases, it lacks the ability to storemore patterns, so this advantage becomes
useless. ComparingECRandEAM,we find thatEAMhas fewer spurious
stable states than ECR does when there are three patterns, and has more
when there are five patterns. ECR stops training when all the patterns
have been successfully saved, while EAM continues training until the
minimal distance cannot be increased any more. The largest minimal
distance is easy to obtain when there are fewer patterns but is difficult to
obtain when there are more patterns. Therefore, the training is repeated,
the self-feedback weights wii continue to increase, and more spurious
stable states are generated. Overlarge self-feedback will cause a neuron to
stay in its previous state and produce more stable states. The extreme
situation occurs when all the weights are zero except wii. In this case, all
the neurons remain unchanged, and all the states are stable.

LM has a much serious cycle problem, while ECR produces very few
limit cycles. EAM produces no limit cycles as we expected. Again, this is
because of the large self-feedback. When self-feedback is large, all the
neurons tend to stay in their previous states; hence, the number of limit
cycles can be effectively reduced.
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When the number of patterns is small enough compared to that of
neurons, LM has acceptable performance in recovery from distorted
patterns as shown in Table 1 with N ¼ 10 and P ¼ 3. However, when
there are more patterns, the error tolerance of LM is poor. This is also
the case for ECR even when there are few patterns because the criterion
for training ECR is accuracy, not error tolerance. The performance of
EAM in recovery from noisy patterns is much better than that of the
other two models. This is because EAM tunes the decision hyperplane
so as to enlarge the decision division for each pattern and to include as
many neighboring noisy patterns as possible in that division.

Figure 2. The bitmap for the 10 digital patterns.

Table 2. Radius of each pattern for expanded associative memory (EAM) and error-
correction rule (ECR)

EAM ECR

0 2 0

1 3 0

2 3 0

3 3 0

4 3 0

5 2 0

6 2 0

7 3 0

8 2 0

9 2 0
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3.4. Pattern recognition application

Next, the simulation tested a more complex example of pattern recog-
nition. In Figure 2, there are 10 patterns, from 0 to 9, constructed using
96 neurons (bits). After applying LM, ECR, and EAM to these pat-
terns, the simulation found that LM could not memorize all the pat-
terns, so we will not discuss LM with regard to further experiments. The
basin radius produced by EAM is much better than those produced by
ECR as shown in Table 2. The basin radius is defined as the maximal
number of errors for which recovery is guaranteed, no matter which bits
are wrong. This radius is the distance (in Hamming distance) between
the stable pattern and a closest state along the basin-1’s border. This is a
much rigorous definition. The number in this table denotes the size of
the radius (with a unit of one bit or a Hamming distance of 2 for each
bipolar bit). The ‘‘0’’ numbers in ECR mean that there exists at least one
bit or pixel that is vulnerable to noise contamination no matter how
large the basin is.

The 10 expanded basins of attraction are huge. The simulations
monitored the basin size of each pattern during the training of EAM.
Because the pattern complexity of 96 neurons is 296, the simulations

Figure 3. The growth of basins for patterns f000;0 10; and 070g during training iterations
using EAM. The number on the abscissa is the training iterations t. The number on
vertical coordinate shows the basin size by counting the total number of patterns within

the 10,000 random patterns which converge to a digital pattern. The solid line is for the
digital patterns 000, the dash-dot line is for 010, and the dashed line is for 070.
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applied a statistical approach to roughly show the basin sizes. The
experiments randomly produced 10,000 patterns and fed them into the
trained network EAM. Then, the experiments counted how many ran-
dom patterns converged to each pattern as shown in Figure 2. We plot
the results for three patterns after every 10 iterations in Figure 3. One
can see that although the basin sizes sometimes decreased, they ex-
panded overall.

Table 3 shows the error tolerance of EAM. For each pattern of the 10
digits, we randomly generated 1000 noisy patterns with 10, 20, and 30
error bits, respectively, and used ECR and EAM to recover them. The
numbers shown in this table are the total numbers of patterns in the 1000
noisy patterns that could be restored by the two methods in different
operation modes. Results show that almost all the noisy patterns with 10
or 20 errors could be recovered by EAM. Even with 30 errors, more than
60% of the noisy patterns could be recovered. Also, we notice that for all
30,000 randomly generated patterns, none of them fell into a limit cycle in
EAM. This also shows the excellent ability of EAM to avoid the pro-
duction of limit cycles.

The experiments also tested the storage capability of the EAM. We
randomly generated 500 patterns using these 96 neurons. The EAMcould
accomodate these patterns, and almost all of them had huge basins. The
pseudo-inverse approach in (Kanter and Sompolinsky, 1987) will not

Table 3. Error Tolerance for expanded associative memory (EAM) and error-
correction rule (ECR)

0 1 2 3 4 5 6 7 8 9

EAM in synchronous mode

10 1000 1000 1000 1000 1000 1000 998 999 1000 998

20 965 984 980 982 990 976 955 984 970 965

30 681 775 717 779 803 775 701 801 698 683

EAM in asynchronous mode

10 1000 998 1000 1000 1000 1000 1000 1000 999 1000

20 970 987 984 985 986 981 935 988 964 958

30 710 786 810 811 809 717 617 863 750 712

ECR

10 120 224 23 102 42 7 1 784 6 35

20 47 77 5 22 3 0 0 651 0 2

30 23 14 0 0 0 0 0 335 0 0
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work for storing such a large number of patterns. This number greatly
exceeds the storage capacity of many modern designs.

Although we designed the EAM for use in synchronous mode, the
simulations show that they can operate satisfactorily in asynchronous
mode with even better performance than they can in synchronous mode.

4. Experiments II: Temporal associative memory

The temporal AM is used to store one sequence or several sequences of
patterns in the AM’s dynamic state transitions (Amari, 1972). Given an
initial input pattern, it will converge to the next pattern in a memorized
sequence. All the successive patterns in this sequence will be recalled
sequentially. Because of its dynamic property, it can be used to recog-
nize or generate temporal patterns, such as speech, film, command,
timbre, rhythm, bird song, or musical notations.

The temporal AM is trained to remember all the patterns in the
following dynamics:

Xkþ1
i ¼ sgn

XN

j¼1
wijX

k
j � hi

 !

: ð17Þ

The superscript of the pattern Xk may be computed using modulo
Pþ 1. When an initial input state Vð0Þ is sufficiently close to a stored
pattern Xk, the pattern Xkþ1 will be the first pattern recalled, and then
the rest of the patterns will be recalled sequentially.

This temporal AM can store various kinds of pattern sequences, such
as a single chain (the dotted line in Figure 4), a cycle of patterns
(the dashed line in Figure 4), or a tree (the upper two patterns in Figure
4). Generally, the temporal AM is able to save all one-to-one or
many-to-one patterns, but not one-to-many patterns. This work will not
discuss the one-to-many case.

The original temporal AM proposed in (Amari, 1972) is implemented
according to Hebb’s postulate, which is similar to HM, as follows:

wij ¼
XP

k¼1
Xkþ1

i Xk
j : ð18Þ

This temporal AM has asymmetric weight and no threshold. It has
the same drawback as HM: low capacity and incorrect recall. This
implementation usually cannot memorize complete patterns, as we will
show based on simulations described later.
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The techniques in EAM is also applicable to the temporal AM or any
other hetero-AM. The difference is that in the auto-AM, all the states in
the basin-1 of a stable pattern will converge to this pattern, while in the
temporal AM, all the states in the basin-1 of a pattern will evolve to its
next pattern. To train weights is to allocate the hyperplane so as to
separate patterns into two divisions according to the ith bits of their
next patterns. That is when Xkþ1

i ¼ 1, Xk should be in the positive
division of the ith hyperplane and in the negative division if Xkþ1

i ¼ �1.
(6) should be modified as follows:

ski ¼wi1X
k
1þwi2X

k
2þ�� �

þwiNX
k
N� hi ¼WT

i X
k� hi > 0 if Xkþ1

i ¼ 1; k=1,...,P.

ski ¼�wi1X
k
1�wi2X

k
2� �� �

�wiNX
k
Nþ hi ¼�WT

i X
kþ hi > 0 if Xkþ1

i ¼�1

8
>>><

>>>:

ð19Þ
The tuning equations (10–12), are also modified to fit the temporal

case. We list them below:

wijðtþ 1Þ ¼ wijðtÞ � e1
oðski Þ

2

owij
;
þ if ski � 0

� if ski < 0

(

¼
wijðtÞ � 2e1ðski ðtÞXk

j � wijðtÞÞ if Xkþ1
i ¼ 1;

wijðtÞ � 2e1ð�ski ðtÞXk
j � wijðtÞÞ if Xkþ1

i ¼ �1;

(

ð20Þ

Figure 4. Various kinds of associative patterns are plotted in one graph, where each
circle denotes a different pattern. The patterns linked by the dotted line constitute a

single chain associative memory.The patterns linked by the dashed line constitute a
cycle. The top three patterns constitute a tree.
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hiðtþ 1Þ ¼ hiðtÞ � e2
oðski Þ

2

ohi
¼ hiðtÞ � 2e2ski ðtÞ if Xkþ1

i ¼ 1;
hiðtÞ � 2e2ski ðtÞ if Xkþ1

i ¼ �1:

�

ð21Þ
Substituting them in (19), we obtain

ski ðtþ 1Þ ¼ WT
i ðtþ 1ÞXk � hiðtþ 1Þ if Xkþ1

i ¼ 1;
�WT

i ðtþ 1ÞXk þ hiðtþ 1Þ if Xkþ1
i ¼ �1:

�

ð22Þ
We recommend an initial condition which places the initial hyper-

plane right in the middle between the center of patterns with Xkþ1
i ¼ 1

and the center of patterns with Xkþ1
i ¼ �1. That is,

C
p
j ¼

1

N1

X

fkjXkþ1
i ¼1g

Xk
j ;

Cn
j ¼

1

N�1

X

fkjXkþ1
i ¼�1g

Xk
j ;

wijð0Þ ¼ Cp
j � Cn

j ;

hið0Þ ¼
XN

j¼1
wijð0Þ

C
p
j þ Cn

j

2

 !

; ð23Þ

where Cp and Cn are the centers of patterns with Xk
i ¼ 1 and of patterns

with Xk
i ¼ �1, respectively.

The training iteration is similar to that for EAM. In each iteration
we find the worst pattern corner and use that pattern in (20, 21) to
improve the location of the hyperplane. Then, we normalize the
weight vector Wi and calculate new distances fski ; k ¼ 1; . . . ;Pg: The
initial weights in (23) were used in the simulations: The distance, ski ,
may have a negative value when the kth pattern is on the wrong side
of the ith hyperplane, where the sign of Xkþ1

i shows the correct side.
We do not expect that the initialization, (18) or (23), will give a
perfect dynamic at the beginning. Therefore, we modify EAM to
include the cases where a pattern corner may be on the wrong side of
the hyperplane as in (20, 21). This modification will decrease the
distance between a pattern corner and a hyperplane when this corner
is on the wrong side of the hyperplane. This modification will also
increase the distance between a pattern corner and a hyperplane when
this pattern is on the correct side.
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This work conducted simulations using the temporal AM. They
require that the temporal AM store the 10 patterns in different orders.
In Figure 5(a), they are saved as a chain; in Figure 5(b), they are saved
as a cycle; and in Figure 5(c), they are saved as a tree. In general, the
dynamic can be saved in a manner similar to a river system. The basins
of these patterns are similar to river valleys. The water (system state)
will flow (transition according to the dynamics) along the valleys (pat-
tern basins) to the river mouth. Any contaminated temporal pattern,
which falls into an upstream valley (basin), will be carried by the system
through the valleys into the river mouth (tree root). A cumulated credit
for a sequence of contaminated patterns can be collected at the mouth.
One of the goals of the project is to devise a temporal AM with
improved recognition of speech. This EAM has been used to learn
musical notes. It can generate varying sequences of notes with similar
melodies after learning (see http://red.csie.ntu.edu.tw/MG/index.htm).

In the three cases shown in Figure 5, we used both Amari’s method
as in (18) and the proposed EAM to train the networks. The simulations
found that Amari’s method could not store all the patterns. There
existed serious limit cycles. With the proposed method, one could suc-
cessfully store these patterns with enlarged basins to accomodate noisy
patterns. A noisy pattern would always evolve into the basin-1 of the
next pattern. Storing such sequential patterns is the focus of many
advanced designs.

5. Discussion

First we will show that the idea behind the proposed method is in line
with Hebb’s postulate. (5) together with its if conditions, if one ignores

Figure 5. The 10 patterns in three different associative sequences. They from a single
chain memory (a), a cycle memory (b), and a tree memory (c).
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the fact that the weights Wi must be normalized, can be rewritten in the
form

ski ¼ ðwi1X
k
1 þwi2X

k
2 þ � � � þwiNX

k
N� hiÞ �Xk

i ¼ ðWT
i X

k� hiÞ �Xk
i > 0:

ð24Þ

We apply the partial derivative to the above equation and obtain

oski
owij
¼ Xk

j X
k
i and

oski
ohi
¼ �Xk

i : ð25Þ

This result is coherent with the Hopfield model and Hebb’s postulate.
This means that Hebb’s postulate also increases the distance, ski ,
indirectly. The postulate says that wij will increase when Xk

i is equal to
Xk

j . According to (25), the distance ski will increase under this postulate.
The present method extends the postulate to the threshold hi. They
increase this distance directly and effectively in a global sense, and serve
as a generalization of the postulate.

The energy function for the above two equations (24, 25) is

EHebbianðW; hÞ ¼ �
XN

i¼1

XP

k¼1
ski ¼ �tracefXTWTXg þ hTX½I	;

ð26Þ
where the pattern matrix X contains each pattern Xk in its kth col-
umn, X ¼ ½X1;X2; . . . ;XP	. The unit vector ½I	 is a P� 1 column
vector that contains 1 in all its entries, ½I	 ¼ ½1; 1; 1; . . . ; 1	T. Note that
we reverse the sign of (24) to obtain this energy function to be
consistent with the popular definition. This work will follow this
definition in all discussions. The energy function for the temporal
AM, (18), is

ETAMðW; hÞ ¼ �tracefXT
shiftW

TXg þ hTXshift½I	; ð27Þ

where Xshift is a shift column version of the matrix X, which contains
the pattern vector Xkþ1 in its kth column. Note that the learning of
the weights and h derived from these two energies can sense a pattern
that is in the wrong division of the hyperplane and improve this
hyperplane. EAM and the method in (Liou and Yuan, 1999) possess
such energy functions, EHebbian and ETAM. The extreme value of
EHebbian is less than or equal to �NP for the weights in the proposed
method. In most cases the value is in between �NP and �N

ffiffiffiffi
N
p

P.
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Their trained weights, wij and hi, can be directly used in many other
neural models.

Note that one can also enlarge the basin-1 by modifying the ECR.
The energy function for the modified rule is

EECRðW; hÞ ¼
XP

k¼1

XN

i¼1
ðXk

i � viðWi; hiÞÞ2

¼ tracefðX� VðW; hÞ½I	TÞTðX� VðW; hÞ½I	TÞg; ð28Þ

where we use the sigmoid function instead of the ‘‘sgn’’ function in
ECR. One may use the modified rule to decrease this energy to its
extremes and enlarge the basin-1. We summarize in the following several
important issues related to the proposed method.

5.1. Energy function and hairy model

The energy function for the evolution of weights, (7, 10, 11), is

EðW; hÞ ¼ �
XN

i¼1

XP

k¼1
ðski Þ

2 ¼ �
XP

k¼1
½WTXk � h	T � ½WTXk � h	

¼ �tracefðWTX� h½I	TÞTðWTX� h½I	TÞg: ð29Þ

This energy is different from EHebbian. Since the summation is
accumulated over all the patterns in the above equations,

PP
k¼1, one

can develop a random sequential mode for EAM and the temporal
AM with respect to each individual pattern. EAM searches the ex-
treme on the landscape of EðW; hÞ in a gradient manner while
keeping all the patterns stable. The method contains skills needed to
reach this extreme stably by maximizing the minimum of
fski ; k ¼ 1; . . . ;Pg. Note that there is no guarantee for any gradient
based method to reach this extreme without the skills. The method in
(Liou and Yuan, 1999) also uses all the patterns as a whole and
tunes the weights according to the worst patterns. They all refine
Hebb’s postulate in order to obtain large basins. The extreme value
of EðW; hÞ is less than or equal to �NP. In most cases the value is in
between �NP and �N2P using EAM.

In almost all simulations, the evolution of states converged in a single
iteration during recall after training. This is very different from the
evolutionary recall in many other models. The energy function for recall
evolution, like that of HM, is
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EðVÞ ¼ �½VTTTV	 þ hTV; ð30Þ

where T is a network matrix and its element Tij is related to
wij;wij ¼ r1ðTijÞ: r1 is a sigmoid function, and

wij ¼ r1ðTijÞ; and
dwij

dTij
� 0: ð31Þ

This sigmoid function, r1, can be replaced by a hard-limiting acti-
vation function to facilitate operation in discrete mode.

Combining the two kinds of energy functions, (29, 30), together, we
obtain a global energy function, EðV;W; hÞ ¼ EðW; hÞ þ EðVÞ, where
EðW; hÞ can be replaced by any other energy function, i.e.,
fEHebbianðW; hÞ;ETAMðW; hÞ; or EECRðW; hÞg. Note that we set

wij ¼ r1ðTijÞ ¼ Tij ð32Þ
in all simulations. Let

vi ¼ r2fTV� hg ¼ r2fuig; ð33Þ
where r2 is also a sigmoid function (or a nondecreasing function) and
dvi
dui
� 0. EðV;W; hÞ constitutes a hairy model. See one example of this

hairy model in (Liou and Wu, 1996). The hairy model possesses a global
energy function for the evolution of both weights and states. This
energy will give two dynamic equations, which are used to evolve both
the weights and the states. They are

dui
dt
¼ � oEðV;W; hÞ

ovi
and

dTij
dt
¼ � oEðV;W; hÞ

owij
: ð34Þ

The network will employ these two dynamic equations to reduce the
global energy. These two dynamic equations reinforce each other to
stablize the memories and tolerate contamination. It has the homeo-
static quality as a self-regulating network to resist both minimal per-
turbations and structural perturbations (Kauffman, 1991). The hairy
model plasticizes a neural network toward its goal. It possessses all of
the merits of ECR and HM. It is the deterministic analogue of Gibb’s
free energy model (Szu, 1989, 1999). The proposed EAM is useful for
plasticizing the discrete Turing’s B-type unorganized machine in (Ince,
1992) as an associative memory.
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5.2. Convergence and stability

The EAM operates in batch (or collective) mode. The EAM can be
rewritten to operate in sequential mode. The EAM operates in a very
conservative manner. When the network starts with a stable pattern,
it remains stable with an enlarged basin-1 iteration after iteration.
The EAM will stop when the basin-1 cannot be enlarged. One may
stop the iteration at any time without damaging the stability of the
pattern.

When the network starts with an incorrect pattern transition, the
temporal AM improves the worst (most vulnerable) transition among
all the transitions for each bit sequentially. There is no guarantee that a
correct transition can be achieved if one sets an incorrect transition at
the beginning.

5.3. Capacity

The EAM can store more than N patterns or transitions. This number
has been used in many modern designs (Kanter and Sompolinsky,
1987). The EAM can accomodate stable patterns up to the network
limit, 2N.

5.4. Computation cost

The EAM operates in one shift. Each hyperplane is adjusted in turn.
Each iteration improves the location of a hyperplane. The computa-
tional cost is linearly proportional to the network size, N, and the
number of patterns, P.

5.5. Learning parameters

The learning parameters in EAM should be chosen carefully. When the
number of neurons N is large, the distance from the corners to the
origin,

ffiffiffiffi
N
p

, is also large. A little adjustment in the direction Wi of a
hyperplane will cause many corners to move from a positive division to
a negative one or vice versa. Therefore, the learning rate should not too
large in the case of a large N. The rate would be better if one sets it a
value proportional to 1=

ffiffiffiffi
N
p

.
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5.6. Training with noisy patterns

When there are P classes of noisy patterns, one may apply the EAM to
adjust the hyperplanes such that an entire class will be isolated in the
same division. All the patterns that belong to a class will be used in a
batch during a training iteration. All the distances, ski , that belong to a
class will be calculated in each iteration, and the minimum distance (or
the worst one) should be used as the distance between this class and the
hyperplane. The center of a class will be the only stable corner in this
class division enclosed in basin-1. This center may not be a training
pattern. This kind of center is a cluster center in some sense close to that
by the Hamming distance. This center is extremely useful for repre-
senting a class and restoring noisy images. The EAM can be used in
place of the annealing techniques to achieve tolerance for stored pat-
terns with less computation.

5.7. Multilayer perceptrons, recurrent network, and Boltzmann machine

The weights obtained using the EAM have been used in multilayer
perceptions and recurrent networks between two connected layers (Liou
and Yu, 1995) to accomplish various goals successfully, such as error
tolerance, associative memory, and replicator. To directly use the
trained weights, the two connected layers must have the same number of
neurons. Since the EAM operates neuron by neuron, it can be slightly
modified for two connected layers with different numbers of neurons.
The modified method is similar to that for the temproal AM. The
weights have also been used in Boltzmann machine and mean-field
theory to accomplish similar goals.

5.8. Summary

This work has proposed a method to explore the flexible space in
between two pattern sets, fXk; k ¼ 1; . . . ;P; and Xk

i ¼ 1g; fXk;
k ¼ 1; . . . ;P; and Xk

i ¼ �1g, so as to locate the decision hyperplane so
that it is consistent with the dichotomy inequality, (5). This is done by
enlarging the decision division basin-1 to include as many neighboring
noisy patterns as possible for each stable pattern. This enlargement
indirectly improves the entire basin in a chain-reaction-like manner and
gives better tolerance. This work has shown its superior performance
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based on the results of massive random simulations. We highly rec-
ommend to use the weights given in (14) in many networks.

The EAM derives asymmetric matrices and nonzero diagonal ele-
ments, and still keep the arguments of Hebb’s postulate. Also, each
hyperplane is independent of all others during training. This is very
different from the correlation matrix designs, which are based on the
pseudo-inverse approach.

The EAM can be used for sparsely-connected networks in a way
similar to that for the fully-connected networks. In a sparsely-connected
network one set fwij ðtÞ ¼ 0g for all iterations for those unconnected
neurons and set the initial weights as in (13). The method then operate
the EAM to tune the connected weights only. Note that a hyperplane
which has many zero weights, fwij ðtÞ ¼ 0g; preserves similar properties
of stability as that with the weights in (13).

This work has devised the required energy function (29) and
dynamics, built them as standard neural models, and fit them as the
hairy model, which has a global energy function, EðV;W; hÞ, and two
dynamic equations (34). To our knowledge, this is the only hairy model
directly constructed so far.

Finally, we would like to emphasize that the arguments of the
EAM can be equally applied to the spin glass model in (Hopfield,
1982) and its stochastic version. Also, when one applies the EAM to a
subset of neurons of a network, these subset neurons act as a whole
and form stable local memories. These local memories serve to the
whole network as multiple and temporal references. This is contrary to
the frozen island in random boolean network in (Kauffman, 1991)
which serves as a fixed rigid reference (backbone) to the network. One
can train these subset neurons as a communicating pathway
embedding in the network. One may train the interconnected weights
between two subsets to build a potential pathway between subset
memories similar to the bidirectional model. One can easily build an
attentional subsystem for the network based on these subset neurons
to implement selective attention tasks.
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