
A linear time algorithm for the backup 2-center problem on a
tree

Hung-Lung Wang1, Bang Ye Wu2,∗, and Kun-Mao Chao1,3,4,†
1Department of Computer Science and Information Engineering

3Graduate Institute of Biomedical Electronics and Bioinformatics
4Graduate Institute of Networking and Multimedia

National Taiwan University, Taipei, Taiwan 106
2Department of Computer Science and Information Engineering

Shu-Te University, YenChau, Kaohsiung, Taiwan 824

Abstract

In this paper, we are concerned with the prob-
lem of deploying two servers in a tree network,
where each server may fail with a given probabil-
ity. Once a server fails, the other server will take
the whole responsibility of service for all vertices
(clients). Here, we assume that the servers do
not fail simultaneously. In the backup 2-center
problem, we want to deploy two servers at the
vertices such that the expected distance from a
farthest vertex to the nearest surviving server is
minimum. We shall propose an O(n)-time algo-
rithm for the backup 2-center problem, where n
is the number of vertices in the given tree network.

Keywords: location problem, center, median,
tree

1 Introduction

Facility location problem is an important topic
in the fields of transportation and communica-
tion. The k-center problem and the k-median
problem are two classic problems in this line of
investigation. Given are a graph G with posi-
tive edge lengths, a server (supply) set Γ, and a
client (demand) set Δ. Usually, Γ ∈ {V, E} and
Δ ∈ {V, E}, where V and E denote the vertex set
and the edge set of the given network G, respec-
tively. The k-center problem (respectively, the k-
median problem) is to seek k points x1, x2, ..., xk

from Γ so that maxy∈Δ min1≤i≤k d(xi, y) (re-
spectively,

∑
y∈Δ min1≤i≤k d(xi, y)) is minimum,

∗bangye@mail.stu.edu.tw
†kmchao@csie.ntu.edu.tw

where d(x, y) denotes the distance from x to y in
the network. One can further categorize the prob-
lems by Γ/Δ/k. For example E/V/2 refers to se-
lecting two points in E such that the objective
function is optimal over V .

The k-center problem in general graphs, for ar-
bitrary k, is NP-hard [15]. Therefore, many re-
searchers focused on tree networks. The current
best results of V/V/k, E/V/k, and V/E/k for the
k-center problem on trees are all solved in O(n)
time by Frederickson [9], and E/E/k is solved in
O(kn log(2n/k)) in [10]. Another generalization is
the weighted version of the k-center problem, in
which the weights of all the vertices are described
by a function w(·) and the weighted distance
from vertex u to v is w(u)d(u, v). The current
known results for the weighted k-center problem
on trees take O(n log2 n) time for V/V/k [22], and
O(kn log n) time for both V/V/k and E/V/k [14].
Some results for special graphs can refer to [6, 13,
19].

In practice, uncertainties always play roles
of influence. The minmax-regret facility prob-
lem [2, 3, 4, 5, 7, 8, 17, 20] is one model under
such consideration. Another model, called a re-
liability model [23, 24, 25], deals with the situa-
tion where some servers may sometimes fail and
the clients originally served by these serves have
to request from surviving servers. In this paper,
we consider the reliability-based formulations, in
which each server may fail with a given proba-
bility, of the 2-center problem (V/V/2) and the 2-
median problem (V/V/2) on a tree network. Once
a server fails, the other server will take the whole
responsibility of services. Here, we assume that
the servers do not fail simultaneously. Note that a
server may fail but it still act as a client. That is,

The 24th Workshop on Combinatorial Mathematics and Computation Theory

-189-



the distance between any pair of vertices does not
change when servers fail. Also, it is not required
that servers are deployed at different vertices.

The backup 2-center problem is defined as fol-
lows. Let p1 and p2 be the failure probabilities
of the two servers. To simplify the presentation,
we assume that p1 = p2 = p. The case p1 	= p2

can be handled in a similar way. For any ver-
tex x ∈ U ⊆ V , let φ(x,U) = maxu∈U{d(x, u)}
denote the eccentricity of a vertex x to a set U .
The vertex c with φ(c, V ) = minx∈V φ(x, V ) is
a center of G. The traditional 2-center prob-
lem is to find a set S of two vertices such that
maxv∈V {mins∈S d(v, s)} is minimum. For any ver-
tex pair (v1, v2), let Π(v1, v2) = (V1, V2) in which
V1 = {v|d(v, v1) ≤ d(v, v2)} and V2 = V − V1.
Note that, in a tree, each of V1 and V2 induces a
connected component.

Given (v1, v2) and let (V1, V2) = Π(v1, v2). For
a failure probability 0 ≤ p < 1, the expected value
of the longest distance from any client to its near-
est surviving server, in condition that not both
servers fail, can be calculated by

1
1− p2

(
(1− p)2 max{φ(v1, V1), φ(v2, V2)}

+p(1− p)(φ(v1, V ) + φ(v2, V ))) .

Since p is a given constant, the objective function
of the backup 2-center problem can be defined by

ψp(v1, v2) = (1− p)max{φ(v1, V1), φ(v2, V2)}
+ p(φ(v1, V ) + φ(v2, V )). (1)

An example is given in Figure 1 to illustrate the
difference between the backup 2-center and the
traditional 2-center. In the traditional 2-center
problem, the two severs are always deployed at
different vertices, but in the backup 2-center prob-
lem, it is possible to deploy the two servers at the
same vertex namely the center of the given net-
work. If p = 0, the backup 2-center is (x2, x6),
which is the 2-center of T . If p = 0.3, the backup
2-center is (x3, x5). If p = 0.9, the backup 2-center
is (x4, x4), where x4 is the center of T .

The rest of this paper is organized as follows.
Section 2 proves some basic properties and gives
an O(n)-time algorithm for the backup 2-center
problem on a vertex-unweighted tree. Concluding
remarks are given in Section 3.

x2 x3 x4 x5x1 x7x6
50 20 30 30 10 60

x8

x11 x12 x13

x10x9

1 2

2

1 1

1

T

Figure 1: A tree T with center x4 and 2-center
(x2, x6).

2 The backup 2-center problem on
vertex-unweighted trees

In the following, we denote the given tree net-
work by T , the vertex set of T by V , a path with
endpoints x and y by P[x, y], the center of T by c,
and the backup 2-center of T by (c1, c2). Here we
use “center” to mean the discrete center of T , un-
less we explicitly state it as the continuous center.
Before introducing the algorithm, we summarize
some basic properties of the tree center and the
diameter which will be used later.

The following three properties are related to the
diameter of a tree, which can be shown easily (cf.
P. 156 [29]).

Property 1: Let P[x, y] be a diameter of T . For
any vertex v, φ(v, V ) = max{d(v, x), d(v, y)}.

Property 2: For any vertex v of T , the farthest
vertex to v in T must be an endpoint of a diameter
of T .

Property 3: Let c be a center of T . For any two
vertices x and y, if x is on the path between c and
y, then φ(x, V ) ≤ φ(y, V ).

Lemma 4: For x ∈ V , let d(x, v) = φ(x, V ). All
centers of T lie on P[x, v].

Proof: Omitted.

Now we turn to explore the properties of the
backup 2-center. Let the center edge of two ver-
tices x and y be the edge which contains the con-
tinuous center of P[x, y].

Lemma 5: If ψp(c1, c2) < ψp(c, c), then any
diameter of T contains the center edge of c1 and
c2.

Proof: Let Π(c1, c2) = (V1, V2), and T1 and T2

be the subtree induced by V1 and V2, respectively.
Suppose to the contrary that there exists a diame-
ter D of T which does not contain the center edge

The 24th Workshop on Combinatorial Mathematics and Computation Theory

-190-



of c1 and c2. This implies that D ⊂ T1 or D ⊂ T2.
Without loss of generality, we assume thatD ⊂ T1.
By Property 1, we have φ(c1, V1) = φ(c, V ), and
thus

max{φ(c1, V1), φ(c2, V2)} ≥ φ(c, V ).

Therefore, by (1),

ψp(c1, c2)
= (1− p)max{φ(c1, V1), φ(c2, V2)}

+p(φ(c1, V ) + φ(c2, V ))
≥ (1− p)φ(c, V ) + p(φ(c, V ) + φ(c, V ))
= ψp(c, c).

This contradicts the assumption that
ψp(c1, c2) < ψp(c, c) and the lemma follows.

From the above lemma, we know that the cen-
ter edge of c1 and c2 must lie on the intersection
of all diameters. If the intersection of the diam-
eters of T contains no edge, then the backup 2-
center must be (c, c) and can be identified in lin-
ear time. Therefore, in the following we assume
that the backup 2-center consists of two different
vertices.

Lemma 6: If ψp(c1, c2) < ψp(c, c), then c ∈
P[c1, c2].

Proof: Let (V1, V2) = Π(c1, c2) and (u, v) be
the edge where u ∈ V1 and v ∈ V2. Without loss
of generality, we assume that c ∈ V1, and let x
be the farthest vertex to c1 in T . Suppose to the
contrary that c does not lie on P[c1, c2]. This
implies that x ∈ V1, since otherwise u ∈ P[c1, x],
and by Lemma 4 c ∈ P[c1, x] and therefore
c ∈ P[c1, u] ⊂ P[c1, c2], which contradicts
that c 	∈ P[c1, c2]. Thus, φ(c1, V1) = φ(c1, V ),
and max{φ(c1, V1), φ(c2, V2)} ≥ φ(c1, V1) =
φ(c1, V ) ≥ φ(c, V ). Similar to the proof of
Lemma 5, we can show that ψp(c1, c2) ≥ ψp(c, c).
It is also a contradiction.

Lemma 7: Let (u, v) be the center edge of c1

and c2, then c1 ∈ P[c′1, u] and c2 ∈ P[c′2, v], where
c′1 and c′2, respectively, are the centers of the two
subtrees after removing e = (u, v). Moreover as-
sume with loss of generality that c ∈ V1. Then
c1 ∈ P[c′1, c].

Proof: First, we show that any center c of T
is on P[c′1, c

′
2]. For otherwise, by Lemma 4, the

farthest vertex to c′1 is in V1, and there are two
possible situations:
(i) If φ(c′1, V ) > φ(c, V ), we have φ(c′1, V1) =
φ(c′1, V ) > φ(c, V ) ≥ φ(c, V1), a contradiction.
(ii) If φ(c′1, V ) = φ(c, V ), i.e. c′1 is also a center,
we have φ(c′1, V1) = φ(c′1, V ) = φ(c, V ) > φ(c, V1).
The last inequality holds because both c′1 and c
are centers, and thus the farthest vertices to c and
c′1 are different (two end vertices of a diameter).
Since the farthest vertex to c′1 in T is in V1, that
of c lies in V2. Therefore φ(c, V ) > φ(c, V1) and
we have a contradiction.

Suppose to the contrary that c1 	∈ P[c′1, u]. Let
x be the vertex nearest to c1 on P[c′1, u]. Since x
is on P[c1, c

′
1], by Property 3, φ(x, V1) < φ(c1, V1).

Since c is on both P[c1, c2] and P[c′1, c
′
2], x is on

P[c1, c]. Also by Property 3, φ(x, V ) < φ(c1, V ).
Hence, we have

(1− p) max{φ(c1, V1), φ(c2, V2)}
+p(φ(c1, V ) + φ(c2, V ))

> (1− p) max{φ(x, V1), φ(c2, V2)}
+p(φ(x, V ) + φ(c2, V ))

≥ ψp(x, c2),

the last inequality holds, because for any
v1, v2 ∈ V , max{φ(v1, V1), φ(v2, V2)} ≤
max{φ(v1, V

′
1), φ(v2, V

′
2)}, where (V1, V2) =

Π(v1, v2) and (V ′
1 , V ′

2) is any bipartition of V .
Therefore it is a contradiction, and c1 is on
P[c′1, u]. Similarly, we can show that c2 is on
P[c′2, v]. By Lemma 6, c lies between c1 and c2.
Thus if V1 contains c, then c1 lies on P[c′1, c].

In the following, we call P[c′1, c] and P[c′2, v]
the candidate paths with respect to e, which is
mentioned in Lemma 7.

Lemma 8: For each diameter of T , there is a
backup 2-center on it.

Proof: Omitted.

Based on Lemmas 7 and 8, we give an O(n2)-
time algorithm for the backup 2-center problem
in Figure 2, and then improve the time bound to
O(n).

In the O(n2)-time algorithm
Backup2center1, we first compute a cen-
ter c and a diameter of T , and then look for
the pair of vertices on the candidate paths with
minimum cost.

Let D = (x1, x2, ..., xh) be the diameter we
compute. For convenience, we root the tree at

The 24th Workshop on Combinatorial Mathematics and Computation Theory

-191-



Algorithm Backup2center1(T ,p)
Input: A tree T and a real p, where 0 ≤ p < 1.
Output: The backup 2-center of T .
1 find a diameter D = (x1, x2, ..., xh)

and a center c, root T at xh

2 cost← ψp(c, c); backup2center ← (c, c)
3 for i = 1 to h− 1
4 compute (ri, ri)
5 for x ∈ Pi, compute φ(x, Vi) end for
6 for y ∈ Pi, compute φ(y, V i) end for
7 for x ∈ Pi, find f(i, x) end for
8 for y ∈ Pi, find f(i, y) end for
9 end for

10 cost← min{mini,x ψ′
p(x, f(i, x)),

minj,y ψ′
p(y, f(j, y)), cost}

11 backup2center ←the vertex pair
with minimum cost

Figure 2: An O(n2)-time algorithm for the backup
2-center.

���� ������� ���� ����

�� ��	
���
���

����������������

Figure 3: The partner f(i, xk) of xk.

xh, and let Ti be the subtree rooted at xi, Vi be
the vertex set of Ti, and V i = V − Vi. Also, let ri

and ri, Pi and Pi, be the centers and candidate
paths of the two subtrees induced by Vi and V i,
respectively.

For an edge (xi, xi+1) on D and a vertex xk

on Pi, we search the partner f(i, xk) of xk on Pi.
Here the partner f(i, xk) of xk is defined to be a
vertex x∗ ∈ Pi such that φ(x∗, Vi) ≤ φ(xk, Vi) and

ψ′
p(i, xk, x∗) = min

x∈Pi

ψ′
p(i, xk, x),

where

ψ′
p(i, xk, x) = (1− p)max{φ(xk, Vi), φ(x, Vi)}

+p(φ(xk, V ) + φ(x, V )).

In fact, the partner of xk ∈ Pi is the vertex x clos-
est to c on Pi and satisfying φ(x, Vi) ≤ φ(xk, Vi)
since, by Property 3, φ(x, V ) decreases when x
moves toward the center. An illustration is given
in Figure 3.

Suppose both xk and xk+1 are on Pi. We have
φ(xk+1, Vi) ≥ φ(xk, Vi), and therefore f(i, xk+1)

is on P[f(i, xk), c]. By this property, for edge
(xi, xi+1), the partners of all vertices on Pi can
be found by a one-pass scan from ri to xi+1. As
a result, the partners of all xk ∈ Pi can be found
in linear time. Also, the partners of all xl ∈ Pi

can be computed similarly. The time complexity
of Backup2center1 is therefore O(n2) since the
center and the diameter of a tree can be computed
in linear time [29].

Algorithm Backup2center1 spends O(n2)
time to compute the candidate paths of all edges
and find the vertex pair with optimal ψ′

p value on
the paths. In order to improve the time bound,
we give the following lemmas.

First, the candidate paths of all edges can be
computed in linear time by Lemma 9.

Lemma 9: Given a diameter D of T , (ri, ri) can
be computed in O(n) time for 1 ≤ i < h.

Proof: Omitted.

Although the candidate paths of all edges on
the diameter can be identified in O(n) time, there
are still O(n2) pairs of vertices needed to examine
since for each edge we need to find all the part-
ners of the vertices on the candidate path and a
vertex may be on more than one candidate path.
In order not to process a vertex repeatedly, we give
the following lemmas. Because of the symmetry of
Vi and V i, some of the following lemmas only de-
scribe the properties of Vi and omit the part of
V i.

Lemma 10: φ(xk, Vi) = d(xk, x1) for any j <
k ≤ i, in which xj = ri.

Proof: Omitted.

Let Ri be the subset of Pi such that f(i, x)
exists for all x ∈ Ri.

Lemma 11: If xk ∈ Ri, then xl ∈ Ri for xl ∈ Pi

and l ≥ k.

Proof: Omitted.

By Lemma 11, we know that Ri is a connected
subgraph of D (i.e. a path) and can be identified
by a pair of vertices (xl, xr), where xl and xr are
the two vertices in Ri with the smallest and the
largest indices respectively. In the following we
call xl the left boundary of Ri and xr the right
boundary of Ri.

The 24th Workshop on Combinatorial Mathematics and Computation Theory

-192-



Lemma 12: For x ∈ Ri, if x ∈ Pi+1, then x ∈
Ri+1.

Proof: Omitted.

Lemma 13: For 1 ≤ i < h, Ri can be found in
amortized constant time.

Proof: By Lemma 11, we only need to identify
the two boundaries of each Ri, and the procedure
is described as follows. First we compute the
candidate paths of all edges, which can be done
in O(n) time by Lemma 9. For i = 1, there is
only one vertex on Pi and we can see whether
f(1, x1) exists by checking Pi. For i ≥ 2, we first
identify the right boundary, and then the left one.
Let xc be the center of T , the right boundary
of Ri is xmin{c,i}. If i ≤ c and f(i, xi) does not
exist, by Lemma 11 we know that Ri is empty.
Otherwise, by Lemma 12 the left boundary can
be found by searching from the left boundary of
Ri−1 toward ri. The total time for finding all
the Ri boundaries is O(n), and thus each costs
amortized constant time.

Lemma 14 : ψ′
p(i, xk, f(i, xk)) ≤

ψ′
p(j, xk, f(j, xk)), where i < j, xk 	= rj ,

and xk ∈ Ri ∩Rj .

Proof: Omitted.

Corollary 15 : ψ′
p(i, xi, f(i, xi)) =

minj≥i ψ′
p(j, xi, f(j, xi)), where xi ∈ Ri ∩Rj , and

xi 	= rj .

Based on the above lemmas, we propose an al-
gorithm Backup2center as in Figure 4. The
correctness and time complexity are both shown
in Theorem 16.

Theorem 16 : Backup2center computes the
backup 2-center of T in O(n) time.

Proof: By Lemma 14, we need only to compute
the partners of the vertices in (Ri −Ri−1) ∪ {ri}
for each i ∈ {1, 2, ..., h− 1}.

f(i, ri) can be found iteratively. f(i + 1, ri+1)
is on the path between f(i, ri) and the center of T
because φ(ri+1, Vi+1) ≥ φ(ri, Vi). The total time
for this case is O(n).

For vertices in Ri − Ri−1, there are two
types. The first is the vertex xi, and f(i, xi)

Algorithm Backup2center(T , p)
Input: A tree T and a failure probability 0 ≤ p < 1.
Output: The backup 2-center of T .
1 find a diameter D = (x1, x2, ..., xk) and a center c;

root T at xh

2 cost← ψp(c, c); backup2center ← (c, c)
3 compute (ri, ri), d(xi, x1), d(xi, xh), φ(ri, Vi),

φ(ri, V i) for 1 ≤ i < h
4 compute Ri for 1 ≤ i < h
5 compute ψ′

p(1, x1, f(1, x1))
6 for i = 2 to h− 1
7 do for xk ∈ Ri −Ri−1

8 do compute ψ′
p(i, xk, f(i, xk))

9 end for
10 compute ψ′

p(i, ri, f(i, ri))
11 end for
12 root T at x1 and repeat step 3 to 11
13 backup2center ← (x, y), where

ψp(x, y) = min{mini,j ψ′
p(i, xj , f(i, xj)), ψp(c, c)}

Figure 4: An O(n)-time algorithm for the backup
2-center.

can be computed by a procedure similar to
f(i, ri). By Corollary 15, we know that
ψ′

p(i, xi, f(i, xi)) = minj≥i ψ′
p(j, xi, f(j, xi)),

and thus it is not necessary to compute
ψ′

p(j, xi, f(j, xi)) for j > i. The second type
of vertices are those on P[xk, xk′ ], where xk

and xk′ are the left boundaries of Ri and Ri−1,
respectively. f(i, xk′−1) can be found by searching
from f(i − 1, xk′). For j < k′ − 1, f(i, xj) can
be found iteratively similar to f(i, ri). Thus the
total time is O(n).

By the description of the algorithm, we know
that the failure probability is used only when com-
puting ψ′

p. Thus in the case where p1 	= p2, it suf-
fices to take into account the permutation of the
two servers and redefine the objective function to
be

ψ{p1,p2}(v1, v2)
= (1− p1)(1− p2)max{φ(v1, V1), φ(v2, V2)}
+ p2(φ(v1, V )) + p1(φ(v2, V )),

and consequently

ψ′
{p1,p2}(i, xk, x)

= (1− p1)(1− p2)max{φ(xk, Vi), φ(x, Vi)}
+ p1(φ(xk, V )) + p2(φ(x, V )).

The 24th Workshop on Combinatorial Mathematics and Computation Theory

-193-



Therefore, we conclude this section by the fol-
lowing theorem.

Theorem 17: Given failure probabilities p1 and
p2, the backup 2-center of a vertex-unweighted
tree can be found in linear time.

3 Conclusions

In this paper, we consider the backup 2-center
problem on trees and solve it in O(n) time. In the
backup 2-center problem, the underlying graph is
a vertex-unweighted tree and a natural generaliza-
tion is to consider the vertex-weighted tree. The
backup 2-center problem on vertex-weighted trees
can be solved by a naive O(n3)-time method but
the exact time bound is still unknown. we are also
interested in the backup k-center problem. All of
them will be our future works.

4 Acknowledgements

We thank Hsiao-Fei Liu for verifying the proof.
Hung-Lung Wang and Kun-Mao Chao were sup-
ported in part by NSC grants 94-2213-E-002-018
and 95-2221-E-002-126-MY3 from the National
Science Council, Taiwan. Bang Ye Wu was sup-
ported in part by NSC grants 94-2213-E-366-006
and 95-2221-E-366-003 from the National Science
Council, Taiwan.

References

[1] V. Auletta, D. Parente, and G. Persiano,
Dynamic and static algorithms for optimal
placement of resources in a tree, Theoretical
Computer Science, 165, pp. 441–461, 1996.

[2] I. Averbakh and O. Berman, Minimax regret
p-center location on a network with demand
uncertainty, Location Science, 5, pp. 247–254,
1997.

[3] I. Averbakh and O. Berman, Algorithms for
the robust 1-center problem on a tree, Euro-
pean Journal of Operationl Research, 123, pp.
292–302, 2000.

[4] I. Averbakh and O. Berman, Minimax regret
median location on a network under uncer-
tainty, Informs Journal on Computing, 12,
pp. 104–110, 2000.

[5] I. Averbakh and O. Berman, An improved al-
gorithm for the minmax regret median prob-
lem on a tree, Networks, 41:2, pp. 97–103,
2003.

[6] B. Ben-Moshe, B. Bhattacharya, Q. Shi,
and A. Tamir, Efficient algorithms for cen-
ter problems in cactus graphs, International
Symposium on Symbolic and Algebraic Com-
putation pp. 693–703, 2005.

[7] R. E. Burkard, H. Dollani, A note on the ro-
bust 1-center problem on trees, Annals of Op-
erations Research, 110, pp. 69-82, 2002.

[8] B. T. Chen, C. S. Lin, Minmax-regret robust
1-median location on a tree, Networks, 31, pp.
93–103, 1998.

[9] G. N. Frederickson, Parametric search and lo-
cating supply centers in trees, Workshop on
Algorithms and Data Structures pp. 299–319,
1991.

[10] G. N. Frederickson and D. B. Johnson, Find-
ing kth paths and p-centers by generating and
searching good data structures, Journal of Al-
gorithms 4, pp. 61–80, 1983.

[11] B. Gavish and S. Sridhar, Computing the 2-
median on tree networks in O(n log n) time,
Networks, 26, pp. 305–317, 1995.

[12] A. J. Goldman, Optimal center location in
simple networks, Transportation Science, 5,
pp. 212–221, 1979.

[13] Y. Gurevich, L. Stockmeyer and U. Vishkin,
Solving NP-hard problems on graphs that are
almost trees and an application to facility lo-
cation problems, Journal of ACM 31:3, pp.
459–473, 1984.

[14] M. Jeger and O. Kariv, Algorithms for find-
ing p-centers on a weighted tree (for relatively
small p), Networks 15, pp. 381–389, 1985.

[15] O. Kariv and S. L. Hakimi, An algorithmic
approach to network location problems, Part
I. The p-centers, SIAM Journal on Applied
Mathematics 37, pp. 441–461, 1996.

[16] O. Kariv and S. L. Hakimi, An algorithmic
approach to network location problems, Parrt
II: The p-medians, SIAM Journal on Applied
Mathematics, 37, pp. 539–560, 1979.

The 24th Workshop on Combinatorial Mathematics and Computation Theory

-194-



[17] P. Kouvelis, G. Vairaktarakis, and G. Yu, Ro-
bust 1-median location on a tree in the pres-
ence of demand and transportation cost un-
certainty. Working Paper 93/94-3-4. Depart-
ment of Management Science and Informa-
tion Systems, Graduate School of Business,
The University of Texas at Austin, 1994.

[18] S. C. Ku, C. J. Lu, B. F. Wang, T. C. Lin,
Efficient algorithms for two generalized 2-
median problems on trees, International Sym-
posium on Algorithms and Computation , pp.
768–778, 2001.

[19] Y. F. Lan, Y. L. Wang and H. Suzuki, A
linear-time algorithm for solving the center
problem on weighted cactus graphs, Informa-
tion Processing Letters 71, pp. 205–212, 1999.

[20] T. C. Lin, H. I Yu, B. F. Wang, Improved
algorithms for the minmax-regret 1-center
problem, International Symposium on Algo-
rithms and Computation, pp. 537–546, 2006.

[21] N. Megiddo and A. Tamir, New results on the
complexity of p-center problems, SIAM Jour-
nal on Computing 12:4, pp. 751–758, 1983.

[22] N. Megiddo, A. Tamir, E. Zemel and R.
Chandrasekaran, An O(n log2 n) algorithms
for the kth longest path in a tree with appli-
cations to location problems, SIAM Journal
on Computing, 10:2, pp. 328–337, 1981.

[23] L. V. Snyder and M. S. Daskin, Reliabil-
ity models for facility location: The ex-
pected failure cost case, Transportation Sci-
ence, 39:3, pp. 400–416, 2005.

[24] L. V. Snyder, Facility location under uncer-
tainty: A review, IIE Transactions, 38:7, pp.
537–554, 2006.

[25] L. V. Snyder and M. S. Daskin, Stochastic p-
robust location problems, IIE Transactions,
38:11, 971-985, 2006.

[26] A. Tamir, An O(pn2) algorithm for the p-
median and related problems on tree graphs,
Operations Research Letters, 19, pp. 59–64,
1996.

[27] A. Tamir, D. Perez-Brito, and J. A. moreno-
Perez, A polynomial algorithm for the p-
centdian problem on a tree, Networks, 32, pp.
255–262, 1998.

[28] B. F. Wang, S. C. Ku, and K. H. Shi, Cost-
optimal parallel algorithms for the tree bisec-
tor problem and applications, IEEE Transac-
tions on Parallel and Distributed Systems, 12,
no. 9, pp. 888–898, 2001.

[29] B. Y. Wu and K. M. Chao, Spanning Trees
and Optimization Problems, Chapman and
Hall/CRC Press, USA, 2004.

The 24th Workshop on Combinatorial Mathematics and Computation Theory

-195-




