
A List-based Strategy for Optimal Replica

Placement in Data Grid Systems

Yi-Fang Lin∗†, Jan-Jan Wu†, and Pangfeng Liu∗‡

∗ Department of Computer Science and Information Engineering

National Taiwan University, Taipei, Taiwan

Email: {d92009, pangfeng}@csie.ntu.edu.tw
† Institute of Information Science, Academia Sinica, Taipei, Taiwan

Email: {ice, wuj}@iis.sinica.edu.tw
‡ Graduated Institute of Networking and Multimedia

National Taiwan University, Taipei, Taiwan

Abstract—Data replications is a typical strategy for improving
access performance and data availability in Data Grid systems.
Current works on data replication in Grid systems focus on the
infrastructure for data replication and the mechanism of repli-
cas creation and deletion. The important problem of choosing
suitable locations for placing replicas in Data Grids has not been
fully studied.

This paper addresses replica placement problem in Data Grids
when given a sequence of priority lists that specify the forwarding
policies for data requests. We propose the concept of priority list
to address two issues. First, a user may have limited authority in
accessing the resources, and thus his/her data requests should be
prohibited from accessing some of the sites. Second, a static policy
may not satisfy a data request with special requirements (e.g.
quality of service requirement). In this priority-list-based model
we propose a placement algorithm that finds optimal locations for
replicas so that the workload among the replicas is balanced. We
also propose an algorithm that determines the minimum number
of replicas when the maximum workload capacity of each replica
is given.

a) Keywords: Data Grids, replica placement, priority list,

dynamic programming.

I. INTRODUCTION

Data Grids provide geographically distributed storage re-

sources for complex computational problems that require the

evaluation and management of large amounts of data [3], [12],

[17]. With the high latency of the wide-area networks that

underlie most Grid systems, and the need to access/manage

several petabytes of data in Grid environments, data availabil-

ity and access optimization have become key challenges that

must be addressed.

An important technique that speeds up data access in Data

Grid systems replicates the data in multiple locations so that

a user can access it from a site in his vicinity. It has been

shown that data replication not only reduces access costs,

but also increases data availability in many applications [12],

[18], [15]. Although a substantial amount of work has been

done on data replication in Grid environments, most of it has

focused on infrastructures for replication and mechanisms for

creating/deleting replicas [4], [7], [6], [8], [12], [15], [19],

[18], [20]. We believe that, to obtain the maximum benefit

from replication, strategic placement of the replicas is also

necessary.

A number of early works addressed placement of data repli-

cas in parallel and distributed systems with regular network

topologies such as hypercubes, torus, rings, and trees [2],

[13], [22]. These networks posses many attractive mathemat-

ical properties that enable the design of simple and robust

placement algorithms, but they cannot be directly applied to

Data Grid systems due to hierarchical network structures and

special data access patterns in Data Grid systems that are not

common in traditional parallel systems. An initial work on

replica placement for Data Grids was reported in [1]. The

author proposed a heuristic algorithm called Proportional

Share Replication for the placement problem, but it

does not guarantee an optimal solution.

In this paper, we study replica placement in Data Grid

systems, taking into account several important issues described

below. First, the replicas should be placed in proper locations

so that the workload on each server is balanced. A naive place-

ment strategy may cause “hot spot” servers that are overloaded,

while other servers are under-utilized. Another important issue

is to choose the optimal number of replicas. The denser the

distribution of replicas is, the shorter the distance a client site

needs to travel to access a data copy. However, maintaining a

large number of data copies in Grid systems is expensive, and

therefore, the number of replicas should be bounded. Clearly,

optimizing access cost of data requests and reducing the cost of

replication are two conflicting goals, so finding a good balance

between them is a challenging and interesting task.

Most of the current work assume a static forwarding policy

for all data requests [1], [2], [13], [22]; that is, the forwarding

destination of each site is fixed regardless the characteristics

of the data requests. Such static policy may not be applicable

to many grid systems because of the following reasons. First, a

user may have limited authority in accessing the resources, and

thus his/her data requests may be prohibited from accessing

some of the sites. Second, a static policy may not satisfy a

data request with special requirements (e.g. quality of service

requirement). Finally, the sites a request has visited may

influence the subsequent forwarding path of the request. Due

to these reasons, we believe that a suitable forwarding policy

should allow individual requests to have varied forwarding

paths. To accomplish this goal, we facilitate a data request

with a sequence of priority lists to allow more flexible request

forwarding policies. In other words, the Grid administrators

can provide the priority lists of data requests for the variant

policies.

In this paper, we focus on a tree-like-structured grid model,

which reflects the hierarchical structure in many grid sys-

tems [9], [6], [12], [19]. This hierarchy may come from the

network topology or administration institution. The hierar-

chical Data Grid model is also one of the most important

common architecture in current use [1], [6], [12], [19], [10].

For example, in the LCG (WorldWide Large Hadron Collider

Computing Grid) [9] project, 70 institutes from 27 countries

form a grid system organized as a hierarchy, with CERN (the

European Organization for Nuclear Research) as the root, or

tier-0 site. There are 11 tier-1 sites directly under CERN that

help distribute data obtained from the Large Hadron Collider

(LHC) at CERN. Meanwhile, each tier-2 site in the LCG

hierarchy receives data from its corresponding tier-1 site. In

the future, LCG is expected to extend to more levels of tiers.

The entire LCG grid can be represented as a tree structure.

In the forthcoming EGEE/LCG-2 Grid, the tree structure will

comprise 160 sites in 36 countries.

We study replica placement in the tree-like model aug-

mented with priority lists-based forwarding policy. Under

this model, we propose an efficient algorithm that finds the

optimal locations for placing the replicas so that the workload

among these replica is balanced. We also propose an algorithm

that determines the minimum number of replicas when the

maximum workload capacity of each replica server is given.

The rest of the paper is organized as follows. Section II

describes our data grid model, and formally defines our replica

placement problem. Section III summarizes related work in

replica placement in trees. Section IV presents our replica

placement algorithms and their theoretical analysis. Section V

gives concluding remarks and directions for future research.

II. MODEL

We propose a tree-structured data grid model augmented

with priority lists to exploit pragmatic request forwarding

policies in many Data Grid systems. We first formally define

the notion of priority list and replica placement, and then

describe the replica placement problems in this model.

A. The Priority List Model

A Data Grid consists of a node set V = {n1, n2, . . . , nn}
that represents n data grid nodes. Each node in the Data

Grid can request data, and each request uses a priority list to

indicate the sites from which this request will ask for the data,

in the order specified in the priority list. We will use the term

“request” and “priority list” interchangeably in the rest of the

paper. We assume that there are m data requests in total, and

they form a priority list sequence denoted by L = (l1, . . . , lm).
The i-th priority list in L is li = (pi,1, pi,2, . . . , pi,ki

),

where ki is the number of nodes in li, and each pi,j , for

1 ≤ i ≤ m, 1 ≤ j ≤ ki, is a node in V .

A server set is a subset of V that have data replicas. A

server set S satisfies a request li if and only if the intersection

of S and li is not empty. To be more specific, the request li
will receive the data from the first server in its priority list

that also appears in S. Formally, a node c is the server of a

request li under a server set S, denoted as c = ser(S, li), if c
is the first server appearing in li that also appears in S.

ser(S, li) =

{

∅ pi,j /∈ S, 1 ≤ j ≤ ki

pi,j∗ j∗ = minj{j|pi,j ∈ S}
(1)

For example, we consider a data grid system with a node set

V = {n1, n2, . . . , n10}, three requests l1 = (n1, n5, n3, n6),
l2 = (n9, n2, n7) and l3 = (n5, n10), and a server set S =
{n2, n3, n5}. The servers of requests l2 and l3 under S are n2

and n5, respectively, since each of the two requests has only

one server in S. The server of l1 is n5 since it is the first

server in l1 that is also in S, according to Equation 1.

B. Replica Placement Problem

Given a server s from a server set S and a priority lists

sequence L, the workload of s is the number of requests in

L that s satisfies. This workload is denoted by load(L, S, s)
as in Equation 2. The workload of a server set S is defined

as the maximum workload among its servers, as denoted by

Load(L, S) in Equation 3.

load(L, S, s) = |{l|l ∈ L, s = ser(S, l)}| (2)

Load(L, S) = maxs∈S load(L, S, s) (3)

A server set S is feasible if S satisfies all m requests in L.

If a server set S is feasible and the workload Load(L, S) is

no more than W , then S is workload-W -feasible.

For example, consider the same V and the same priority list

sequence L in the previous example, and two server sets S1 =
{n2, n3, n5} and S2 = {n1, n2}. According to the definition

of server set feasibility, S1 is feasible but S2 is not, since S2

cannot satisfy l3. The workloads of n2, n3 and n5 are 1, 0
and 2, respectively, when given the server set S1.

The goal of our replica placement strategy is to place the

replicas so as to satisfy the following two objectives. First,

given a priority lists sequence L, how to determine where

to place a given number of replicas so that the maximum

server workload is minimized? Second, if we fix the maximum

workload of each server, how to determine the minimum

number of replicas and the best locations to place them? We

formulate these two replica placement problems as follows.

• The LoadBalance problem is, when given the number

of replica k, find a feasible server set S of k servers so

that the maximum workload among all servers in S is

minimized.

• The PlaceR problem is, when given the maximum work-

load of each server (denoted by W), find the minimum

cardinality server set S that is workload-W -feasible.

C. The Sibling Tree Model

The rest of the paper will focus on a special priority list

model – the sibling tree model. We focus on the sibling tree

model because it resembles the hierarchical grid management

found in many Grid systems [9], [6], [12], [19].

Abawajy reported a hierarchy communication model in [1].

In this hierarchy model, the nodes are connected as a tree,

which corresponds to hierarchical grid management found in

many Data Grids systems. In this hierarchy model, the requests

issued on a node v will be forwarded towards the root of the

tree via the unique path between v and the root.

The sibling tree model is similar to the hierarchy communi-

cation model in [1], with additional communication channels

between siblings. That is, in addition to the communication

channel from each tree node to its parent, we also have

communication channels between siblings. The reason for

these additional links is that, in a hierarchical grid, a request

would usually visit all of the nodes managed by the same

parent before it is forwarded to the parent. Note that the

communication links between siblings can be logical – one

node can always reach its sibling via the parent by at most

two hops. Nevertheless, in the rest of the paper, we will assume

that the links between siblings are physical.

The edges in a sibling tree consist of tree edges and sibling

edges, therefore a sibling tree is the union of a tree edge set

T and the ring edge set E among siblings. We also assume

that all edges in the sibling ring are one-way so that messages

can only travel along the ring in one direction.

For each node in a sibling tree, we define a sibling path.

The sibling path of a node v, denoted by SP (T, v), is the

path the requests from v will travel while searching for the

requested data. If a parent has q children c1, . . . , cq where ci is

the i-th child, the sibling path of ci is the concatenation of the

path (ci, ci+1, . . . , cq, c1, c2, . . . , ci−1), and the sibling path of

the parent p, i.e., SP (T, p). The request will travel through

all children of p (via the one-way sibling edges mentioned

earlier), then proceed to the sibling path of the parent p.

This paper focuses on the replica placement problem where

each request (priority list) from a node v is a prefix of the

sibling path of v. In other words, all requests from v will first

travel along the sibling ring looking for the data. If none of

its siblings has the data, the request searches along the sibling

path of its parent.

The sibling-path routing behavior mentioned earlier en-

forces a quality of service requirement. If a request has k nodes

in its priority list, it must be able to find a replica within the

first k nodes along its sibling path. Otherwise, this request is

not satisfied and the server set is not feasible. Therefore, the

number of nodes in a priority list can be viewed as a QoS

requirement for the request. We must find a server set that

satisfies all requests, which is equivalent to satisfying the QoS

requirement of all requests.

Note that under a feasible server set S in the sibling tree

model where every request is satisfied, the requests from the

same node will be served by the same server. This is because

that requests from the same node travel along the prefixes

of the same sibling path. Consequently, after we are given

the a server set S and a priority list sequence L. we can

define two functions for each node v – w(v) is the number of

the priority lists (requests) that start from v, and r(v) is the

shortest length of the priority lists from v. r(v) represents a

quality-of-service requirement, since every feasible server set

must place a replica no further than the r(v)-th node from v
along the sibling path of v.

Another implication of this prefix-based routing is that the

requests sent from the root must be serviced by a replica at

the root. Therefore, we can assume that the priority list of a

request from the root contains only the root, and there is an

“implicit” replica at the root.

III. RELATED WORKS

This section summarizes related work in replica placement

in trees. The first set of models allow the request to go up and

down the tree for the nearest replica. For example, Wolfson

and Milo [24] suggested a model in which no limit is set for

the server capacity. The read cost is the number of hops from a

request to its server. The update cost is proportional to the size

of the subtree that spans all replicas. The goal is to minimize

the sum of read and update cost. Kalpakis et. al. [13] suggested

a model in which each server has capacity limit and each site

has different site building costs. The read cost is defined as the

product of the amount of data transfer and the path length. The

goal is to minimize the sum of read, update and site building

cost. Unger and Cidon [23] suggested a similar model but

without server capacity limit. Guha et. al. [11] suggested a

model in which there are a known number of servers in the

tree, each with equal capacity. There is no read, write, or site

building costs, and the goal is to assign the request to a server

(not necessarily the nearest one), so that the maximum distance

from a client to its assigned server is minimized. Korupolu et.

al. [14] suggested a model in which the read cost is slightly

different from other models. The data access must go from

the client to the least common ancestor of the client and the

replica, then to the replica.

The second set of models only allow the request to search

for the replica towards the root of the tree. For example, Jia

et. al. suggested a model in which no server capacity or site

building cost is set. The read cost is defined as the product of

access path length and the amount of data. The update cost

is defined as the sum of link cost of the size of the subtree

from root to all replicas. The goal is to minimize the sum

of read and update cost. Cidon et.al. [5] suggested a similar

model in which a replica is associated with a site building

cost, but there is no update cost. The goal is to minimize the

sum of read cost and storage cost. Tang and Xu [21] later

described a model similar to our quality of service model, but

without server capacity limit and the sibling path. There is a

range limit on the number of hops between a request and its

assigned replica. The goal is to find a feasible solution and

minimize the sum of update and storage costs.

Our model focus on a tree-like topology in which the

requests go upwards towards the root. In real-life grid system

like LCG [9], the requests go from tier-2 to tier-1, then to

tier-0 site in the search of data. In addition, the grid hierarchy

usually reflects the structure of administrative organization, or

the geographic locality, so the assumption of having requests

going up towards the root is reasonable. Moreover, our model

allows a request to be forwarded among the siblings before

this request goes up towards the root. The reason is that, in a

hierarchical grid, a request would usually visit all of the nodes

managed by the same parent site before it is forwarded to the

parent.

Our model differs from the above mentioned models be-

cause it considers all of the following three factors. First, we

allow each client to specify its own quality of service require-

ment, in terms of the number of hops towards to root of the

tree. This extension allows different users to specify different

levels of service quality. Second, our model addresses the

important issue of workload balancing by setting a capacity

limit on the amount of data that each replica server can handle.

Finally, our model allows sibling links to reflect the reality that

a site may request its peer sites before requesting its parent.

IV. THE ALGORITHMS

A. PlaceR

The PlaceR problem in the sibling tree model can be stated

as follows. Given a sibling tree T , a priority list sequence

L, and a maximum workload W , find a workload-W -feasible

server set S with the minimum number of replicas. However,

as mentioned in Section II-C, the requests from the root must

be answered by a replica at the root, so we will assume that

there is an “implicit” replica at the root, and the minimum

number of replicas in the definition of workload-W -feasible

does not include this root replica.

To take into consideration this “implicit” replica at the root,

we would like to refine the definition of workload-W -feasible

as follows. Let Tv be the subtree rooted at v, and T ′
v = Tv −

{v} is the forest of subtrees rooted at the children of v. S is

a subset of T ′
v that partitions the requests from Tv into two

groups. The requests in the first group will reach v and request

in the second group are serviced by one of the servers in S.

By reaching v we mean that a request will not be able to find

any server in S along its sibling path before v. Since we do

not wish to have any overloaded replica, including the implicit

one at the root, we define that a server set S is workload-W -

feasible if the number of requests reaching v or any servers in

S is no more than W . In other words, the ”implicit” replica

at v should not have workload from Tv more than W either.

Similarly we can refine the definition of “optimal servers

set” for Tv. A server set S is optimal for Tv, L, and W if the

followings are true. First, S must be a workload-W -feasible

server set with the minimum number of servers. Second, S
must minimize the number of the requests from Tv that reach

v. We use m(Tv, L, W) to denote this minimum number of

servers in an optimal server set for Tv. For ease of notation we

will drop the phrase “for W and L” when the context clearly

indicates the workload bound W and the priority list sequence

L. Consequently we will use m(Tv) to indicate the minimum

number of servers in an optimal server set for Tv.

1) Contribution function: Let T be a sibling tree rooted

at r. For every node v in T , We now define a contribution

function C(v, i).
Definition 1: Consider a node v and the i-th node z on the

sibling path of v. If we put an ”implicit” replica at z, then

C(v, i) is the minimum possible workload on z contributed by

Tv under the following three constraints. Note that if there

does not exist a workload-W -feasible server set to satisfy

the constrains, the contribution function C(v, i) will be set

to infinity.

1) There are m(Tv) replicas in T ′
v.

2) There is no replica in the first i − 1 nodes along the

sibling path of v.

3) Each request from Tv must be satisfied by either z or

one of the m(Tv) servers in T ′
v.

We consider some special cases of the contribution func-

tions. By definition C(v, 0) is the minimum workload of node

v due to an optimal server set for Tv. If v is a leaf, the

contribution function C(v, i) is w(v) when i < r(v), and

infinity when i ≥ r(v), where we recall that w(v) is the

number of requests from v and r(v) is the maximum number

of hops that the requests from v are allowed to search for

replica.

We now further generalize the concept of “optimal server

set” according to the contribution function. The contribution

function defines the workload contribution of a subtree rooted

at v towards the i-th node along the sibling path of v. Therefore

we define a server set S to be i-optimal for Tv if S is a

workload-W -feasible set for Tv with minimum number of

servers and S minimizes the contribution function C(v, i). Let

U be the set of the requests from Tv that cannot be satisfied by

servers in S. An i-optimal server set S ensures that requests

in U reach the i-th node of the sibling path of v, minimize

their contributions to the i-th node in the sibling path of v, and

S has at most m(Tv) replicas. We use S(v, i) to denote this

i-optimal server set. Please refer to Figure 1 for an illustration.

T’v

...v

S(v,i)

z

C(v,i)

i

Fig. 1. An illustration of i-optimal server set S(v, i)

2) Bottom-up Computation: We now describe a bottom-up

process that computes the contribution C and the minimum

server cardinality functions m. By definition, if v is a leaf,

C(v, i) is w(v) when i is less than r(v), and infinity otherwise.

Now consider an internal node v that has children v1, . . . , vn.

Since this is a bottom-up process we may assume that we have

C, m, and the optimal server sets S(vj , i) for all i and j.

Given the C and m functions of children of a node v, there

are two cases we need to consider. The first case is that there is

no replica among the children of v, and the second case is that

there is at least one replica among them. In the first case we use

a greedy method to determine how to combine local optimal

solutions of the children into a global optimum. In the second

case we transform our problem instance into many problem

instances in [16], apply a dynamic programming also described

in [16], and find the best solution among these constructed

instances. After we compute the m functions for both cases,

we then choose the smaller one as the m function for the

subtree. Finally we can use the m function to compute the

contribution function for the root of the subtree.

3) No replica among the children of v: In the first case we

assume that the optimal server set of v does not have replica

at the children of v. We first determine m(Tv), the minimum

number of replica required. Consider any 0-optimal server set

S(v, 0) for Tv. S(v, 0) must have at least m(Tvj
) in T ′

vj
for all

j, otherwise vj will be overloaded by requests. Therefore we

conclude that S(v, 0) must have exactly m(Tvj
) or m(Tvj

)+1
servers in T ′

vj
, since adding just one replica at a child of vj is

enough to minimize the workload of vj due to requests from

T ′
vj

.

If the sum of contribution of Tvj
towards v is less than or

equal to W , we conclude that any S(v, 0) server set could

not do better since by definition the contribution function is

minimized by the server set S(vj , n) respectively. Note that we

use n (the number of children of v) as the second parameter

since node v is the n-th node in the sibling path of any vj .

Consequently, m(Tv) is the sum of all m(Tvj
).

If the sum of contribution of Tvj
towards v is greater than

W , we consider two cases. If the server set S(v, 0) has m(Tvj
)

replica in T ′
vj

, then it will not contribute less workload than

the server set S(vj , n), which by definition will contribute

the least workload toward v with m(Tvj
) replicas. Again note

that we use n as the second parameter since the node v is

the n-th node in the sibling path of any vj . If the server set

S(v, 0) has m(Tvj
) + 1 replica in T ′

vj
, then we could replace

them with S(vj , n), which has m(Tvj
) replicas, plus one at

an arbitrary child of vj . The latter arrangement will contribute

zero workload towards v, which could not be outperformed.

Consequently, we conclude that there exists an S(v, 0) that

consists of all S(vj , n), plus some grandchildren of v.

Now we need to determine which grandchildren of v need

to have replicas in order to find a 0-optimal server set for Tv.

These extra replicas will be placed into some subtrees of v,

and each of these subtrees will place exactly one replica at the

grandchild of v. The sum of this extra number of replica, and

the sum of all m(Tvj
), will be equal to m(Tv) in this case.

We will use the following greedy method to place extra

replicas. We will choose the subtree that contributes the most

towards v, place a replica there to reduce the workload that

reaches v, and repeat this process until the workload on v does

not exceed W . Let Q be the set of roots of the subtrees that we

decide to place extra replicas. The final contribution function

C(v, 0) can be described as Equation 4. Note that for those

T ′
vj

that we decide to place extra replicas, the contribution of

Tvj
towards v is limited to w(vj) since the extra replica will

intercept all requests from T ′
vj

, and only the requests of vj

could reach v.

C(Tv, 0) = w(v) +
∑

vj∈Q

w(vj) +
∑

u/∈Q

C(u, n). (4)

This greedy method does minimize the workload on v by

a server set S∗. We argue that S∗ is indeed optimal since if

another 0-optimal server set S(v, 0) disagrees with S∗, we can

replace the subtrees of S(v, 0) that are missing from S∗ with

those that only appear in S∗, and the resulting server set will

not increase the contribution function on v.

Figure 2 gives an example in which we should not place

replica at any of the children of v. The reason is that if we do

so, we need to place additional replicas to avoid the replica

we placed at the child of v being overloaded. Instead, we can

place only one replica at a grandchild g of v to prevent its

requests from reaching v. This will keep the load on v below

W , since we have prevented some requests, now served by g,

from reaching v.

v2

... ...v

v1 v3 v4 v5

S(v1,5) = 1 S(v2,5) = 9 S(v3,5) = 1 S(v4,5) = 3 S(v5,5) = 1

w(v) = w(v1) = w(v2) = w(v3) = w(v4) = w(v5) = 0

g

Fig. 2. An example showing that a single replica at a grandchild of v is
sufficient to keep v from being overloaded. The capacity limit is set to 10.

Now we have determined m(Tv) and S(v, 0), but we still

need to determine all S(v, i)’s. This process is similar to

the one described above. We argue that any S(v, i) will

have at least m(Tvj
) replicas in each of T ′

vj
, therefore we

can “standardize” S(v, i) into a form of the union of all

S(vj , i + n), plus additional replicas at some grandchildren

of v. We apply the similar greedy method to find these

grandchildren in order to minimize the contribution towards

the i-th node on the sibling path of v. Let Q be the set of those

subtrees that have extra replicas, then we have Equation 5.

C(Tv, i) = w(v) +
∑

vj∈Q

w(vj) +
∑

u/∈Q

C(u, i + n) (5)

4) Replicas exist among the children of v: We now consider

the case that there is at least one child of v that has replica.

Please refer to Figure 3 for an example. In this example node

v has five children v1, v2, v3, v4, and v5. The maximum

workload W is 10. The number of requests from each child

is 1. The quality-of-service parameters of five children r(v1),
r(v2), r(v3), r(v4) and r(v5) are 7, 2, 2, 7 and 3 respectively.

Consequently C(v1, k) is 7 for 0 < k < 7, C(v2, k) is 6 for

0 < k < 6, C(v3, k) is 2 for 0 < k < 2, C(v4, k) is 9 for

0 < k < 7, and C(v5, k) is 4 for 0 < k < 3. Since the

quality-of-service parameters of some children of v (e.g. v2,

v3 and v5) are smaller than the number of the children of v,

we must place at least one replica among the children of v.

v5

r(v1) = 7

w(v2) = 1
r(v2) = 2

w(v3) = 1
r(v3) = 2

w(v4) = 1
r(v4) = 7

w(v5) = 1
r(v5) = 3

... ...v

v1 v2 v3 v4

w(v1) = 1

Fig. 3. An example where at least one child of v must have a replica. The
server capacity is 10.

We will transform this case into a problem instance de-

scribed in [16], and use an algorithm described in [16] to solve

this case. The communication model in [16] can be described

as follows. We are given a tree in which every node can issue

requests. There are several servers in the tree. Each request

has a workload and and a range limit. The requests will go

toward the root of the tree, and is served by the first server

it encounters. In addition, each request must reach a server

within the number of hops specified by the range limit. We

will use range limit model to denote this setting [16]. The

question is, how do we place the minimum number of servers

to serve all requests.

Liu et. al. [16] use a dynamic approach to solve the replica

placement problem for this range limit model. A contribution

function is defined to be the minimum possible workload

contribution by a subtree rooted at v towards an ancestor of v.

The contribution function is computed in a bottom-up phase

using all the contribution functions of the children of v.

In order to compute the contribution function in our model,

we consider n cases, where the k-th case is to have vk as the

root of a subtree structure illustrated in Figure 4. This figure

illustrates both the tree edges that form the subtrees from Tv1

to Tvn
, and the ring edges that are between the children of v.

We assume in this case that vk has a replica so every request

will eventually stop at vk if not answered by other servers,

and no request can reach v. Consequently the best server set

can be found by examining all these n cases, and choose the

optimal one.

We now consider the case where vk is the root of the tree

structure. For each subtree Tvj
we add a dummy node dj as

the root of T ′
vj

, and set the parent of dj to be vj . Please refer

to Figure 4 for an illustration.

vn

v1

Vk+1

d1

T’v1

T’vn

T’vk+1

dk+1

vk−1

dk−1

T’vk−1

vk

dk

T’vk

dn

Fig. 4. The tree structure when both the tree edges and the ring edges are
considered.

We now transform a problem instance in our model to a

problem instance in the range model [16]. After we set up

the tree structure, we set the contribution in the range model

as follows. The contribution function of dj towards the i-th
ancestor of dj is set to C(vj , i − 1) − w(vj) in our model.

Recall that in our model w(v) is the number of the requests

that starts from v and r(v) is the index of the server that will

serve the data. The contribution from T ′
vj

is represented by

C(vj , i − 1) − w(vj), since it takes one step from dj to vj ,

and the workload from vj should not be counted. On the other

hand, we set the workload of vj in the range limit model to

be w(vj) and the range limit to be r(vj), to reflect the fact

that requests from vj must locate a server within r(vj) hops

in our model.

After all the contribution functions for dj and the workload

on vj are given, we can compute all the contribution functions

for vj in a bottom-up phase, using a dynamic programming ap-

proach described in [16]. During the process we also determine

the locations to place the minimum number of replicas that

can satisfy all requests. This will also determine the m(Tv) in

our model. If the dynamic programming places a replica at a

dummy node dj , it implies that we should place an additional

replica at an arbitrary child of vj .

Consider the example in Figure 3. We have a node v with

five children; therefore, we need to consider five cases as

described below. The five cases have v1, v2, v3, v4 and v5

as the root of the subtree shown in Figure 4, respectively.

After applying the optimal algorithm in the range model of

[16] to these five cases respectively, we have five best server

sets as follows. The server set for the first case includes five

servers: v1, v2, v4, v5 and an arbitrary child of v4. The server

set for the second case includes five servers: v1, v2, v3, v4

and an arbitrary child of v1. The server set for the third case

includes five servers, v1, v3, v4, an arbitrary child of v1, and

an arbitrary child of v3. The server set for the fourth case

includes four servers, v1, v3, v4 and an arbitrary child of v1.

The server set for the fifth case includes five servers, v1, v2,

v4, v5 and an arbitrary child of v4. Figure 5 shows the server

set for the first case which has v1 as the root of the subtree.

The best server set for the case shown in Figure 6 is to assign

v4 as the root of the subtree because it uses only four servers,

which is the smallest among the five cases.

v5

r(v1) = 7

w(v2) = 1
r(v2) = 2

w(v3) = 1
r(v3) = 2

w(v4) = 1
r(v4) = 7

w(v5) = 1
r(v5) = 3

xx

xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx

... ...v

v1 v2 v3 v4

w(v1) = 1

Fig. 5. The best server set for the case having v1 as the root of the subtree
structure illustrated in Figure 4.

v5

r(v1) = 7

w(v2) = 1
r(v2) = 2

w(v3) = 1
r(v3) = 2

w(v4) = 1
r(v4) = 7

w(v5) = 1
r(v5) = 3

xx

xx

xxx

... ...v

v1 v2 v3 v4

w(v1) = 1

Fig. 6. The best server set for the case having v4 as the root of the subtree
structure illustrated in Figure 4.

5) The Final Answer: Let m1 be the number of the min-

imum additional replicas for the first case where we assume

no replica is placed at the children of v, and m2 for the other

case. The m(Tv) is the minimum of m1 and m2, plus the

summation of m(Tvj
) for all children.

m(Tv) = min{m1, m2} +
∑

1≤j≤n

m(Tvj
). (6)

We choose the set of contribution function according to how

we chose the m function. Note that if the m functions from

two cases are equal, we will choose the second case, where

there will be at least one replica among the children of v, so

that the contribution of T ′
v on v is zero. Figure 7 outlines the

pseudo code for computing the m and C functions for node

v and i-th node on the sibling path of v.

ComputePlaceRFunction(v, i):
if v is leaf {

m(Tv) = 0
if (i > r(v)) C(v, i) = ∞
else C(v, i) = w(v)

} else {
for each child c of v and 0 ≤ j ≤ i + n,

call ComputePlaceRFunction(c, j).

compute the m1 and m2 for the two cases of Tv.

compute m(Tv) by equation (6).

if the first case is optimal (m1 < m2) {
if (i > r(v)) let C(v, i) = ∞
else compute C(Tv, i) by equation (5).

} else if the second case is optimal (m2 ≤ m1) {
if (i > r(v)) C(v, i) = ∞
else C(Tv, i) = w(v)

}
}

Fig. 7. Computation of m and C functions

6) Time complexity analysis: We analyze the time complex-

ity of our algorithm by focusing on the second case during

the bottom-up computation of the C contribution function,

which dominates the computation time. Let n be the number

of children of v, then the computation of contribution function

for v requires n3 time. The reason is that we have to consider

n cases where each case is a skewed tree of height n, and

the computation for one level of the tree takes O(n) time.

Therefore the time complexity is the sum of the cubic of the

number of children of every node. This number is bounded by

the cubic of the total number of node, that is, O(N3) where

N is the number of tree nodes in the data grid.

Theorem 1: There exists an algorithm that finds the optimal

server set for the PlaceR problem in time O(N3), where N
is the number of tree nodes in the data grid.

B. LoadBalance

We now derive an algorithm that solves the LoadBalance

problem, i.e., we are given a number k and we want to

place k replicas so that the maximum workload among them

(including the implicit replica at the root) is minimized.

From the previous discussion we know that when given a

tree T , a request set L with M requests, and a workload bound

W , we are able to compute the minimum number of replicas

so that all servers and the root have at most W workload.

We can use this algorithm and a binary search to solve the

LoadBalance problem as follows. We first “guess” a workload

value B as the maximum workload on the replicas, and apply

the previous algorithm for the PlaceR problem. If the number

of replicas returned by the algorithm is greater than k, we

should increase the workload B and try again; otherwise we

should decrease the value of the workload B. We repeat this

process until we find the smallest B such that the number of

of replicas is k, and this is the server set we are looking for.

Now we analyze the time complexity. The maximum work-

load of a server must not be more than the number of the

given priority lists; therefore the total workload is bounded by

|L| = M . The number of rounds of binary search is therefore

bounded by O(log |L|) = O(log M). The total execution time

of this binary search is therefore bounded by O(N3(log M)).
Theorem 2: There exists an algorithm that finds the optimal

server set for LoadBalance in time O(N3(log M)), where N
is the number of tree nodes in the data grid, and M is the

number of the given requests.

V. CONCLUSION

This paper addresses data replica placement in Data Grid

systems with the notion of priority lists. We propose the

concept of priority list to deal with two issues that often

arise in real-world Grid environments. First, a user may have

limited authority in accessing the resources, and thus his/her

data requests should be prohibited from accessing some of

the sites. Second, a static request forwarding policy may not

satisfy a data request with special requirements (e.g. quality of

service requirement). Therefore, a suitable forwarding policy

should allow individual requests to have varied forwarding

paths. Our priority lists-based approach provides promising

solution for this problem.

For replica placement, we focus on the Data Grid systems

that can be modeled as sibling trees, since in a hierarchical

grid, a request would usually visit all of the nodes managed by

the same parent before it is forwarded to the parent. We pro-

pose two algorithms for the sibling tree model: LoadBalance

and PlaceR. LoadBalance determines optimal locations for

placing the replicas so that the workload among these replicas

is balanced and all request are satisfied. PlaceR determines the

minimum number of replicas when the maximum workload on

each replica server is given.

We are working on several interesting related problems. For

example, the replica placement problem for general graphs are

usually NP-complete. We are currently developing effective

heuristics for this class of problems. In addition, we are also

interested in studying replica placement for Grids that can be

modeled as planar graphs, for which efficient algorithms might

exist. Finally, in the current hierarchical Data Grid model (e.g.

sibling tree model), all the requests may go to the root if

they cannot be served by a replica. This might cause network

congestion, which is also an interesting goal for optimization.

a) Acknowledgment: This work is supported by the

National Science Council under grant NSC96-2221-E-002-025

and NSC96-2628-E-001-004-MY3, the Ministry of Education

under grant 95R0062-AE00-07, and the National Center for

High-Performance Computing under the national project ”Tai-

wan Knowledge Innovation National Grid”.

REFERENCES

[1] J. H. Abawajy, “Placement of file replicas in data grid environments,” in
ICCS 2004, Lecture Notes in Computer Science 3038, 2004, pp. 66–73.

[2] M. M. Bae and B. Bose, “Resource placement in torus-based networks,”
IEEE Transactions on Computers, vol. 46, no. 10, pp. 1083–1092,
October 1997.

[3] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, “The
data grid: Towards an architecture for the distributed management and
analysis of large scientific datasets,” Journal of Network and Computer

Applications, no. 23, pp. 187–200, October 2000.
[4] A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, and B. Moe,

“Wide area data replication for scientific collaborations,” in In Proceed-

ings of the 6th International Workshop on Grid Computing, November
2005.

[5] I. Cidon, S. Kutten, and R. Soffer, “Optimal allocation of electronic
content.” Computer Networks, vol. 40, no. 2, pp. 205–218, 2002.

[6] W. B. David, “Evaluation of an economy-based file replication strategy
for a data grid,” in International Workshop on Agent based Cluster and
Grid Computing, 2003, pp. 120–126.

[7] W. B. David, D. G. Cameron, L. Capozza, A. P. Millar, K. Stocklinger,
and F. Zini, “Simulation of dynamic grid rdeplication strategies in
optorsim,” in In Proceedings of 3rd Intl IEEE Workshop on Grid

Computing, 2002, pp. 46–57.
[8] M. Deris, A. J.H., and H. Suzuri, “An efficient replicated data access

approach for large-scale distributed systems,” in IEEE International
Symposium on Cluster Computing and the Grid, April 2004.

[9] W. L. C. Grid, “http://lcg.web.cern.ch/lcg/.”
[10] G. P. N. (GriphyN), “http://www.griphyn.org.”
[11] S. Guha, R. Hassin, S. Khuller, and E. Or, “Capacitated vertex covering,”

J. Algorithms, vol. 48, no. 1, pp. 257–270, 2003.
[12] W. Hoschek, F. J. Janez, A. Samar, H. Stockinger, and K. Stockinger,

“Data management in an international data grid project,” in In Proceed-
ings of GRID Workshop, 2000, pp. 77–90.

[13] K. Kalpakis, K. Dasgupta, and O. Wolfson, “Optimal placement of
replicas in trees with read, write, and storage costs,” IEEE Transactions

on Parallel and Distributed Systems, vol. 12, no. 6, pp. 628–637, June
2001.

[14] M. Korupolu, C. Plaxton, and R. Rajaraman, “Placement algorithms for
hierarchical cooperative caching.” Journal of Algorithms, vol. 38, no. 1,
pp. 260–302, 2001.

[15] H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman, “Data
replication strategies in grid environments,” in In Proceedings of 5th

International Conference on Algorithms and Architecture for Parallel
Processing, 2002, pp. 378–383.

[16] P. Liu, , Y.-F. Lin, and J.-J. Wu, “Optimal placement of replicas in data
grid environments with locality assurance.” in International Conference
on Parallel and Distributed Systems, 2006.

[17] R. Moore, C. Baru, R. Marciano, A. Rajasekar, and M. Wan, I. Foster

and C. Kesselman edited, The Grid: Blueprint for a Future Computing

Infrastructure. Morgan Kaufmann PUblishers, 1999, ch. Data intensive
computing.

[18] K. Ranganathan, A. Iamnitchi, and I. Foste, “Improving data availability
through dynamic model-driven replication in large peer-to-peer com-
munities,” in In 2nd IEEE/ACM International Symposium on Cluster

Computing and the Grid, 2002, pp. 376–381.
[19] K. Ranganathana and I. Foster, “Identifying dynamic replication strate-

gies for a high performance data grid,” in In Proceedings of the
International Grid Computing Workshop, 2001, pp. 75–86.

[20] H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman, and
B. Tierney, “File and object replication in data grids,” in In 10th IEEE
Symposium on High Performance and Distributed Computing, 2001, pp.
305–314.

[21] X. Tang and J. Xu, “Qos-aware replica placement for content distribu-
tion,” IEEE Transactions on Parallel and Distributed Systems, vol. 16,
no. 10, October 2005.

[22] N.-F. Tzeng and G.-L. Feng, “Resource allocation in cube network
systems based on the covering radius,” IEEE Transactions on Parallel

and Distributed Systems, vol. 7, no. 4, pp. 328–342, April 1996.
[23] O. Unger and I. Cidon, “Optimal content location in multicast based

overlay networks with content updates,” World Wide Web, vol. 7, no. 3,
pp. 315–336, 2004.

[24] O. Wolfson and A. Milo, “The multicast policy and its relationship to
replicated data placement,” ACM Trans. Database Syst., vol. 16, no. 1,
pp. 181–205, 1991.

