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ABSTRACT 

The change detection of driving circum- 
stances is an important matter for the driver 
assistance system. While the computational ability of 
computers has been exceedingly excellent, the 
change detection ability of computers cannot match 
that of human beings. Human detection can be 
attributed to both parallel processing and distributed 
representation. In this paper, we proposed a general 
computational framework for modeling the parallel 
processing and information representation of human 
nervous systems. Since artificial neural networks 
supply ways to simulate human brains, they are 
utilized in this study to implement our computational 
framework. For example, the attention map of human 
beings is simulated by a temporal self-organizing 
feature map (TSOM), and the categorical perception 
is modeled by a configurable adaptive resonance 
theory II (CART2). In this paper, the computational 
framework is utilized to develop a system for 
detecting environmental changes. The experimental 
results show that our method can work well. 

Index Terms--- change detection, parallel processing, 
distributed information representation, attention 
map, perception, SOM neural network, ART 
neural network. 

I. INTRODUCTION 

To understand the driving environments of 
vehicles immediately and remind the driver paying 
attention to the change of driving environments to 
avoid traffic accidents is one of the main objectives 
of vision-based driver assistance system. For 
understanding the complex driving environments, the 
vision-based driver assistance system should 
combined many detection subsystems, including road 
detection, road sign detection, and obstacle detection 
subsystems [3, 4]. These subsystems are all important 
thus it is difficult to decide which one should operate 

at the moment. Moreover, to keep on operating these 
subsystems consumes more system sources and time 
than to invoke them only when necessary. For 
example, it would be better if the road sign and 
obstacle detection subsystems operate only when 
these objects have appeared in view. Thus, it is 
essential to develop a subsystem to decide if any 
other detection subsystem should operate now. 

Since the change of driving environments is 
extremely complicated, in this paper, we concentrate 
on the change detection of road conditions in 
expressway. Our change detection subsystem could 
detect some environmental changes in expressway, 
such as lane-change, expressway-entry, expressway- 
exit, tunnel-entry, tunnel-exit and viaduct-ahead 
conditions. 

Although the computational ability of 
computers has been exceedingly excellent, the 
detection ability of computers cannot match that of 
human. The efficiency of human detection can be 
attributed to the parallel processing ability and the 
distributed information representation of neural 
networks in brain. Distributed information 
representation indicates that human beings memorize 
their experiences on the connections between the 
neurons, not on the neurons themselves. Therefore, 
the memory capacity of human can be almost 
unlimited [1]. On the other hand, the property of 
parallel processing constitution allows human to 
associate the distributed information for an instant 
even if the memory database is extremely large. 
Under these special properties, the neurons in neural 
networks can simultaneously process their own 
received stimuli and propagate the outputs to others. 
This means information, scattered every-where in the 
cortex, can be interchanged immediately and in 
parallel through the connections between neurons. By 
way of the exchanged process, high-level information, 
including abstract concepts, can be constructed and 
supplied to our brain to analyze and understand the 
various complex situations especially those cannot 



work out with the sequential process. Therefore, we 
designed a simulated framework to model the parallel 
detection process and the information representation 
of human brain. 

II. COMPUTATIONAL FRAMEWORK 

The flowchart of our general computational 
framework of environmental change detection system, 
developed based on the recognition process of human, 
is shown in Figure 1. One video sequence regarded as 
a continuous stimulus is fed into our system. First, 
the signal noises are removed and the image size is 
reduced in the preprocessing stage. Second, similar to 
the analyzers in human brain [1], our system extracts 
the spatial and temporal information from the 
stimulus and outputs the activation of cognitive units. 
If the activation of cognitive units is too low, nothing 
can strongly attract our attention, then our system 
waits for the following stimulus. Otherwise, the 
system outputs the attentional focus since the 
cognitive units have been already highly excited. This 
stage can be implemented by temporal self- 
organizing feature map (TSOM). 

Human beings first take notice of the 
attractive objects, such as moving objects or 
bright-color objects, and then recognize them. For 
example, when we are driving, the road signs become 
closer to us from afar. We may first be attracted by 
their colors and shapes, and then recognize their 
meaning, such as no right turn signs, no left turn 
signs, and so on. In our system, the recognition 
process, called categorical perception, is simulated by 
configurable adaptive resonance theory (CART). 

Similar to the structure of human analyzers, 
the output pattern from TSOM neural network can be 
regarded as an input supraliminal pattern of another 
subsystem. On the other hand, one subliminal expec- 
tation is associated from the long-term memory 
(LTM), which memorizes all the learned experiences 
of our system. However, instead of searching all 
experiences in the LTM, our system only looks 
through the suitable part in it. Where the subliminal 
expectation should be looked for in the LTM depends 
on the previous experiences of our system and the 
special characteristics of the input pattern. After the 
subliminal expectation has been found, it is compared 
with the supraliminal pattern. If they are exactly 
equal, then perception is undoubtedly successful. 
However, in most successful cases, the two patterns 
are only similar enough to each other. Our system 
will properly adapt the subliminal expectation in the 
LTM guided by the supraliminal pattern, and the 
adapting step is called supervised learning. If the two 
patterns are a mismatch, it means our system is in a 
situation that has never been seen before, the system 
should learn the new experience through 
unsupervised learning. 

III. PREPROCESSING STAGE 

The input data of our environmental change 
detection system are color video sequences recorded 
by a camcorder mounted on a moving vehicle. Under 
the influence of camcorder and vehicle jolt, the input 
images become highly unstable and the difficulty of 
condition change detection is greatly increased. Thus, 
we design a preprocessing step to surmount this 
difficulty.  

The flowchart of the preprocessing stage is 
shown in Figure 2. One image I(t) of an input video 
sequence, I, is fed into the road condition change 
detection system. First, the image I’(t) is sub-sampled 
from image I(t) to reduce the time complexity 
(320X240 → 160X120 pixels). Second, the low- 
intensity image L(t) and the high-intensity image H(t) 
are accumulated separately. The low-intensity image 
preserves the minimum values of corresponding 
pixels between images I’(t) and L(t-1), i.e. 
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Third, after subtracting the pixel values in image L(t) 
from those on the corresponding positions in image 
H(t), we get the difference image D(t), i.e. 
D(t)=H(t)-L(t). Fourth, the second difference image, 
S(t), represents the absolute difference between 
images D(t-1) and D(t), i.e. S(t)=|D(t)-D(t-1)|. Finally, 
image S(t) is then fed into TSOM neural network as 
the input stimulus to simulate the attention map. If 
the stimulus is strong enough to attract system 
attention (e.g. lane-change, tunnel-entry, and 
tunnel-exit), then the focus of attention is output to 
the CART subsystem. Moreover, the images L(t), H(t), 
and D(t) are all reset for the next change detection. 
Otherwise, image D(t-1) is replaced by D(t), i.e. D(t)
←D(t-1), and the system waits for the next image. 

Figure 4 illustrates an experimental result of 
the preprocessing stage in our change detection 
subsystem. In Figure 4, column (a) shows ten images 
of a video sequence input to our system. The first 
image is on the top of this column and the following 
input images are arranged downward in temporal 
order. Columns (b) and (c) show the high-intensity 
and low-intensity image sequences respectively. To 
maintain these two image sequences is able to avoid 
the affect of camcorder and car jolt. Afterwards, the 
difference image sequence D calculated from H and L 
is in column (d). Finally, column (e) indicates the 
second difference image sequence S. The second 
difference images represent the change amount of 
driving environment from a time t to t+1. If there is 
no driving environment change in the short time 
period, then the second difference image S(t) should 
be dark. In this example, image S(t) can detect 
tunnel-entry, but is robust to jolt because lane 
markers will fall in side lane marker cluster during a 
jolt, not during tunnel-entry. 



IV. TEMPORAL SELF-ORGNIZING  
FEATURE MAP 

In our environmental change detection system, 
the input video sequences not only carry the spatial 
information in each image, but also hide the temporal 
information between the successive images. Thus, we 
create a temporal self-organizing feature map 
(TSOM), which can accept continuous stimuli and 
whose feature map can describe both spatial and 
temporal topological relations. Since TSOM is 
utilized to model the attention map in our brain, the 
feature map of SO layer can be called the attention 
map. 

The TSOM neural network, as Figure 3 shows, 
is structured as a two-layer network: one input layer 
and one output layer. The output layer is more often 
referred to as an SO layer. Neurons on this layer are 
arranged into a 2D array in which neurons are 
interconnected to one another. These connections are 
called within-layer connections. There are no 
synaptic links among input neurons; they are, 
however, fully connected to the SO neurons. These 
connections are called between-layer connections. 
Between-layer connections are always excitatory, 
while within-layer connections are almost always 
inhibitory. 

Suppose that the input layer of the neural 
network consists of m neurons and the output layer 
comprises n neurons. Let wij denote the strength of 
the link between output neuron i and input neuron j. 
The strength vector of output neuron i is written as wi 
= (wi1, wi2,…,wim). The input to output neuron i due to 
innervation x at time t is defined by  
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Let uik be the synaptic strength of the 
connection between neurons i and k with the 
respective positions ri and rk. The input to output 
neuron i due to lateral interaction can be formulated 
as,  
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where the lateral interaction M(.) is approximated by 
the Laplacian of Gaussian )(2 rg∇ ; N is the set of 
output neurons and ak is the activation of neuron k 
and ak is the activation of neuron k. Now, we obtain 
the net input to neuron i on SO layer as 
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where bs and cs are positive constants; Γ  is a 
threshold to avoid the noise effect; and the functions 
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where 01 >> sd . The transfer function of SO 
neurons is generally simulated using a sigmoid 
function. Thus the real activation of neuron i is 
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In Figure 4, column (f) shows the 
experimental results of the TSOM neural network, 
where bs = 0.5; cs = 1; ds = 0.5; and image size is 
160X120. In the experiment, the focus of attention is 
highly concentrated in the attention map, even the 
camcorder and vehicle jolted along and one of the 
road borders is a dash line. 

V. ADAPTIVE RESONANCE THEORY 

As we mentioned before, the memory 
capacity of our brain is almost unlimited because the 
information is scatteringly stored on the connections 
among neurons, not on the neurons themselves. Thus, 
the various neural networks can share the same 
neurons with others even if they worked for different 
mental processes. If necessary, our brain could 
immediately collect a set of neurons to construct a 
suitable neural network for a specific mental process. 
After the mental process has been accomplishment, 
the neural network is then destroyed and the neurons 
in the neural network can be reused by another neural 
network for another mental process. Neural networks 
having this property are called configurable neural 
networks. In this section, we discuss the configurable 
adaptive resonance theory (CART) neural network. 
Moreover, we select ART2 from ART family to 
classify the attention map because of its unsupervised 
processing ability and acceptance of floating patterns. 

Figure 5 sketches the ART2 architecture [2] 
consisting of two main modules: the attentional and 
the orienting modules. The attentional module is 
further divided into two fields: an input 
representation field, F1, and a category representation 
field F2. There are top-down and bottom-up full 
connections between these two fields. Prototypes of 
patterns are to be reserved on these connections in 
terms of their synaptic weights. The F1 field consists 
of six layers, w, x, v, u, p, and q. Bottom-up input 
patterns and top-down predicted prototypes will be 
matched in this field. Field F2 has only one layer, 
denoted y. This layer can be realized by any gated 
dipole field network and serve as a competitive layer. 
The orienting module consists of two components: 
one layer, specified r, and one signal generator, 
denoted S. Layer r is connected to layers p and u in 
the F1 field which aggregates the activities of p and u 
and transmits the result to the signal generator S. It 
then decides based on the result whether or not to 
emit a reset signal to the layer y in field F2. If a signal 
is emitted, the currently activated neuron on y is 
prohibited and the entire process is repeated; 



otherwise, the neuron either modifies the prototype 
reserved by the neuron, or learns the input pattern as 
a new prototype, or rejects the input pattern because 
the memory has been full. In addition to the 
aforementioned layered structures, there are three 
gain control units in the F1 field, and two gain control 
units in the orienting module. The gain control units, 
implemented by on-center off-surround networks, 
play the role of normalizing the activity patterns of 
neurons on layers. 

In summary, the computational process of 
CART2 is as follows [2]: 

(1) Initialize the fully-connected weights between 
fields F1 and F2. 
(a) Initialize the top-down weights to zero. 
(b) Initialize the bottom-up weights by  
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where 0 < da < 1 and M is the number of 
neurons on each layer in field F1. 

(2) Set all layer and sublayer outputs to zero vectors, 
and the cycle counter to one. 

(3) Input a pattern i to the w layer, and propagate to 
the x, v, and u layer by equations as follows: 
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where aa and ba are positive constants, and e is 
a small value preventing neural activities from 
becoming infinite when no signal is present on 
the layers. Function f conducts a contrast 
enhancement to the input pattern defined by 
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where θ  is a positive constant less than one. 

(4) Propagate the output of u sublayer to p and q 
sublayers using equations as follows:  
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Function g is a transfer function of the neurons 
on layer y given by, 
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where J indicates the winner on layer y and da 
is a constant between 0 and 1. Input Tk is the 
net input from layer p to the kth neuron of 
layer y: 
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where zik is the bottom-up weight from the ith 
neuron of layer p to the kth neuron of layer y. 

(5) Repeat steps (3) and (4) until the values of 
sublayers on the field F1 is stable. 

(6) Calculate the output of the r layer using by  
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where ca is a constant subject to the constraint 
that 1))1(( ≤− aaa ddc .  

(7) The orienting subsystem decided whether to 
output the reset signal. 
(a) If 1)( >+ reρ , then reset the winner on 

field F2, and set the cycle counter to one, go 
to step (3). 

(b) If 1)( ≤+ reρ , and cycle counter is one, 

then increment the cycle counter, and go to 
step (8). 

(c) If 1)( ≤+ reρ , and cycle counter is greater 

than one, then go to step (11). 

(8) Propagate the output of the p sublayer to field F2. 
Calculate the net inputs of neurons in field F2. 

(9) According to function g, only the winner on field 
F2 has nonzero output.  

(10) Repeat steps (4) through (7). 

(11) Modify bottom-up weights and the top-down 
weights between fields F1 and F2: 

a

i
jiij d

u
zz

−
==

1
 

(12) Remove the input vector. Restore all inactive F2 
neurons. Return to step (1) with a new input 
pattern. 

In our application, the input images are the 
sub-sampled attention maps. The attention maps are 
sub-sampled to avoid the noise effect and to reduce 
the time complexity (160X120 → 80X60 pixels). 
Before classification stage, the training stage should 
be finished to memorize the learned patterns into the 
LTM. Once a supraliminal pattern, an attention map, 
input ART2, the subliminal expectation should be 
looked for in the LTM and compared with the 
supraliminal pattern. If they are similar enough, then 
the input pattern is successfully classified and learned 
into our system by supervised learning. On the other 
hand, if none of subliminal expectations is similar to 
the input pattern, the system should learn the input 
pattern to be a new class through unsupervised 
learning. 

Figure 6 shows the experimental result of the 
CART neural network. There are 20 attention maps 
input to the CART neural network, and these 
attention maps are classified into ten classes. The 
maps in columns (a), (b), and (c), all happen when 
vehicles change to left lane, and the maps in columns 



(f) and (g) both happen when vehicles change to right 
lane. Column (d) indicates the map class that vehicles 
enter the tunnel, and the maps in column (e) show the 
vehicles exit the tunnel. Besides, column (h) shows 
the expressway-entry class and column (i) shows the 
expressway-exit one. Finally, column (j) shows the 
viaduct-ahead case. This classification result is 
correct, where aa = 0.1; ba = 1; ca = 0.1; da = 0.9; e = 
0.0000001; ρ  = 0.99; θ  = 0.0001. 

VI. CONCLUSION 

This paper described a method to detect the 
road condition change, including lane-change, 
expressway-entry, expressway-exit, tunnel-entry, 
tunnel-exit and viaduct-ahead conditions. The input 
data of our environmental change detection system is 
color video sequences recorded by a camcorder 
mounted on a moving vehicle. Thus first, we design a 
pre- processing stage to surmount this difficulty from 
the influence of camcorder and vehicle jolt. Second, a 
TSOM neural network is created to model the 
attention map in our brain for detecting the 
environmental changes. Finally, CART2 neural 
network is utilized to classify the environmental 

changes. We will try to detect more changes of 
driving environments in the future. 
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Figure 4: One example illuminates the preprocessing stage of the environmental change detection system. (a) The input 

image sequence I. (b) The high-intensity image sequence H. (c) The low-intensity image sequence L. (d) The 

difference image sequence D. (e) The second difference image sequence S. (f) The output sequence of TSOM 

neural network, where bs = 0.5; cs = 1; ds = 0.5, and image size is 160X120. 
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Figure 6: The experimental result of the CART neural network. There are 20 attention maps input to the CART 

neural network, and these maps are classified into ten classes, where aa = 0.1; ba = 1; ca = 0.1; da = 0.9; 

e = 0.0000001; ρ = 0.99; θ  = 0.0001, and image size is 80X60. (a) Start of change to left lane. (b) 

Half-way of change to left lane. (c) End of change to left lane. (d) Tunnel-entry. (e) Tunnel-exit. (f) End 

of change to right lane. (g) Start of change to right lane. (h) Expressway-entry. (i) Expressway-exit. (j) 

Viaduct-ahead. 
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