
Efficient Algorithms for Some Variants of the
Farthest String Problem

Chih Huai Cheng, Ching Chian Huang, Shu Yu Hu, Kun-Mao Chao

Department of Computer Science and Information Engineering
National Taiwan University

Taipei, Taiwan 106
{b89010, b89037, b89117, kmchao}@csie.ntu.edu.tw

Abstract

The farthest string problem (FARTHEST
STRING) is one of the core problems in the field of
consensus word analysis and several biological
problems such as discovering potential drugs, universal
primers, or unbiased consensus sequences. Given k
strings of the same length L and a nonnegative integer

d, FARTHEST STRING is to find a string s such that
none of the given strings has a Hamming distance that
is smaller than d from s. It has been shown to be
NP-complete. In this paper, we study two variants of
FARTHEST STRING. One is to search for a string s
satisfying the condition that the hamming distances

between s and all the given strings are greater than d.
We give an O((|Σ|(L-d))(L-d))-time algorithm, where |
Σ| is the alphabet size. The other variant is to find a

string s such that the sum of the hamming distances
between s and all the given strings are maximized. We
solve this problem in O(kL) time.

1 Introduction

With the development of genetic technology,
more and more problems are solved by using genetic

information. We can distinguish related species from
other species by comparing the DNA difference

between one another [7]. All these problems can be
reduced to finding a pattern which occurs in one set of

strings (the Closest String problem) but does not occur
in another set (the Farthest String problem) [6].
FARTHEST STRING is an important problem in
computational biology. This paper proposes efficient
algorithms to solve the following two problems. The
first one is the farthest string problem with fixed

parameters. Where k strings with length L and a
non-negative number d is given, the problem is to
determine whether a string s that satisfies the condition
that the hamming distance between s and all the given
strings are greater than d. The second problem is to
find the farthest string s under the condition that s must

reside in the set of the given strings and has the

maximum sum of hamming distance with respect to all
other strings.

The farthest string problem is proven to be
NP-complete [8] and there is a polynomial-time

approximation scheme (PTAS) for the farthest string

problems based on a linear programming relaxation
technique [8]. Now, consider the two most natural
parameters concerning farthest strings: the minimum
Hamming distance d and the number of given input
strings k. In some applications d is (very) large, so it is

important to ask whether efficient algorithms are
possible when d or k is fixed. FARTHEST STRING,

266

mailto:@csie.ntu.edu.tw

although NP-complete in general, is tractable [2, 5] for
fixed parameters d andΣby using the bounded search

tree algorithm [1, 3, 4].

The rest of the paper is organized as follows. In
Section 2, we give the general strategy and the main

idea of the algorithm for the farthest string problem
with fixed parameters and show the running time and
correctness under the condition of binary strings first.
Next, we extend the result to arbitrary alphabet

instances. In Section 3, we give a formal definition of
the variant of the farthest string problem and propose

an efficient algorithm to solve the problem in O(kL).
We then prove the correctness and time complexity of
the algorithm.

2 Farthest string with fixed parameter

As we stated in the introduction, the farthest
string problem here is given k strings with the same
length L and a non-negative number d, and trying to

find a string s that satisfies the condition that the
hamming distance between s and all the given strings
are greater than d. We give the formal definition of the

farthest string problem in mathematical terms:

Input: Strings s1, s2, . . . , sk over alphabetΣof length L ,

and a nonnegative integer d.
Question: Is there a string s of length L such that dH(s,
si) >= d for all i = 1, . . . , k?

 Before presenting the algorithm for this problem,
we give some definitions and minor results that will be

used in the algorithm.

Lemma 1. Given a set of strings S = { s1, s2, . . . , sk }
and a positive integer d. If there are i, j ∈{1, . . . , k}

with dH(si, sj) > x, then there is no string s with

mini=1,...,k {dH(s, si)} > L-x/2.

Proof. Suppose the hamming distance between si and sj
is greater than x, this means that there are at most L-x

positions with the same symbol and at least x positions
with different symbols at the same relative positions on

si and sj. To achieve the greatest hamming distance
between si and sj simultaneously, the complement of
the symbol on all of the positions where si and sj
contain the same symbol is chosen. Thus we increase

the hamming distance for si and sj by at most L-x, on
the other hand, changing a symbol on the other

positions where si and sj have different alphabets can
increase the hamming distance by only at most x/2.
Therefore the maximum hamming distance that an
arbitrary string may have between si and sj is L-x + x/2

= L-x/2 when dH(si, sj) = x. Hence, when dH(si, sj)> x
the maximum hamming distance on both si, sj cannot
exceed L-x/2.

Corollary 1. Given a set of strings S = { s1, s2, . . . ,
sk } and a positive integer d. If there are i, j ∈{1, . . . ,

k} with dH(si ,sj)> 2L-2d, then there is no string s with
mini=1,...,k {dH(s, si)} >= d.

Proof. By lemma1, we set L-x/2 = d and then the
value of x can be deduced easily. We can find that x =
2d-1L, and therefore no string s exist that satisfies the

condition that mini=1,...,k dH(s, si) >= d.

Given a string s then s is the string defined by

taking the complement alphabet of every position on
string s. If s is a binary string then the job is to simply
exchange the 1’s to 0’s and the 0’s to 1’s. If the

alphabet set of s contains more than two elements, then
for each string the complement string may have more
than one choice. E.g. when the alphabet set = {0,1,2}
then the complement of alphabet 0 may be 1 or 2.

267

Lemma 2. Given a set of strings S = { s1, s2, . . . , sk }
and a positive integer d. If there are i, j ∈{1, . . . , k}

with dH(is , sj)< 2d-L, then there is no string s with

mini=1,...,k {dH(s, si)} >= d.

Proof. The hamming distance between complement
of si and sj is smaller than 2d-L, it means that there
are at most 2d-L positions with different symbols at

the same relative positions on is and sj. In other

words, there are at least L-(2d-L) = 2L-2d positions

with different symbols at the same relative positions
on si and sj. By the corollary mentioned above,
lemma2 is proved.

 The idea of our algorithm is to start with one of

the given strings, e.g., 1s , as a “candidate string.” If

there is a string si, i = 2, . . . , k, that differs from the
candidate string in less than d positions, we recursively
try several ways to move the candidate string “away

from” si; the term “moving away” means that we select
a position in which the candidate string and si have the
same alphabet and set this position in the candidate

string to the complement of the character of si at this
position. We stop either if we moved the candidate “too

far away” from 1s or if we found a solution. By a

careful selection of subcases of this recursion we can
limit the size of this search tree to O(((|Σ|(L-d))(L-d)),

as will be shown in the following theorem. In Figure 1
we outline a recursive procedure solving FARTHEST
STRING. It is based on the bounded search tree

paradigm that is frequently successfully applied in the
development of fixed-parameter algorithms [1, 4, 6].

Recursive procedure FSD(s,Δd)

Global variables: Set of strings S = { s1, s2, . . . , sk },
integer d.
Input: Candidate string s and integerΔd.

Output: A string ŝ with mini=1,...,k {dH(ŝ , si)} >= d if it
exists,
and “not found,” otherwise.
(D0) If Δd < 0, then return “not found”;
(D1) If dH(s, si) < 2d - L for some i ∈{1, . . . , k}, then

return “not found”;
(D2) If dH(s, si) >= d for all i = 1, . . . , k, then return s;
(D3) Choose any i ∈{1, . . . , k} such that dH(s, si) <

d:

P := {p | s[p] = si [p]};
Choose any P’ ⊂ P with |P’| = L - d + 1;

For every p∈P’ do

s’ := s;

s’[p] :=][psi ;

sret := FSd(s’,Δd − 1);

If sret ≠ “not found”, then return sret;
(D4) Return “not found”

Fig.1 The algorithm we propose to search the farthest
string. The recursive procedure creates a bounded
search tree that traverses to discover the farthest string.

Theorem 1 Given a set of binary strings S =
{ s1, s2, . . . , sk }of length L, and an integer d,
Algorithm FSD (Figure 1) determines in
O(kL(L-d)(L-d)) time whether there is a string with
mini=1,...,k {dH(s, si)}>= d and it computes such an s if

one exists.

Proof.
Running time. We consider the recursive part of the
algorithm. ParameterΔd is initialized to L-d. Every
recursive call decreasesΔd by one. The algorithm

stops whenΔd < 0. Therefore, the algorithm builds a

268

search tree of height at most d. In one step of the
recursion, the algorithm chooses, given the current
candidate string s, a string si such that dH(s, si) < d. It
creates a subcase for L-d + 1 of the positions in which

s and si have the same alphabet. This yields an upper
bound of (L-d + 1)L-d = O((L-d)L-d) on the search tree

size.

Correctness. Let us consider the situation when we first
enter the recursive procedure. In the first recursive call

the candidate string s is 1s . If 1s satisfies the condition

that the hamming distance between 1s and si is no lesser

than d, then we have our answer; If 1s does not satisfy

the above condition and a furthest string s does indeed

exist, then there exists some string si such that dH(1s , si)

< d. So 1s and si have at most d-1 positions that have

different alphabets (one symbol is 0 and the other one

is 1); in other words there are at least L-d+1 positions
that contain the same alphabet. Since by assumption s
is the farthest string, therefore s must satisfy the below

conditions: s and si have at least d positions that
contain different alphabets; in other words there at
most L-d positions containing same alphabets. So by

the pigeonhole theorem, if we select L-d+1 positions

from 1s , and substitute it with the complement (choose

0 when alphabet is 1 ; choose 1 when alphabet is 0),

then one of the changes must certainly make 1s closer

to the farthest string s. In the each following recursive
procedure will make the candidate string s (the
parameter of FSD) closer to the farthest string (if the
farthest string exists). So after the execution of the

algorithm we will find the farthest string s if it exists.

Theorem 2 Given a set of |Σ| alphabet strings

S = { s1, s2, . . . , sk }of length L, and an integer d,
Algorithm FSD (Figure 1) determines in O(kL((|Σ

|(L-d))(L-d)) time whether there is a string with
maxi=1,...,k dH(s, si)>= d and it computes such an s if

one exists.

Proof. We extend the result to arbitrary symbols. The
basic pseudo-code of the algorithm does not change,

but in the case of choosing the complement of the
alphabet, the branch factor of the bounded search tree

is increased. In the case of binary alphabets, the pth
position of si’s complement is either a change from 0 to
1 or 1 to 0. When we extend the case to non-binary
alphabets, the complement may have more than one

choice possible, for example, when the alphabet set =
{0,1,2} then the complement of 0 may be 1 or 2.
Similarly in the beginning of the procedure call,

if 1s satisfies the condition that the hamming distance

between 1s and si is no lesser than d, then we have our

answer; if 1s does not satisfy the above condition and a

farthest string s does indeed exist, then there exists

some string si such that dH(1s , si) < d. Like the proof

above, 1s and si have at least L-d+1 positions that share

the same alphabet, hence s and si have at most L-d

positions with the same alphabet, then according to the

pigeonhole theorem there exists a position on 1s that is

the same with si but differs from the farthest string s,
we take the complement of the alphabet on that
position, then one of the complements must be the
same with the alphabet on s, therefore that change will

make the candidate string closer to the farthest string.

269

The change made in the FSD procedure will be made to
recursively call (|Σ|-1) *(L-d)FSD procedures

3 Farthest String Defined by Maximum
Hamming Distance Sum

Since the term “farthest string” can be defined to
either be restricted in a given string set or can be any
arbitrary string constituted by the alphabet set.

Input: Strings s1, s2, . . . , sk over alphabetΣof length L.

Question: Find a string s∈{s1, s2, . . . , sk} that

maximizes ∑
=

k

i
iH ssd

1

),(?

 Given a set of k strings of length L, we can think
of these strings as a k × L character matrix. Then we

refer to the columns of this matrix as columns of the set
of strings. Note that, given a set of length L strings S =
{s1, s2, . . . , sk}, a created string with the largest

hamming distance can be easily computed by choosing
in every column a letter occurring the least times. This
way of selecting the letters is called the minority vote;

yet this technique does not necessarily produce a
unique solution.

Lemma 3. By using the minority vote technique to
solve this problem still can not find the exact result.

Proof. We can to use the minority vote technique to
find the pseudo farthest string, and then decide which
existing string is closest to this string by computing the

hamming distance sum. Yet, this algorithm does not
yield a correct solution for two reasons. First, since the
result of the minority vote technique is not unique.
Selecting different alphabets can have different results.

Secondly, when searching for a string that most

resembles the pseudo farthest string there may be more
than one choice available. Apparently, this string does
not yield the correct solution but an approximate result
of the farthest sting bounded by the given string set

problem.

Fig. 2 The result of using the minority vote technique,

the output is “00”, we can see that “00”and “11”have
the same hamming distance with the ideal
solution”10”, therefore we choose the first choice

“00”. But the best solution in this example is “11”, so
we introduce the concept of weighted votes.

Let),(pnum α denote the number of times the

alphabet alpha appears on the pth column. We assign a
weight on every alphabet in a column, which is defined

as k subtract the times an alphabet appears in the
column. Every different combination of alphabets will
yield different weights, and selecting the string with the

largest combined weight is then the solution of this
problem. The weight of the pth position of the ith string

is defined as)],[(][ppsnumkpw ii −=

Theorem3. ∑∑
=≠

=
L

p
i

ij
jiH pwssd

1

][),(

Proof.

0 0

1

1

The number of
1’s in the first
bit is the least
of the
candidates, so

we choose 1 as
the minority
vote.

The number of
0’s in the
second bit is
the least, so the
minority vote
is 0.

270

∑

∑

∑∑

∑∑∑

=

=

= ≠

≠ =≠

=

−=

=

=

L

p
i

L

p
i

L

p ij
jiH

ij

L

p
jiH

ij
jiH

pw

ppsnumk

pspsd

pspsdssd

1

1

1

1

][

)],[(

])[],[(

])[],[(),(

In other words, the sum of the hamming distance of the

ith string and the other strings in the set will equal the
sum of weights of every position on the ith string.

Algorithm Implementation

 The concept of our algorithm is to calculate the

weighted sum of every string and examine which string
will yield the largest weighted sum, the designated
string is then the solution to this problem.

1 for p=0 to L

2 for i=0 to k
3 num[si[p]] += 1
4 farthest = 0

5 farthest_distance = 0
6 for i=0 to k
7 temp_distance = 0

8 for p=0 to L
9 temp_distance += k - num[si[p]]
10 if temp_distance > farthest_distance
11 farthest_distance = temp_distance

12 farthest = i
return sfarthest

Fig. 3 The above algorithm calculates the weighted
sum of every string in the set, and selects the string
with the largest sum.

Note that if the alphabet size is not binary and

exceeds the number k, in [6] it has been shown that it is
possible to find an isomorphic mapping that transforms
the set of strings into a set that uses at most k alphabets.

 Also note that, with slight modifications, the
algorithm may be implemented to compute for a

farthest string that does not necessarily be in the given
set of strings.

Theorem 4 Given a set of binary strings S = { s1,
s2, . . . , sk }, the algorithm in figure 3 determines in
O(kL) time finding a string that maximizes

∑
=

k

i
iH ssd

1

),(.

Proof.
Running time. The loops on line 1-3 will take O(kL)
loops and each loop takes O(1) time, and the same

situation occurs on line 8-12. Rest of the pseudo-code
takes O(1) time. Thus the upper bound on this
algorithm is O(kL).

Correctness. By Theorem 3, the string with the
maximum sum of weights is the string that we are

searching for. The algorithm that we propose calculates
the sum of weights for every string in the set, and
selects the string with the maximum sum. Therefore, by

Theorem 3 we indeed obtain the farthest string.

Conclusion
 In this paper we present two definitions in which
the farthest string may be defined. Either via the
maximum hamming distance sum between the set of

given strings or via the minimum distance for a farthest
string. We present algorithms to achieve the answer for
both of these problems.

 Both of our algorithms are proved to be linear, if

271

the minimum hamming distance d is a fixed constant.
This result is very useful in the field of bio-information.
Yet, still much effort is still needed. Although we have
proved the algorithm to be linear, the coefficient of the

algorithm may be very large depending on the value of
d that we select. Ways to cut down on the coefficient of

the algorithm will yield a better practical use of our
algorithm.

References
[1] J. Alber, J. Gramm, and R. Niedermeier. Faster

exact solutions for hard problems: a
parameterized point of view. Discrete
Mathematics 229:3-27, 2001.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, M.

Szegedy, Proof verification and
 intractability of approximation problems, In
Proceedings of the 33th Annual IEEE Symposium
on Foundations of Computer Science, 13–22,
1992.

[3] R. G. Downey and M. R. Fellows. Parameterized

Complexity. Springer-Verlag, New York, 1999.

[4] M. R. Fellows. Parameterized complexity: the
main ideas and connections to practical
computing. In Experimental Algorithmics,
Lecture Notes in Computer Science,

Springer-Verlag, Berlin, 51–77, 2002.
[5] M. Garey, D. Johnson, Computers and

Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman, San Francisco,
1979.

[6] J. Gramm, R. Niedermeier, and P. Rossmanith ,

Fixed-Parameter Algorithms for CLOSEST
STRING and Related Problems, Algorithmica 37:

25–42, 2003.
[7] T. Jiang, C. Trendall, S. Wang, T. Wareham, X.

Zhang, Drug target identification using Gibbs
sampling techniques, in: Pacific Symposium on
Biocomputing, 389–400, 2000.

[8] J. K. Lanctot, M. Li , B. Ma, S. Wang, and L.
Zhang, Distinguishing string selection problems,

Information and Computation 185: 41–55, 2003.

272

