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Abstract: This paper presents the application of a 
self-organizing map (SOM) model for the reconstruction of 
cerebral cortex from MRI images. The cerebral cortex is an 
important tissue for many brain science or medicine related 
researches. Since it is difficult to extract the highly folded and 
buried cortical surface, we apply the SOM model to deform the 
easily extracted white matter surface on a layered distance map 
to obtain the cortical surface. The layered distance map is 
calculated according to the extracted white matter surface and 
segmented gray matter. The proposed method can reconstruct 
the proper cortical surface and thus make the measurement of 
cortical thickness easy. The simulations on T1-weighted MRI 
images show that the proposed algorithm is robust to 
reconstruct the cerebral cortex. 
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I. Introduction 

Recently, due to the advanced magnetic resonance imaging 
(MRI) techniques, MRI scans are often used in the analysis of 
cognitive neuroscience, diseases (e.g., epilepsy, 
schizophrenia, Alzheimer's disease, etc.), and anatomical 
structures, etc. With high spatial resolution and soft-tissue 
contrast, MRI scans have a great potential to be used in 
research into anatomical structures of human brains in vivo. 
In general, there are three major brain tissues which can be 
approximately partitioned in human brains, i.e., cerebral 
spinal fluid (CSF), gray matter (GM), and white matter 
(WM). Modern anatomical MRI studies on human brains 
have been concentrated on the cerebral cortex, which is a thin 
and folded layer between GM/WM and GM/CSF interfaces 
[1, 2], i.e. the GM. Therefore, the reconstruction of cerebral 
cortex means to extract GM/WM and GM/CSF boundaries 
and rebuild its surface. There have been a lot of methods 
proposed in the literature to solve this problem [1–4]. These 
methods can be roughly classified into two categories: 
stochastic and morphological models.  

The stochastic models [2, 3] employ labeled cortical mantle 
distance maps or intensity distance histograms related to the 
GM/WM interface so that the extraction of GM/CSF 
interface is needless. On the other hand, the morphological 
models apply the dilation of GM/WM interface [1, 4] to 
extract the accurate GM/CSF boundaries due to the obvious 
and easily extracted GM/WM interface. In the latter, a cortex 
is usually regarded as a double surface structure [1]. During 
the deformation process, the tissue partition scheme is 
embedded and the exterior surface following the interior 
surface is deformed with some constraints to find out the 
GM/CSF interface. Unfortunately, the extraction of accurate 
GM/CSF interface is difficult and still a challenge due to the 
image resolution and the highly folded and buried cortex 
joined with partial volume effects. That is, one of the major 
difficulties is the tissue partition problem. Simultaneously, 
those deformation constraints are also difficult to be adjusted 
to satisfy the complex situation.  

There are many segmentation algorithms proposed to solve 
the tissue partition problem [5–7]. If the perfect or expert 
segmentations are prior performed, is it possible to extract 
the GM/CSF interface by a simple model? In our study, we 
focus on this issue that is how to reconstruct the cortex by a 
simple model on the segmented MRI images. In other words, 
in MRI images, there exists the sulci full of GM but no CSF 
can space them at intervals, i.e., the hidden cortex defined in 
the laminar cortex model [2]. In this paper, we apply the 
self-organizing map (SOM) model [8-10] which is aided with 
a layered distance map (LDM) to deform the GM/WM 
interface to find out the GM/CSF interface. In the simulation 
and experiment, we use a simple artificial image, a 
two-dimensional (2-D) T1-weighted MRI image, and 
three-dimensional (3-D) T1-weighted MRI data for test. Our 
studies on T1-weighted MRI scans show that the proposed 
method gains more precise results to reconstruct cortical 
surface. 
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II. The Problem 

In the cerebral cortex, there are many narrow and deep 
fissures called sulci. These concave parts sometimes contain 
invisible or unrecognizable CSF, which makes the 
reconstruction of cerebral cortex laborious. For to easily 
understand the problem, a T1-weighted MRI image shown in 
Fig. 1(a) is illustrated. This image shows a sulcus structure, 
i.e. the region of interest (ROI). Its segmented image is 
shown in Fig. 1(b), where the white color region represents 
WM, the gray color region indicates GM, and the black color 
region is background, CSF, and other tissues. It is easy to 
extract the boundaries of the GM, as shown in Fig. 1(c). 
However, there should exist an interval within the sulcus as 
shown in Fig. 1(d). If the inner (WM) boundary line is 
deformed outward to extract the outer (GM) boundary, it will 
probably fail to catch the interval due to fewer extractable 
features inside the sulcus.  
 

  
(a)                       (b) 

  
(c)                       (d) 

Figure 1. Illustration of a missing interval within a sulcus in 
a T1-weighted MRI image: (a) the raw image and the ROI, 
(b) its segmented image and the ROI, (c) extracted boundary 
of ROI, (d) ideal boundary of ROI. 
 

III. Methods 

A. The Layered Distance Map (LDM) 

Since it is difficult to partition tissues inside sulci, the real 
GM surface is also hard to be extracted. Fortunately, the 
GM/WM boundaries are obvious and can be easily extracted. 
One popular way is to dilate the GM/WM interface to extract 
the GM/CSF boundaries. In our method, this kind of dilation 
strategy is also employed and assisted by a layered distance 
map (LDM). In [2, 3], the distance map of labeled tissues is 
proposed to create a secondary data structure. Accordingly, 
two features including intensity and distance can be obtained 
for statistical testing. The distance is calculated by the 
shortest Euclidean distance from each voxel to the GM/WM 
surface. However, this measure can not avoid the structure 
problem, e.g. crossing a CSF gap to find the shortest distance, 
and will cause error distance measure. Therefore, we propose 

the LDM to overcome this problem.  
The LDMs are acquired from the segmented MRI images 

by a layered distance function (LDF), i.e. L(p), where p is an 
input voxel coordinate. Those voxels of GM and WM are 
first defined as two sets, G and W, respectively. The LDF is 
formulated as 

( ( )) ( ) 1,  ( ) ,L N q L q N q G= + ∈      (1) 

where q represents labeled voxel coordinates and N is a 
neighborhood function in which the 6-connectivity is used, 
i.e., the 6-neighbors of q are denoted by N(q). For 
initialization, the distance values of GM/WM interface are 
labeled as zeros, i.e., L(q)=0, q∈W. Those unlabeled GM 
voxels which are 6-neighbors of WM voxels are secondly 
labeled as ones by (1). The LDF is calculated iteratively all 
over the segmented MRI images until all GM voxels are 
labeled. Finally, the distance values of all unlabeled voxels, 
e.g. CSF or other tissues, are also set to zeros.  

Figure 2 shows one slice of 3-D MRI data and its LDM. The 
various thickness in this LDM results from the 3-D MRI data 
structure. In Fig. 2(a), the image is partitioned into WM 
(white color), GM (gray color), and others (black color). The 
boundaries of GM are not well extracted inside the sulci. 
However, according to LDF, the segmented image can be 
processed to construct different layers in the GM as shown in 
Fig. 2(b). Once the LDM is constructed, it will help the 
GM/WM interface to deform outward to find out a proper 
GM/CSF interface. 
 

  
(a)                          (b) 

Figure 2. A segmented MRI image (a) and its layered 
distance map (b). 
 

B. Approximation of a Surface 

In mathematics, a surface can be defined to be a 2-D 
submanifold of 3-D Euclidean space. In order to approximate 
a surface in a simple and discrete manner, a mesh surface 
constructed by small triangles is defined. A triangle which is 
also called a face contains three edges and three vertices and 
encloses a plane. This portion of the plane is called the 
triangle interior and the plane is a 2-D surface spanned by 
two vectors originating at any one of the three vertices. An 
edge is a line segment on the boundary of a triangle. Two 
triangles can meet at an edge and share two vertices. Each 
vertex is a coordinate point in 3-D Euclidean space, i.e. R3. 
The surface is smoothly approached by mesh when the 
triangles are very small. On the contrary, it is roughly 
approached when the triangles are large. 
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C. The Self-Organizing Map (SOM) Model 

The SOM model is an effective algorithm for the mapping 
between the neuron model and input data sets. It is a 
nonlinear, ordered, and smooth function that can map a 
high-dimensional data set onto a low-dimensional neuron 
model set, e.g. 3-D space data maps to a 2-D array of grid 
nodes. The visualization of high-dimensional data, therefore, 
can be easily achieved by a low-dimensional display. In our 
applications, it is desired to deform the GM/WM interface to 
find out the GM/CSF interface. The boundary voxels of WM 
are defined as the neuron data set. Then voxels on each layer 
of the LDM are established to be the input data set. The SOM 
model is applied to construct the mapping between the 
neuron data and the input data layer by layer. Finally, the 
GM/CSF interface is reconstructed by the converged neuron 
data set. 

The proposed SOM model is mathematically described in 
the following. It is a multi-layer SOM procedure starting with 
L=1 in the LDM, L=1, 2, 3…. First, those voxels on the layer 
L−1 whose all 6-neighbors do not belong to the layer L are 
changed to layer L in the LDM. This step is to keep those 
probable boundary voxels, which disconnect to next layer, all 
the time during SOM processing. Then, all voxels on this 
layer L of LDM are defined as a point set 3

,L ig G R∈ ⊆ . 

Each voxel represents a coordinate value ,L ig  indexed by the 

current processed layer L and the subscript i. The layer starts 
from the lowest layer to the highest one, i.e., the layer near 
the GM/WM interface is processed first. The layer L=0 
means the GM/WM interface. The GM/WM interface is also 

defined as a point set 3
jw W R∈ ⊆ , where jw  represents 

boundary points on GM/WM interface. In our simulation, the 

initial jw  is the mesh vertices on the GM/WM interface. The 

best matching function is defined as 

, , ,( ) min ,   , ,j L c j L i j L i j
i

f w g w g w g G w W= − = − ∈ ∈   (2) 

where jw  is the randomly selected neuron data, ,L ig  is the 

input set or reference data, and ,L cg  is the nearest input data 

point corresponding to neuron jw . The smallest of the 

Euclidean distances ,L i jg w−  can be made to define the 

best matching point. Its update function denotes 

,( 1) ( ) ( ) ( , )[ ( )],j j L c jw k w k k H D k g w kα′ ′ ′+ = + −   (3) 

where jw ′  including jw  represents all neighbors around 

jw , k = 0, 1, 2…is the iteration number, ( ) [0,1)kα ∈  is the 

learning rate, and H is the neighborhood function which 
decreases when the distance metric D and iteration k increase. 
The update function is iteratively proceeded until the average 
variation of input data is less than a threshold value,• . The 
Gaussian function is usually applied to be the smoothing 
kernel, i.e. 

2
( , ) exp ,

2 ( )

D
H D k

kσ
 

= − 
 

      (4) 

where ( )kσ  is the standard deviation, i.e. the width of the 

smoothing kernel. The distance metric ( , )D D j j′≡  defines 

the distance from jw ′  along the surface to jw . When j ′  is 

equal to j, i.e. j jw w′ = , D is zero and the neighborhood 

function H has the maximal value 1. 
 

IV. Simulation and Experiment 

At first, a 2-D 32x32-pixel artificial brain sulcus image 
shown in Fig. 3(a) is designed, where the white color region 
represents WM, the gray color region indicates GM, and the 
black color region is CSF or other tissues. This image shows 
a sulcus structure full of GM and no CSF inside. The zigzag 
shape occurs due to low image resolution. The shortest 
distance is measured to evaluate the results. The extracted 
GM/WM and GM/CSF boundaries are shown in Fig. 3(b), 
where the maximal distance is 17.1 pixels, the minimal 
distance is 3.2 pixels, and the mean distance is 8.2 pixels. The 
ideal (reference) boundaries of the GM/CSF are shown in 
Fig. 3(c), where the maximal, minimal, and mean distances 
are 5.4, 3.0, and 4.1 pixels, respectively. The LDM, shown in 
Fig. 3(d), is first calculated according to the GM/WM 
boundaries, i.e. the bottom edge in Fig. 3(b). Then the 

GM/WM boundary line, i.e. the initialized jw , is deformed 

by the proposed SOM model with the LDM. Although there 
is no boundary inside the artificial brain sulcus, the 
deforming line is still kept inside the sulcus. The proposed 
method is successively proceeded 100 times to obtain an 
average result, as shown in Fig. 3(e), where the maximal, 
minimal, and mean distances are 6.2, 3.1, and 4.2 pixels, 
respectively. The experimental result by using the 
conventional SOM model (without LDM) is shown in Fig. 
3(f), where no boundaries are detected inside the sulcus. 
 

   
(a)                     (b)                    (c) 

  
(d)                       (e)                     (f) 

Figure 3. Experiments on a 2-D artificial brain sulcus image: 
(a) the raw image, (b) the boundary image of (a), (c) the ideal 
(reference) boundary image, (d) the LDM, (e) an average 
result of 100 times experiments by the proposed method, (f) 
the result by using the conventional SOM model (without 
LDM). 



Application of Self-Organizing Map 29 

The second experiment is a 2-D 181x217-pixel 
T1-weighted MRI image with its expert segmentation result, 
as shown in Figs. 4(a) and 4(b). The image resolution is 1 mm. 
From the expert partition result, boundary pixels of GM/WM 
(inner) and GM/CSF (outer) interfaces can be extracted as 
shown in Figs. 4(c) and 4(d), respectively, where the 
GM/CSF boundary contours are disconnected and some of 
sulci lose their boundary information. The shortest distance 
between GM/WM and GM/CSF interfaces is also measured. 
In Fig. 4(d), the maximal and mean distances are 19.9 and 3.9 
mm. The boundary contours shown in Fig. 4(c), i.e. the 

initialized jw , are used to compute LDM and deform by the 

proposed algorithm. Fig. 4(e) shows the experimental result 
where the maximal and mean distances are reduced to 8.1 and 
3.0 mm. The boundary contours are clear and orderly. It is 
acceptable and shows the robustness of reconstruction in the 
sulci by the proposed method. Also, the experimental result 
by using SOM model without LDM is shown in Fig. 4(f), 
where the maximal and mean distances between GM/WM 
and GM/CSF interfaces are 16.6 and 3.3 mm. It is obvious 
that boundary contours are disorderly by using the 
conventional SOM model (without LDM). 

The experiment is extended to 3-D T1-weighted MRI data. 
To implement the proposed methods, a successful partition of 
MRI data into GM and WM is needed. The MRI data with 
expert segmentations of 43 individual structures is acquired 
from the Internet Brain Segmentation Repository (IBSR). 
The data is first resampled into a resolution of 1 mm3. One 
slice of this MRI data and its segmentation result are shown 
in Fig. 5(a) and 5(b), respectively. In Fig. 5(b), the white and 
gray color regions represent WM and GM, and the black 
color region is background, CSF, and other tissues. The 
problem described in Section 2 is serious in this case. The 
GM/WM surface shown in Fig. 5(c), is reconstructed by the 
isosurface extractor in the MATLAB functions and is used to 

be the initialized jw  in (2) and (3). For saving the 

computational cost, the number of mesh vertices is reduced 
to about 19,000. The GM/CSF surface reconstructed by the 
segmentation result is also shown in Fig. 5(d). There is 
almost no sulcus existing in the reconstructed GM/CSF 
surface. On the other hand, from the segmented MRI data, the 
LDM is performed by (1). The GM/CSF surface shown in Fig. 
5(e) is then formed by the proposed method. It is obvious that 
many sulci are clearly presented. Fig. 5(f) shows the result by 
using the conventional SOM model (without LDM), where 
the reconstructed surface is smooth and only the longitudinal 
cerebral fissure appears. 

 
 

 

  
(a)                                (b)                             (c) 

   
(d)                                (e)                             (f) 

Figure 4. Experiments on a 2-D T1-weighted MRI image: (a) 
the raw image, (b) the expert segmentation image, (c) the 
inner boundary image, (d) the outer boundary image, (e) the 
result by the proposed method, (f) the result by using the 
conventional SOM model (without LDM). 
 

   
(a)                                 (b)                          (c) 

   
     (d)                            (e)                           (f) 

Figure 5. Experiments on 3-D T1-weighted MRI data: (a) 
one slice of MRI data, (b) the expert segmentation image of 
(a), (c) the extracted GM/WM surface from the segmentation 
data, (d) the extracted GM/CSF surface from the 
segmentation data, (e) the reconstructed GM/CSF surface by 
the proposed method, (f) the reconstructed GM/CSF surface 
by the conventional SOM model (without LDM). 
 

V. Conclusions 

In this paper, the SOM model is applied to reconstruct the 
human cerebral cortex from MRI scans. The method provides 
a good capability to deform the GM/WM surface outward to 
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find out the GM/CSF surface. The only requirement is the 
segmented MRI data where GM and WM are partitioned. 
The layered distance map computed from the segmented data 
is proposed to help the SOM model to deform the GM/WM 
surface to a proper position of GM/CSF surface. Based on 
this method, even the 3-D highly folded GM/CSF surface can 
be reconstructed. However, in the 3-D case, one of the 
disadvantages is the heavy computational cost if the image 
resolution is very high or a large number of vertices and faces 
used to approximate the smooth surface are applied. 
Therefore, to improve the computational efficiency is the 
important future work. Also, from the reconstructed cerebral 
cortex, the measurement and analysis of the cortical 
thickness in association with some clinical diseases, e.g. 
neurodegenerative diseases and psychiatric disorders, are the 
advanced research topics. 
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