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ABSTRACT

In this paper, we present a novel technique for video object (VO) segmentation. Compared to the existing VO
segmentation methods, our method has the advantage that it does not decompose the VO segmentation problem into
an initial image segmentation problem (segmenting a single image frame) followed by a temporal tracking problem.
Instead, motion information contained in a finite duration of the image sequence is considered simultaneously. Given
a video sequence, our method first estimates motion vectors between consecutive images, and then constructs the
flow-thread for each pixel based on the estimated motion vectors. Here, a flow-thread is a series of pixels obtained by
tracing the motion vectors along the image sequence. Next, we extract a set of flow-thread features (ft-features) from
each flow-thread, which is then used to classify the associated pixel into the VO it belongs to. The segmentation
results obtained by our unsupervised method look promising and the processing speed is fast enough for practical
uses.
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1. INTRODUCTION

In MPEG-4 visual coding standard, the video stream can be divided into several video objects (VOs) based on the
demands of interactive multimedia applications. Those VOs can be separately encoded, stored, or transmitted. The
MPEG-4 based multimedia system can reassemble, remove, or replace some VOs in the video stream as necessary.
Since VO is the basic interactive unit in MPEG-4 video stream, how to automatically or semi-automatically classify
VOs from an image sequence has become one of the important issues for a MPEG-4 authoring system.

Recently, many research results!™® have been proposed for segmenting an image sequence into several VOs. Some
of these methods are semi-automatic,”® and some are unsupervised.#"8 Some representatives of previous research
will be reviewed in section 2. In general, the segmentation results of semi-automatic methods are much better than
those unsupervised methods. However, human assistance in semi-automatic methods is less desired because it may
limit the applications.

In this paper, we present a novel technique for VO segmentation. Our method can be divided into two stages: the
analysis stage and the classification stage. In the analysis stage, a finite duration of image sequence are converted
into a dense field of flow-threads, and then a set of flow-thread features (ft-feature) are extracted from each flow-
thread. Here, a flow-thread is a series of pixels obtained by tracing the motion vectors along the image sequence.
In the classification stage, ft-features are used to classify the VOs either by unsupervised approach or by supervised
approach. When using unsupervised approach, users first tell the system the number of desired VOs, and then the
VOs are extracted automatically by unsupervised pattern recognition technique. When using supervised approach,
users must manually assist the system by choosing some training samples of desired VOs, and then the VOs are
segmented by supervised pattern recognition technique. Another possibility is to use the unsupervised segmentation
results as the training samples. Figure 1 illustrates the block diagram of our segmentation system, where the dashed
boxes indicate the two stages. Details of the segmentation algorithm are presented in section 4.
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Figure 1. The block diagram of our video object segmentation method.

2. REVIEW

This section briefly reviews several representative research results on VO segmentation. Most of the VO segmentation
methods®7-® are based on a system architecture that combines an image segmentation procedure with a motion
tracking procedure. For example, in Ref. 8, the VO segmentation is done in two stages. The first stage is the
segmentation stage which is performed on I-frames (intra frames) of the video stream. The initial contour of the
desired object is obtained by image processing technique with user assistance. The second stage is the motion
estimation and object tracking process, which is performed on the P-frames (predicted frames) using the initial
contour obtained from the first stage performed on I-frames. The method proposed in Ref. 7 is similar to that in
Ref. 8, and its segmentation procedure also needs user assistance. Although the experimental results shown in Refs. 7
and 8 look good, it is not easy for the object tracking process to obtain good segmentation result when tracking
long period of P-frames. Thus, the human editing process for I-frames segmentation becomes the bottleneck and
is a tedious work for the users. Refs. 4 and 5, the proposed methods are unsupervised. The segmentation method
proposed in Ref. 4 is based on motion cue and its application is restricted to those videos containing fast moving
foreground or background objects. The method proposed in Ref. 5 is based on watersheds and tracking techniques,
which segments images into homogeneous regions, and may require further merging to form VOs.

Some other researches on VO segmentation use different approaches. In Ref. 6, the VOs are extracted by using
normalized cuts. The idea is interesting, but the cutting process is time-consuming and its results do not seem
to be good enough for practical uses. Ref. 1 focuses on segmenting moving objects from static background, which
restricts its application. Ref. 9 proposes a spatio-temporal algorithm based on the combination of temporal edges
and asymmetric fuzzy-C-mean on spatial region classification. Ref. 10 uses morphological operators, but only show
some preliminary results.

3. MOTIVATION

In traditional image segmentation, a single image is partitioned into homogeneous regions based on colors or textures.
For video object segmentation, additional information extracted from motion should be utilized. In many cases,
motion consistency is even more important than color consistency or texture consistency for extracting meaningful
VOs. Hence, in this paper, VO segmentation is formulated to be a problem of clustering motion trajectories into
groups having consistent characteristics. Most of the previously proposed methods only use the motion vectors
between two consecutive images at a time, and the segmentation result is usually more sensitive to the noise. Instead,
we use the longer-term motion information which is contained in the flow-thread. Here, a flow-thread is a series of
pixels obtained by tracing the motion vectors along the image sequence. Our experiments show that flow-threads
of longer duration are usually more classifiable. Another benefit of using flow-threads is that we can suppress the
effects of noisy motion estimation by smoothing the flow-threads. This is performed by applying a feature-extraction
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function to the flow-threads to generate a set of features, and then choosing the most important features to be the
representatives.

4. SEGMENTATION TECHNIQUE

Our VO segmentation method is divided into two stages: the analysis stage (i.e., a feature extraction stage), and the
classification stage. The analysis stage consists of four steps: motion estimation, flow-thread construction, ft-feature
extraction, and initial segmentation. In the classification stage, we implement an interactive system to provide two
modes of segmentation: supervised classification and unsupervised classification. In the following subsections, we
shall describe the four steps in the first stage and the two segmentation modes in the second stage.

4.1. Motion Estimation

There are many previous works available for motion estimation. It is worth to mention that the accuracy of the esti-
mated motion vectors determines the quality of flow-threads, which will further affects the result of VO segmentation.
For better result, we should estimate motion vectors to subpixel precision in order to avoid large error accumulation
in flow-thread construction. Currently, we use a gradient-descent hierarchical algorithm!! to first generate block-wise
motion vectors, and then further refine these vectors by using a regularization method!? to obtain pixel-wise motion
vectors. Let a video segment V contain a sequence of images, as expressed in the following

V={L1<t<T}, (1)

where I; is the t-th image in V, and T is the total number of images in V. It is convenient to use I;(z) to represent a
pixel at I;, or the color of that pixel, where z is a two-tuple indicating the coordinates in an image. For each image
point z in I;, we estimate both the forward motion vector (using I;4+1) and the backward motion vector (using I;_1).

If a good motion vector can not be found for a pixel, its motion vector will be assigned as (00, 00). The estimated

forward and backward motion vectors of the I;(z) are denoted as vﬁf ) (z) and vt(b) (z), where

I(z) ~ Iz + 0" (@) if o) # (00,00); @
Ii(z) ~ Li_1(z + vgb)(:c)) if 'vt(b) # (00, 00).

4.2. Flow-Thread Construction

The total number of images in a video segment is usually very large. If we are going to extract the flow-threads
along the whole video segment, it will require a great amount of memory. Therefore, when I;, is to be segmented,
a temporal window W = [t, — [L/2] + 1,t, + | L/2]] is created to restrict the length of the flow-thread, where L is
the desired length of the flow-thread, and it must be greater than 1. If it is necessary, the temporal window W is
shifted § units to keep [ts — [L/2] + 1+ 6,ts + |L/2] + 4] inside [1,T]. After the temporal window is determined,
the forward and backward motion vectors are traced along the image sequence to generate flow-thread. Let I'y,(z)
be the flow-thread associated with the pixel I}, (z). That is,

i, (2) = {m, (2, D)ty <t <t} (3)

where, t; and t. are the indices of the beginning frame and the ending frame in the range of W, respectively, and
1, (z,t) is a two-tuple indicating the image coordinates of the pixel in J; corresponding to the reference pixel I, (z),
or more precisely,

7t,($1t) = ift=ts;

Yo (@, 8) =y, (@, t = 1) + v (e, (@, - 1)) i 2> t; @)

Y1, (@,8) = (@t + 1) + os (e, (2,8 + 1)) i<ty

If during the construction of a flow-thread I there exists an ; € I such that vt(f ) (vt) = (00, 00) or 'vt(b) () = (00, 00),
this flow-thread will be considered to be partially occluded. In our current implementation, a partially occluded
flow-thread does not considered to be classifiable. However, if some local features can be extracted for classification,
then a partially occluded flow-thread can be considered to be classifiable, which is our future work. If a flow-thread is
not partially occluded, it is called a complete flow-thread. See Fig. 2 for an illustration of the flow-thread associated

with I, (z).
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Figure 2. The flow-thread associated with I, (z), where vy, (z,ts +1) — 7 = vy}

4.3. Feature Extraction

After the flow-thread for each pixel in image I;, has been constructed, a set of features, referred to as the ft-features,
will be extracted from each flow-thread. Equation (5) gives an example of the feature-extraction function which we
have tried.

F(I‘t, (:l))) = ( a1 Q2 Q3 G4 Qs )t, (5)

where ay is the net flow distance of the flow-thread, s is the net flow direction of the flow-thread, a3 is the mean
time of the flow-thread movement, a4 is the total flow distance of the flow-thread, and as is the total flow acceleration
of the flow-thread. That is,

ar = |l (@, te) — . (2, t)ll s (6)
Qg = @(Vt; (IL', te) - Vt, (.’L‘, tb))’ (7)
th§t<te t x [Ju(®)ll

« Etb§t<t¢ @I (8)

ar = 3 @l ©
tp<t<te

as =y, @ -vt+Dl, (10)
ty<t<te—1

where v(t) = v, (z,t + 1) — v, (z,t), and O(y) is the polar angle of 7. This feature-extraction function is quite
straightforward, but is hard to generalized if more than five features are desired.

Another example of the feature-extraction function is to use the Discrete Fourier Transform (DFT). The DFT of
a flow-thread I'y, () is defined to be

de= Y 7 (x,t) x e IRt (11)
ty<t<te

where dy, is a complex number indicating the Fourier Descriptor (FD) at frequency wy, wix = 27k/L, and +{, (z,t) is
the complex form of v, (z,t), i.e., 77, (z,t) = a+jb if v, (z,t) = (a,b). After performing the DFT, each flow-thread
is transformed into L FDs. Here, the feature-extraction function can be written as

t

FTi,(x))=(do dr -+ dp-1) . (12)
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The set of FDs represents a flow-thread in the frequency domain, and from the inverse transform we have

1 X
. -1 (t=ts)
Y@ t) =7 Y dix e, (13)
0<k<L

According to our experience, the FD dp, which is the centroid of the projected trajectory (i.e., the trajectory projected
on image I3, ), should be used carefully. Consider Equation (14), the first derivative of Equation (13), which represents
the velocity of the reference pixel I, (z). It can be seen that the velocity of the reference pixel is independent of do
because wp = 0. Hence, it is reasonable not to select dy as a representative feature, since our purpose is to cluster

the motion trajectories.
oy (z,t 1 . ;
%b(: - L > (Gurdy) x edert=t) (14)

0<k<L

4.4, Initial Segmentation

There are two approaches to use the ft-features for VO segmentation. One is the pixel-wise segmentation, and the
other one is the region-based segmentation. These two approaches are different in the primitives to be classified.
The pixel-wise segmentation directly classifies the ft-features of each pixel. On the other hand, the region-based
segmentation first partitions the images into a set of primitive regions by applying an initial image segmentation to I,
and then classifies the representative ft-features of each region. The major advantage of using pixel-wise segmentation
is its capability of separating VOs sharing weak edges on the object boundary. However, its segmentation results are
noisy if the motion estimation is not accurate enough, and it requires more computation time for classification due to
the huge number of the primitive units. OQur current implementation uses the approach of region-based segmentation,
and the initial regions are obtained by a toboggan image segmentation algorithm.!3 After the image is initially
segmented, the representative ft-features for each region are computed from pixel-wise flow-threads.

To compute the representative ft-feature for a primitive region, the reliability of the flow-threads should be
considered, especially when the motion estimation is not accurate. Here, we use a confidence measure which is a
function of image Hessian and color variance. We assume the motion vector is more accurate at some pixel if its
Hessian is larger. That is, the flow-thread I'y,(z) is more reliable if h? (z) is large, where hy,(z) = detV2[, ().
Besides, the color variance o7 (x) is evaluated as a measure of the accuracy of motion estimation, i.e. af’ (z) =
E (I3 (w,(z,1),ts <t <t.) — E? (Iy(v,(z,t)),ts <t < t.). Then, the confidence measure C is defined to be the
product of two sigmoid functions:

0 if Ty, (z) is partially occluded,;
C(Te (@) =4 e+ (1+exp(+81(0F, () = 03))
x (1 + exp(—s2(h? (z) — hg)))_1 if ', (z) is complete,

(15)

where s;, 82, 0g, and hg are parameters of the sigmoid functions, and e is a small positive number to avoid zero
confidence. Then the representative ft-features of a primitive region R;, are defined to be the weighted sum of the

pixel-wise ft-features:
2zer,, C(Tt, () X F(Te,(2))
2 zer,, C(T't, ()

If a primitive region R;, has at least one pixel whose flow-thread is complete, then the region R;, is called a ft-region,
and can be classified in the following classification stage. In our current implementation, only ft-region will be
classified. Because we use the FDs as ft-features, the representative ft-features have an interesting property which
can be used for reducing some computation. The representative flow-thread I'(R;,) of the region Ry, is defined as

een, CTL@) x 0@
> ser,, C(Tt,(2)) Lo e f-

It is easy to verify that the we can obtain representative features alternately by applying DFT to the representative
flow-thread directly, i.e., dp = 3°,, <;<;. V" (Bt,,t) X e~Jwk(t=ts) Therefore, we can first construct the representative
flow-threads, and then extract the reépresentative ft-features. This avoids performing DFT on each pixel-wise flow-
thread, which is much more time-consuming.

F(Re,) = (16)

amn

7(Rt, ) t) =

[(R:,) = {7(Rt..at)
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4.5. Video Object Segmentation

After initial segmentation, image Iz, is partitioned into several homogeneous regions and each region has a set of
representative ft-features. When the DFT is used as the feature-extraction function, there are L FDs in each set
of representative ft-features. If L is large, it is very time-consuming to classify the VOs using all of the features.
Therefore, we select a subset of L FDs for classification, as described in the following two subsections. Let Ny and
N be the numbers of features selected for unsupervised classification and supervised classification, respectively. The
major difference between the feature selection methods for the two kinds of classification is on the availability of the
training samples. Because the training samples are available for supervised classification, they can also be used to
measure the separability for feature selection. For unsupervised classification, there is no training sample, and hence
we select features which make the samples have larger variance. Since the FDs are complex numbers, the actual
dimensions of the feature spaces for unsupervised and supervised classification are 2Ny and 2N, respectively.

4.5.1. Unsupervised Classification
Before applying the unsupervised classification technique to the representative ft-features of all primitive regions, a
feature-selection procedure is taken to reduce the dimension of the feature space. In our implementation, the variance

of each feature is used as the measure of the separability. For example, given n primitive regions, jo), .. .,RZ‘)
obtained from the last section, the separability measure of the L ft-features is

b

*

> FEOFED: | - (2 X FED ) (3 X FERD) (18)

1<i<n 1<i<n 1<ikn

1
My =-
n

where A* is the complex conjugate of Af, and My is a L x L matrix. Since our goal is to select a subset of features
which make the samples have larger variance, the Ny largest values in the diagonal My decide which features
are used in the following unsupervised classification. Next, an unsupervised clustering algorithm, such as K-means
algorithm or LBG algorithm, is used to cluster the ft-regions into K representative classes using the Ny selected
ft-features. Notice that the FD dp is not used in classification for the reason explained in section 4.3.

4.5.2. Supervised Classification

For supervised classification, users can simply assign some training samples by a user interface, or modify the
results of unsupervised classification to generate more precise training samples. In our implementation, a multi-layer
perceptron neural network is used to learn from the training samples and classify the remaining unlabeled ft-regions.
To reduce the number of nodes of the input layer, a feature selection procedure is taken before training the neural
network. Since training data are provided, we can choose the features where the feature means of VOs are most
separable. For example, given m training VOs, Oi:), cees O,E:"), each of which is a set of ft-regions in I,, the sum of
square distance between FD means is used to measure the separability, i.e.,

Ms= S (E(F(R),ReOM) - E(F(R),Re0)) (E(F(R),ReOL) - E(F(R),Re o))", (19)

1<i1<i2<m

where Mg is a I x L matrix. Since there are Ng features wanted, the Ng largest values in the diagonal of Ms
decide which features will be used as the inputs of the neural network.

5. EXPERIMENTS

In our previous work, we have implemented a system using pixel-wise segmentation approach with the feature-
extraction function F(T') in Equation (5). This system allows user to adjust the coeflicients of a linear discriminant
function manually, and obtains some good results as shown in Fig. 3.

Currently, we have a new system incorporating the unsupervised and supervised classification, making the inter-
face much easier to use, and allowing users to decide the number of features selected to be used in classification. This
system uses region-based segmentation with Fourier descriptors as ft-features. The unsupervised classification can
use either the K-means algorithm or the LBG algorithm provided by Intel’s Recognition Library.}* The supervised
classification uses the neural network simulator provided by Nevada backPropagation!® version 4. See Fig. 4 for some
results of MPEG-4 test sequence using supervised classification. In Fig. 5, results of the supervised and unsupervised
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Figure 3. Results of pixel-wise segmentation using the feature-extraction function F shown in Equation (5). (a),
(b). and (c¢) are some images of the videos. Akiyo. Coastguard. and Weather, respectively. (d), (e), and (f) are the
extracted VOs from (a), (b), and (c).

classification are compared. The results of supervised classification are slightly better than the results of unsuper-
vised classification as we can see that the central part of the boat body is broken in Fig. 5(c). The segmentation
results in Figs. (3), (4), and (3) are filtered by morphological operators for noise removal. All experiments use the
same parameters: L = 16, s; = s = 107°, Ny = 2, and Ns = 4. The image resolutions of the three sequences,
Akiyo. Coastguard, and Weather, are 360 x 242, 360 x 240, and 360 x 242, respectively.

The processing time of the analysis stage for each frame varies from 5 to 20 seconds on Pentium-II PCs, depending
on the complexity of the video stream. The processing time of unsupervised classification is one to two seconds, and
the processing time of supervised classification varies according to the number of training samples, normally is less
than one minute.

In Figs. 3(d) and 4(c), the Akiyo sequence is segmented by pixel-based and region-based methods, respectively.
The pixel-based segmentation produces a better result in Fig. 3(d) because it uses longer flow-threads (larger L) and
its discriminant function is tuned manually. Without manual assistance. it is hard to separate the desired VO, i.e.
the reporter, from a short duration of the Akiyo sequence because the VO is nonrigid. After observing the whole
sequence, we can find that the head of the reporter has the most significant motion and the body of the reporter
only has a little motion. Therefore, in order to accomplish a highly automatic segmentation system, it requires a
method to adaptively determine the length of flow-thread used for VO segmentation which will be long enough to
include significant motion information. However. it is still possible to segment a nonrigid VO into different parts,
which can be merged into high-level VOs in post-processing.

In Fig. 4(f), some parts of background are miss-classified to the VO in the foreground. This may be caused by
inaccurate motion estimation. For further improvement, we plan to use the multi-frame flow estimation algorithm.

6. CONCLUSION

This paper has proposed a new technique for video object (VO) segmentation. Different from previous research results
on VO segmentation, our method uses the flow-thread features, which are more global in the temporal dimension.
The proposed technique first estimates a dense field of bi-directional motion vectors. Then it traces flow-threads for
each pixel in the reference frames, and extracts a set of ft-features for each flow-thread. We have also developed an
interactive system for helping the user to perform unsupervised and/or supervised classification, and examine the
segmented VOs. The proposed technique is efficient and highly automatic, and the result can be used by MPEG-4
and other multimedia authoring systems to segment and manipulate VOs. The processing speed of the system is
fast enough for many applications.
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Figure 4. Results of region-based segmentation using Fourier descriptors as features. (a), (d), and (g) are some
images of the videos. Akiyo, Coastguard. and Weather. respectively. (b), (e), and (h) are the intermediate results
of initially segmented primitive regions using a toboggan image segmentation algorithm. (c), (f), and (i) are the
extracted VOs by unsupervised classification.

e

3‘@"”1‘,«

Figure 5. (a) is an image of the video, Coastguard. containing two desired VOs. (b) and (c) are the VOs extracted
by the unsupervised classification. (e) and (f) are the VOs extracted by supervised classification using (d) as the
training samples, where the three strips indicate two desired VOs and the background.
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