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Abstract 
 

The farthest string problem (FARTHEST 
STRING) is one of the core problems in the field of 
consensus word analysis and several biological 
problems such as discovering potential drugs, universal 
primers, or unbiased consensus sequences. Given k 
strings of the same length L and a nonnegative integer 

d, FARTHEST STRING is to find a string s such that 
none of the given strings has a Hamming distance that 
is smaller than d from s. It has been shown to be 
NP-complete. In this paper, we study two variants of 
FARTHEST STRING. One is to search for a string s 
satisfying the condition that the hamming distances 

between s and all the given strings are greater than d. 
We give an  O((|Σ|(L-d))(L-d) )-time algorithm, where |
Σ| is the alphabet size. The other variant is to find a 

string s such that the sum of the hamming distances 
between s and all the given strings are maximized. We 
solve this problem in O( kL ) time. 

 

 

1  Introduction 
 

With the development of genetic technology, 
more and more problems are solved by using genetic 

information. We can distinguish related species from 
other species by comparing the DNA difference 

between one another [7]. All these problems can be 
reduced to finding a pattern which occurs in one set of 

strings (the Closest String problem) but does not occur 
in another set (the Farthest String problem) [6]. 
FARTHEST STRING is an important problem in 
computational biology. This paper proposes efficient 
algorithms to solve the following two problems. The 
first one is the farthest string problem with fixed 

parameters. Where k strings with length L and a 
non-negative number d is given, the problem is to 
determine whether a string s that satisfies the condition 
that the hamming distance between s and all the given 
strings are greater than d. The second problem is to 
find the farthest string s under the condition that s must 

reside in the set of the given strings and has the 

maximum sum of hamming distance with respect to all 
other strings. 
 

The farthest string problem is proven to be 
NP-complete [8] and there is a polynomial-time 

approximation scheme (PTAS) for the farthest string 

problems based on a linear programming relaxation 
technique [8]. Now, consider the two most natural 
parameters concerning farthest strings: the minimum 
Hamming distance d and the number of given input 
strings k. In some applications d is (very) large, so it is 

important to ask whether efficient algorithms are 
possible when d or k is fixed. FARTHEST STRING, 

266

mailto:@csie.ntu.edu.tw


 

although NP-complete in general, is tractable [2, 5] for 
fixed parameters d andΣby using the bounded search 

tree algorithm [1, 3, 4].  
 

The rest of the paper is organized as follows. In 
Section 2, we give the general strategy and the main 

idea of the algorithm for the farthest string problem 
with fixed parameters and show the running time and 
correctness under the condition of binary strings first. 
Next, we extend the result to arbitrary alphabet 

instances. In Section 3, we give a formal definition of 
the variant of the farthest string problem and propose 

an efficient algorithm to solve the problem in O(kL). 
We then prove the correctness and time complexity of 
the algorithm. 
 

 

2  Farthest string with fixed parameter 
  

As we stated in the introduction, the farthest 
string problem here is given k strings with the same 
length L and a non-negative number d, and trying to 

find a string s that satisfies the condition that the 
hamming distance between s and all the given strings 
are greater than d. We give the formal definition of the 

farthest string problem in mathematical terms: 
 
Input: Strings s1, s2, . . . , sk over alphabetΣof length L , 

and a nonnegative integer d. 
Question: Is there a string s of length L such that dH(s, 
si ) >= d for all i = 1, . . . , k? 

 
 Before presenting the algorithm for this problem, 
we give some definitions and minor results that will be 

used in the algorithm. 
 
Lemma 1.  Given a set of strings S = { s1, s2, . . . , sk } 
and a positive integer d. If there are i, j ∈{1, . . . , k} 

with dH(si, sj) > x, then there is no string s with 

mini=1,...,k {dH(s, si )} > L-x/2. 
 
Proof. Suppose the hamming distance between si and sj 
is greater than x, this means that there are at most L-x 

positions with the same symbol and at least x positions 
with different symbols at the same relative positions on 

si and sj. To achieve the greatest hamming distance 
between si and sj simultaneously, the complement of 
the symbol on all of the positions where si and sj 
contain the same symbol is chosen. Thus we increase 

the hamming distance for si and sj by at most L-x, on 
the other hand, changing a symbol on the other 

positions where si and sj have different alphabets can 
increase the hamming distance by only at most x/2. 
Therefore the maximum hamming distance that an 
arbitrary string may have between si and sj is L-x + x/2 

= L-x/2 when dH(si, sj) = x. Hence, when dH(si, sj)> x 
the maximum hamming distance on both si, sj cannot 
exceed L-x/2. 

 
Corollary 1.  Given a set of strings S = { s1, s2, . . . , 
sk } and a positive integer d. If there are i, j ∈{1, . . . , 

k} with dH(si ,sj)> 2L-2d, then there is no string s with 
mini=1,...,k {dH(s, si )} >= d. 
 

Proof.  By lemma1, we set L-x/2 = d and then the 
value of x can be deduced easily. We can find that x = 
2d-1L, and therefore no string s exist that satisfies the 

condition that mini=1,...,k dH(s, si ) >= d. 

 
Given a string s then s  is the string defined by 

taking the complement alphabet of every position on 
string s. If s is a binary string then the job is to simply 
exchange the 1’s to 0’s and the 0’s to 1’s. If the 

alphabet set of s contains more than two elements, then 
for each string the complement string may have more 
than one choice. E.g. when the alphabet set = {0,1,2} 
then the complement of alphabet 0 may be 1 or 2. 
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Lemma 2.  Given a set of strings S = { s1, s2, . . . , sk } 
and a positive integer d. If there are i, j ∈{1, . . . , k} 

with dH( is , sj)< 2d-L, then there is no string s with  

mini=1,...,k {dH(s, si )} >= d. 
 

Proof. The hamming distance between complement 
of si and sj is smaller than 2d-L, it means that there 
are at most 2d-L positions with different symbols at 

the same relative positions on is  and sj. In other 

words, there are at least L-(2d-L) = 2L-2d positions 

with different symbols at the same relative positions 
on si and sj. By the corollary mentioned above, 
lemma2 is proved. 

 
 The idea of our algorithm is to start with one of 

the given strings, e.g., 1s , as a “candidate string.” If 

there is a string si, i = 2, . . . , k, that differs from the 
candidate string in less than d positions, we recursively 
try several ways to move the candidate string “away 

from” si; the term “moving away” means that we select 
a position in which the candidate string and si have the 
same alphabet and set this position in the candidate 

string to the complement of the character of si at this 
position. We stop either if we moved the candidate “too 

far away” from 1s  or if we found a solution. By a 

careful selection of subcases of this recursion we can 
limit the size of this search tree to O(((|Σ|(L-d))(L-d) ), 

as will be shown in the following theorem. In Figure 1 
we outline a recursive procedure solving FARTHEST 
STRING. It is based on the bounded search tree 

paradigm that is frequently successfully applied in the 
development of fixed-parameter algorithms [1, 4, 6].  

 
Recursive procedure FSD(s,Δd) 

Global variables: Set of strings S = { s1, s2, . . . , sk }, 
integer d. 
Input: Candidate string s and integerΔd. 

Output: A string ŝ with mini=1,...,k {dH( ŝ , si )} >= d if it 
exists, 
and “not found,” otherwise. 
(D0) If Δd < 0, then return “not found”; 
(D1) If dH(s, si) < 2d - L for some i ∈{1, . . . , k}, then 

return “not found”; 
(D2) If dH(s, si ) >= d for all i = 1, . . . , k, then return s; 
(D3) Choose any i ∈{1, . . . , k} such that dH(s, si) < 

d: 

P := {p | s[p] = si [p]}; 
Choose any P’ ⊂ P with |P’| = L - d + 1; 

For every p∈P’ do 

s’ := s; 

s’[p] := ][ psi ; 

sret := FSd(s’,Δd − 1); 

If sret ≠ “not found”, then return sret; 
(D4) Return “not found” 

 

 
Fig.1 The algorithm we propose to search the farthest 
string. The recursive procedure creates a bounded 
search tree that traverses to discover the farthest string. 

 

Theorem 1  Given a set of binary strings S = 
{ s1, s2, . . . , sk }of length L, and an integer d, 
Algorithm FSD (Figure 1) determines in 
O( kL(L-d)(L-d) ) time whether there is a string with 
mini=1,...,k {dH(s, si)}>= d and it computes such an s if 

one exists. 
 

Proof.   
Running time. We consider the recursive part of the 
algorithm. ParameterΔd is initialized to L-d. Every 
recursive call decreasesΔd by one. The algorithm 

stops whenΔd < 0. Therefore, the algorithm builds a 
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search tree of height at most d. In one step of the 
recursion, the algorithm chooses, given the current 
candidate string s, a string si such that dH(s, si) < d. It 
creates a subcase for L-d + 1 of the positions in which 

s and si have the same alphabet. This yields an upper 
bound of (L-d + 1)L-d = O((L-d)L-d ) on the search tree 

size. 
 
Correctness. Let us consider the situation when we first 
enter the recursive procedure. In the first recursive call 

the candidate string s is 1s . If 1s satisfies the condition 

that the hamming distance between 1s and si is no lesser 

than d, then we have our answer; If 1s does not satisfy 

the above condition and a furthest string s does indeed 

exist, then there exists some string si such that dH( 1s , si) 

< d. So 1s and si have at most d-1 positions that have 

different alphabets (one symbol is 0 and the other one 

is 1); in other words there are at least L-d+1 positions 
that contain the same alphabet. Since by assumption s 
is the farthest string, therefore s must satisfy the below 

conditions: s and si have at least d positions that 
contain different alphabets; in other words there at 
most L-d positions containing same alphabets. So by 

the pigeonhole theorem, if we select L-d+1 positions 

from 1s , and substitute it with the complement (choose 

0 when alphabet is 1 ; choose 1 when alphabet is 0), 

then one of the changes must certainly make 1s closer 

to the farthest string s. In the each following recursive 
procedure will make the candidate string s (the 
parameter of FSD) closer to the farthest string (if the 
farthest string exists). So after the execution of the 

algorithm we will find the farthest string s if it exists. 

 
Theorem 2  Given a set of |Σ| alphabet strings 

S = { s1, s2, . . . , sk }of length L, and an integer d, 
Algorithm FSD (Figure 1) determines in O( kL((|Σ

|(L-d))(L-d) ) time whether there is a string with 
maxi=1,...,k dH(s, si)>= d and it computes such an s if 

one exists. 
 
Proof. We extend the result to arbitrary symbols. The 
basic pseudo-code of the algorithm does not change, 

but in the case of choosing the complement of the 
alphabet, the branch factor of the bounded search tree 

is increased. In the case of binary alphabets, the pth 
position of si’s complement is either a change from 0 to 
1 or 1 to 0. When we extend the case to non-binary 
alphabets, the complement may have more than one 

choice possible, for example, when the alphabet set = 
{0,1,2} then the complement of 0 may be 1 or 2. 
Similarly in the beginning of the procedure call, 

if 1s satisfies the condition that the hamming distance 

between 1s and si is no lesser than d, then we have our 

answer; if 1s does not satisfy the above condition and a 

farthest string s does indeed exist, then there exists 

some string si such that dH( 1s , si) < d. Like the proof 

above, 1s and si have at least L-d+1 positions that share 

the same alphabet, hence s and si have at most L-d 

positions with the same alphabet, then according to the 

pigeonhole theorem there exists a position on 1s  that is 

the same with si but differs from the farthest string s, 
we take the complement of the alphabet on that 
position, then one of the complements must be the 
same with the alphabet on s, therefore that change will 

make the candidate string closer to the farthest string. 
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The change made in the FSD procedure will be made to 
recursively call (|Σ|-1) *(L-d)FSD procedures  

 
 

3 Farthest String Defined by Maximum 
Hamming Distance Sum  
 

Since the term “farthest string” can be defined to 
either be restricted in a given string set or can be any 
arbitrary string constituted by the alphabet set. 

 
Input: Strings s1, s2, . . . , sk over alphabetΣof length L. 

Question: Find a string s∈{s1, s2, . . . , sk} that 

maximizes ∑
=

k

i
iH ssd

1

),( ? 

 
 Given a set of k strings of length L, we can think 
of these strings as a k × L character matrix. Then we 

refer to the columns of this matrix as columns of the set 
of strings. Note that, given a set of length L strings S = 
{s1, s2, . . . , sk}, a created string with the largest 

hamming distance can be easily computed by choosing 
in every column a letter occurring the least times. This 
way of selecting the letters is called the minority vote; 

yet this technique does not necessarily produce a 
unique solution. 
 

Lemma 3.  By using the minority vote technique to 
solve this problem still can not find the exact result.  
 

Proof. We can to use the minority vote technique to 
find the pseudo farthest string, and then decide which 
existing string is closest to this string by computing the 

hamming distance sum. Yet, this algorithm does not 
yield a correct solution for two reasons. First, since the 
result of the minority vote technique is not unique. 
Selecting different alphabets can have different results. 

Secondly, when searching for a string that most 

resembles the pseudo farthest string there may be more 
than one choice available. Apparently, this string does 
not yield the correct solution but an approximate result 
of the farthest sting bounded by the given string set 

problem. 

 
Fig. 2 The result of using the minority vote technique, 

the output is “00”, we can see that “00”and “11”have 
the same hamming distance with the ideal 
solution”10”, therefore we choose the first choice 

“00”. But the best solution in this example is “11”, so 
we introduce the concept of weighted votes. 
 
Let ),( pnum α  denote the number of times the 

alphabet alpha appears on the pth column. We assign a 
weight on every alphabet in a column, which is defined 

as k subtract the times an alphabet appears in the 
column. Every different combination of alphabets will 
yield different weights, and selecting the string with the 

largest combined weight is then the solution of this 
problem. The weight of the pth position of the ith string 

is defined as )],[(][ ppsnumkpw ii −=  

 

Theorem3. ∑∑
=≠

=
L

p
i

ij
jiH pwssd

1

][),(   

Proof.  

0 0 

1 

1 

The number of 
1’s in the first 
bit is the least 
of the 
candidates, so 

we choose 1 as 
the minority 
vote. 

The number of 
0’s in the 
second bit is 
the least, so the 
minority vote 
is 0. 
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In other words, the sum of the hamming distance of the 

ith string and the other strings in the set will equal the 
sum of weights of every position on the ith string. 

 

Algorithm Implementation 
 
 The concept of our algorithm is to calculate the 

weighted sum of every string and examine which string 
will yield the largest weighted sum, the designated 
string is then the solution to this problem. 

  
 

1 for p=0 to L 

2    for i=0 to k 
3       num[si[p]] += 1 
4 farthest = 0 

5 farthest_distance = 0 
6 for i=0 to k 
7   temp_distance = 0 

8   for p=0 to L 
9     temp_distance += k - num[si[p]] 
10   if temp_distance > farthest_distance 
11    farthest_distance = temp_distance 

12     farthest = i 
return sfarthest 

Fig. 3 The above algorithm calculates the weighted 
sum of every string in the set, and selects the string 
with the largest sum. 
 

Note that if the alphabet size is not binary and 

exceeds the number k, in [6] it has been shown that it is 
possible to find an isomorphic mapping that transforms 
the set of strings into a set that uses at most k alphabets. 

 

 Also note that, with slight modifications, the 
algorithm may be implemented to compute for a 

farthest string that does not necessarily be in the given 
set of strings. 
 
Theorem 4  Given a set of binary strings S = { s1, 
s2, . . . , sk }, the algorithm in figure 3 determines in 
O(kL) time finding a string that maximizes 

∑
=

k

i
iH ssd

1

),( . 

 

Proof. 
Running time.  The loops on line 1-3 will take O(kL) 
loops and each loop takes O(1) time, and the same 

situation occurs on line 8-12. Rest of the pseudo-code 
takes O(1) time. Thus the upper bound on this 
algorithm is O(kL). 

 
Correctness. By Theorem 3, the string with the 
maximum sum of weights is the string that we are 

searching for. The algorithm that we propose calculates 
the sum of weights for every string in the set, and 
selects the string with the maximum sum. Therefore, by 

Theorem 3 we indeed obtain the farthest string. 
 

Conclusion 
 In this paper we present two definitions in which 
the farthest string may be defined. Either via the 
maximum hamming distance sum between the set of 

given strings or via the minimum distance for a farthest 
string. We present algorithms to achieve the answer for 
both of these problems.  
 

 Both of our algorithms are proved to be linear, if 
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the minimum hamming distance d is a fixed constant. 
This result is very useful in the field of bio-information. 
Yet, still much effort is still needed. Although we have 
proved the algorithm to be linear, the coefficient of the 

algorithm may be very large depending on the value of 
d that we select. Ways to cut down on the coefficient of 

the algorithm will yield a better practical use of our 
algorithm. 
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