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Abstract— This paper introduces a new graph the-
ory problem called generalized edge coloring (g.e.c.).
A generalized edge coloring is similar to traditional
edge coloring, with the difference that a vertex can be
adjacent to up to k edges that share the same color.
The concept of generalized edge coloring can be used
to formulate the channel assignment problem in multi-
channel multi-interface wireless networks. We provide
theoretical analysis for this problem. Our theoretical
findings can be useful for system developers of wireless
networks.

We show that whenk = 3, there are graphs that do
not have generalized edge coloring that could achieve
the minimum number of colors for every vertex. On the
contrary, when k£ = 2 we show that if we are given one
extra color, we can find a generalized edge coloring that
uses the minimum number of colors for each vertex. In
addition, we show that for certain classes of graphs we
are able to find a generalized edge coloring that uses
the minimum number of colors for every vertex without
the extra color. These special classes of graphs include
bipartite graph, graphs with a power of 2 maximum
degree, or graphs with maximum degree no more than
4.

I. INTRODUCTION

Many modern wireless LAN standards, such a
IEEE 802.11b/802.11g [1] and IEEE 802.11a [2]

provide multiple non-overlapped frequency channels

its neighbors. The channel assignment problem is to
bind each neighbor to a network interface and also
bind each network interface to a radio channel with
the goal to minimize interference [7], [6].

Specifically, we consider channel assignment that
satisfies the following constraints. First, the total num-
ber of radio channels that can be assigned to an
interface is bounded by the underlining architecture.
For example, IEEE 802.11b/802.11g can use up to
11 channels in total. Second, the capacity of a radio
channel within a communication range is bounded by
a constant numbek, so that an interface on a node
can communicate with up to neighboring nodes, and
two nodes that need to communicate with each other
directly should share at least one common channel.
Clearly, the channel assignment for each network
interface affects the number of interface cards a node
must have in order to communicate with all of its
neighbors. It also affects the total number of channels
that are actually used. For example, we consider the
network in Figure 1. The k is set to 2 so at most two
edges adjacent to the same vertex can be colored with
the same color. The total number of colors, i.e., the
total number of radio channels, used in this coloring

Sis 3. The number of colors adjacent to nodeis 2,
' S0 it requires two interface cards.

that can be used simultaneously within a neighbor- Graph coloring seems to be a natural formu-
hood. Ability to utilize multiple channels substantially lation for this problem. However, standard vertex
increases the effective bandwidth available to wireles§oloring [8], [9] (and more recently, vertex-multi-
network nodes [3], [4], [5], [6]. One way to utilize coloring) [10] cannot capture the third constraint that
multiple channels is to equip each node with multiplecommunicating vertices need to be assigned a com-
network interface cards (NICs) [7]. For direct commu-mon color. Standard edge coloring [8] fails to capture
nication, two nodes need to be within communicationthe second constraint that no more thaolors can
range of each other, and need to have a commoRe assigned to the adjacent edges of a vertex.
channel assigned to their interfaces. Node pairs using | this paper, we introduce a new graph theory
different channels can communicate simultaneousl;gomem called generalized edge coloring (g.e.c.).
without interference. Furthermore, since the number 0Generalized edge coloring is similar to traditional

interface cards per node is limited, each nodetypically(edge coloring, with the difference that a vertex can
uses one interface to communicate with multiple of



coloring will use at Ieast(%] network interfaces.
We will use discrepancy to describe the quality of

a generalized edge coloring. Tlghobal discrepancy

of a g.e.c describes the difference between the lower
bound[2] and the actual number of radio channels
used. Thelocal discrepancy of a g.e.c describes the
maximum among all nodes, the difference between the
lower bound[4] and the actual number of network
interface cards used. A g.e.c. is optimal if it can
achieve both zero discrepanghobally and locally.

Let us consider the network in Figure 1 whekns
Fig. 1. An example of wireless network whén= 2. The number 2. The maximum degre@ Is 4 S.O the lower bgunq
next to an edge is the assigned channel number. on the total number of colors is 2. Th coloring in
Figure 1 uses three colors so the global discrepancy
is 1. The local discrepancy of node is O since it
be adjacent to up td: edges that share the sameYS€S only.two (;olor_s. However, the_ local discrepancy
color. We show that the channel assignment probler?’ NodeA is 1 since it has only 4 neighbors but uses 3
described above can be formulated as a generalizégP!0rs- Similarly node” has local discrepancy 1 since
edge coloring problem as follows. By picking a color 't has 2 neighbors but uses 2 colors. As a result the
for an edge, we assign the channel number on the twl?c‘?‘l discrepancy is therefore 1. This coloring is not
interfaces on two neighboring nodes. By restricting the®Ptimal-
number of adjacent edges that have the same color, we This papers shows that when is 3, i.e., when
limit the number of neighbors that can communicatea network interface can communicate with up to 3
with the same interface. In this paper, we provideneighbors, it is impossible to find an optimal general-
theoretical analysis for the generalized edge coloringzed edge coloring for some graphs. However, when
problem. Our theoretical findings are interesting andk is 2 and we are given one extra radio channel, we
can be useful for system developers of multi-channetan derive a generalized edge coloring that achieves
multi-interface wireless networks. optimal number of interfaces for every node. In other

There are two criteria to evaluate the quality of Words, with the price obne global discrepancy, we
a generalized edge coloring. The first is the totalC" achievezero local discrepancy for every node.
number of colors used (which is equivalent to the total! NS result_ls very S|m|!ar to the case of traditional
number of channels used in the wireless network)?dge_ coIorllng wherek IS 1, and finding an e_dg_e
and the second is the number of edge colors adjaceﬁplor'ng W'th D colors is NP—compIete, but it is
to a vertex (which is equivalent to the number of @Ways possible to color any graph with+-1 colors.

network interface cards on each node). The goalén practice this is a very useful result since the new
are to minimizing the total number of radio channels'adio channels can be introduced by the advance of
used in the network. and the number of networki€chnology, but the number of network interface cards

interface cards that we must install for each node. Byfiréctly affects construction costs. Finally, whéris
minimizing the total number of channels used in the? W€ can also find optimal g.e.c. for several cases of
assignment, we are more likely to realize a networkSPeCial graphs: (1) the graph is bipartite, (2) when
topology with the existing technology, e.g. the 110 1S @ power of 2, (3) or whenD is no more
channels in IEEE 802.11b/802.11g. By minimizing thetan 4. The bipartite graph result is important since

number of network interface cards for each node, wdhe topology matches the level-by-level relaying of

minimize the total hardware costs to build a wireless"ir€less network.

mesh network. The rest of the paper is organized as follows.
It is easy to derive lower bounds for the total Section Il formally defines the generalized edge col-
number of channels used in the wireless network,oring and the quality measurement criteria. Section Il
and the number of network interface cards on eaclf€Scribes our results on the generalized edge coloring
node. Every generalized edge coloring will use afProblem. Finally Section IV concludes with some
least [%1 radio channels, wher® is the maximum interesting open problems in this research topic.
degree of the wireless mesh network. Similarly, for
each node withd neighbors, every generalized edge



[l. PROBLEM neighbors with two edges. This leavés— 2 edges
for each nodes along the ring. Now we place- 2

This section defines our terminology ab@ener-  nodes in the middle of the ring, and connect each
alized edge coloring. Given a graphz = (V, E) we  gne of them to every node along the ring. Now each
color every edge with mapping functiohfrom £'to  node in the middle has degréé. Suppose we can
a color setC. In particular, we require that every node find a (k,0,0) g.e.c. for this graph, the edges along
in V' is adjacent to at most edges of the same color. the ring must be colored with the same color, since
As a result the traditional edge coloring is a specialegch node along the ring is of degree k, and from the
case wherk is 1. 0 local discrepancy requirement, it can have at most

We can derive trivial lower bounds on the numberone color. This forces all the edges going to the nodes
Of Colors required for genera“zed edge C0|Oring. Letin the middle to be colored with the same CO|0r, which
D be the maximum degree ¢f, then we need at least violates the requirement that a node can be adjacent to
[2] colors to colorG. Also if the number of neigh- at mostk edges of the same color. Figure 2 illustrates
bors of a node is d.,, the number of colors required the constructed graph whenis 3.
to color the edges adjacent tois [4]. We define
the global discrepancy of a coloring functionf to be
the difference between the total number of colgrs
actually uses and the lower boufid], i.e.|C|—[£].
Similarly we define thdocal discrepancy of a node
v to be the difference between the actual number of
colors adjacent to a nodeand the lower boun@41,
i.e.n(v) — (%], wheren(v) is the number of colors
adjacent tov under f. The local discrepancy for a
mapping functionf is the maximum local discrepancy

among all nodes, i.anax,(n(v) — [4]). _ . .
9 XU( ( ) [ k 1) Fig. 2. A graph that does not have any optir(®|0, 0) generalized

We use the global and the local discrepancy toedge coloring.
evaluate the quality of a coloring function. The global
discrepancy describes the “unnecessary" number of This result SUggeStS that we need to relax the local
radio channels we used to construct a network, andliscrepancy while dealing with the cases whes
the local discrepancy describes the “unnecessary® Or larger. On the other hand, we show that wien
number of network interface cards we used for alS 2. we can always find optim&®, 0, 0) generalized
node. Of course we would like to have a generalizedge coloring for certain classes of graphs.
edge coloring that minimizes both global and local
discrepancy. As a result we define the quality of aA- Euler Cycle
coloring function as follows. A coloring function is
a (k,g,1) generalized edge coloring if every node
in V is adjacent to at mosk edges of the same
color, the global discrepancy is bounded byand
the local discrepancy is bounded byFor example,
we know that the problem of determining whether a
graph has &1,0,0) g.e.c. is NP-complete, and the
Vizing's theorem says that it is always possible to
find a (1,1,0) g.e.c. for any graph. A generalized
edge coloring isoptimal if and only if it is a (k,0,0)
coloring.

We now find optimal (2,0,0) generalized edge
coloring for certain classes of graphs, and start with
graphs that have maximum degree bounded by 4. It is
well known that a graph has a Euler cycle if and only
if every node is of even degree. We will construct a
(2,0,0) g.e.c. based on the Euler cycle when the max
degree of the graph is bounded by 4. The first step of
our algorithm is to pair up all the nodes with degree
1 or 3, so that every node is now of degree 2 or 4.
Since the number of odd-degreed nodes in a graph is
always an even number, the step will not leave any
odd-degreed nodes. We us# to denote the graph

. RESULTS after the transformation.

We first show that there are graphs that do not The second step is to remove some degree 2 nodes
have optimal generalized edge coloring wher 3;  to simplify the later coloring process. Consider the
i.e., we cannot find(k,0,0) g.e.c. for them. The nodes with degree 2 — these nodes are all on paths
construction is as follows. First we construct a ringthat connect degree 4 nodes. If the path connect two
of 2k nodes, and each node is connected to its twalifferent degree 4 nodes, as in Figure 3 (a), we remove



all of them and place a single edge. If the path goe<+’. We only added edges to those nodesGnthat

back to the same degree 4 node and forms a self loojnave degree 1 or 3. These nodesGh now has the

as in Figure 3 (b), we remove all but two nodes fromsame number of edges colored by 0 or 1, so no matter

the path. We denote the transformed graplGéas which edge we remove, the local discrepancy will not
increase. Formally we have the following theorem.

‘ Theorem 2: There exists a(2,0,0) generalized
— edge coloring for every graph with maximum degree
‘ bounded by 4.

The pseudo code of the alternating coloring process

@

is as follows.
procedure AlternatingColoring
j<2:i j<i 1) Pair up odd-degree nodes and add edges.
2) Remove some degree 2-nodes according to Fig-
ure 3.
®) 3) Find a Euler cycle.

4) Color the edges alternatively with 0 or 1.
5) Color the edges along the path in Figure 3. with

Now we construct a Euler cycle for the transformed the same color. _
graphG*. Since every node is of degree 2 or 4, the 6) Remove edges added in step 1.
constructionis DOSSIbIe' We .then index each ?dge Wmllig. 4. The pseudo code of finding(2, 0, 0) g.e.c. for graph with
a sequence number according to the order it appeagsaximum degree 4.
in the cycle. For all edges that have even indices we

color them with 0, and the other edges are colored
with 1. B. One Extra Color

L 1. The Euler cycle constructed frorG™” We now describe an algorithm that findg, 1, 0)
has even length, and every node has the same number lized ed loring f h. Notice th
of adjacent edges that are colored with 0 and 1. generalized edge coloring fevery graph. Notice that

this result indicates that by having an extra color, i.e.,
Proof: The length of the Euler cycle is equal to an extra radio channel, we are able to achies®

the number of edges 6™, which is equal to the sum local discrepancy, i.e., zero unnecessary hardware cost
of all degrees of nodes i@* divided by 2. Since there for network interface cards. This tradeoff is practical
are only degree 4 nodes and pairs of degree 2 nodesnce new radio channels can be easily introduced
in G*, the Euler cycle has even length. In addition,by the fast advance of technology, but the number
the color are given in alternative manner, each degreef interface cards has a direct impact on the overall
4 node has two edges of 0 and two edges of 1, andetwork infrastructure budget.

each degree 2 node has one 0 edge and one 1 edge
[

Fig. 3. Two cases to remove some degree 2 nodes.

The result we will describe is very similar to the
traditional edge coloring. It is well known that to
determine if a graph has &1,0,0) g.e.c. is NP-

Now we need to derive the actual coloring functioncomplete, but it is always possible to find(& 1,0)

for G'. If a set of nodes is replaced by a single edgeg.e.c. in polynomial time by Vizing’s theorem [11].

since the path they form connects two different degree

4 nodes, the entire path is colored with the same coIoE0

from the G* coloring. This is feasible sincé is 2.

On the other hand, if a path form a self loop and

is replaced by a path of length 3 (with two degree 2knOW that we need at mog® + 1 colors to come up

noldesg, th? ﬂ:at anl(;l the tt_h|rd etljge_ IS czlored theltsam\?/ith a (1.1.0) g.e.c. By grouping two colors into a
color cue 1o the afternaling colonng. AS a Tesult Wep g,y ¢qjor we will have at most2+] new colors.
can color all the nodes in that path with the same color

) ) ) - Since the original coloring is él, 1,0) g.e.c, the new
Note that this special treatment is necessary, otherwi g gis & )9

: . . . S‘(‘?oloring is a(2,1,*) — thex means “don’t care”. In
the alternating coloring process will be complicated. other words, we reduce the global discrepancy to 1,

Finally we need to remove the added edges fromand do not care about local discrepancy, which will

Our algorithm first finds 1, 1, 0) generalized edge
loring from Vizing’s theorem, then it reduces the
number of colors by half. LeD be the maximum
degree of the grapltz. From Vizing's theorem we



be taken care of later. To be more specific, the local In the second case we haw¥(z,¢c) = 2 and
discrepancy is bounded b@ The reason is that we N(x,d) = 0. We cannot stop at in this case since
might use one more color than i€ ] lower bound, that will increase the number of colors adjacent:to
and a node withg edges may still havéZ new colors by one. As a result we extend the- d path through
adjacent to it after we combine colors, which is aboutthe other edge colored by Note that changing both
L higher than the' 2] lower bound, hence the local ¢ will not increase the local discrepancy ef and we
discrepancy can go up to aboét only extend the path by one more node.

Now the important part is to reduce the local In the third case we hav®&'(z, d) = 1. In this case
discrepancy to 0. The idea is to find a nodeand we can stop atv since both(z,c) and N(z,d) are
two colorsc andd so thatv is adjacent to exactly one greater than 0. Changing the incomingdge will not
edge (denoted byw, w)) colored byc, and one edge increase the number of colors adjacentt@nd since
(denoted by(v,u)) colored byd. If we can change there is only oned edge before the change, adding
the color of (v,w) from ¢ to d without increasing another one will not violate thie = 2 constraint either.
the local discrepancy ofy, we can reduce the local
discrepancy ob. For ease of notation we ugé(v, c)
to denote the number of edges adjacentvtdhat

In the final case we hav& (z, d) = 2. In this case
we cannot stop at, otherwise the number of edges
adjacent tor will be 3, violating thek = 2 constraint.

are coloredc. If we can do this for every node A 4 result we pick an edge colored Hyand extent
that hasN(v,c) = N(v,d) = 1 for two colorsc o path.

and d, we can reduce the local discrepancy to 0 by

repeatedly changing theto d for every nodev that Since each edge can only be used once in the
hasN(v,c) = N(v,d) = 1. process, eventually the process must stop and we find

) ) ) i ac—d path. The only complication is that the end node
The key operation for changing color is to find a might bew, therefore we will not be able to reduce

c—d path. The idea about-d path is inspired by [12]. the local discrepancy af. The following lemma says

Without lose of generality we assume that we want tQhat we can always find a— d path that stops at a
change color to d. A ¢—d path is defined as follows: node other tham

e A ¢ — d path starts fromwv, goes through the
unique edgév, w) that is colored:, travels along
only edges colored with or d, and ends at a node
other tharnv.

« If we exchange the colors of the edges between
andd along thec — d path , we will not increase
the local discrepancy of any node along the path.

Suppose we can always findca— d path fromw,
we can reduce the maximum local discrepancy to 0.

Thec—d path construction is as follows: We always
check for whether the current path under consideration
is already ac — d path. If so, westop and declare that
a path is found. If not wextend the current path and Fig. 5. There exists @ — d path that starts fromv but does not
hope that we can stop at the next edge. Initially theend atv.
path under consideration is frooto w, i.e. the unique
edge colored:. Lemma 3: There exists & — d path that stops at a
Bode other than.

There are several case to consider while determinin
whether we should stop or extend. Without lose of Proof: Assume that we construct @a— d path
generality we assume the we just extend to a nede and eventually go back to by a cycleC. Since the
through an edge colored Similar argument can be path starts with & edge and ends with & edge, let
made for an edged colorekl since we are extending a h denote the last node that extends edge, and this
path that could have both coleandd. If N(z,c) =1  edge leads to nodé Since during the construction
and N(z,d) = 0, we stop atz sincex is adjacent to we extend through nodg thereforeN (i, d) = 2 and
onec, and changing that only to d will not increase there exists another eddé m) that is coloredi. See
the local discrepancy ob. Figure 5 for an illustration.



If we pick (i,m) to extend (instead ofi, j)) the adjacent to the same nodeand there is no other
¢ —d path, it will be impossible to get back ta The edges colored by or d adjacent tow. We now apply
reason is that bottV (v, c) and N(v,d) are 1, so the the same technique to the coloringobtained in the
only way back tov is through thel edge. Please refer previous step. As long as there exists a nedand
to Figure 5 for an illustration. If the — d path does two colorsc andd so thatN(v,c) = N(v,d) = 1, we
reachv, we trace back from to the node where it convert thec edge into ani edge, without increasing
branches off the cycl€’ at noden. By definition we  the local discrepancy of other nodes. We repeat this
know that we will see onlyl edges befores,, and we  step, just as we did in the construction @, 1,0),
branch offC via ac edge, due to thé = 2 constraint. and eventually will convert’, a (2,0, %) g.e.c, into a
Recall that during the construction @f, when we (2,0,0) g.e.c.
entern we will leave through anothet edge only if
there is nac edge adjacent ta (from the second case
above). However, we do haw¥ (n,c) > 0 and this
contradicts to the formation af'. As a result we can
be assured that there existg a d path that will not
go back tow. ]

Theorem 5. There exists a(2,0,0) generalized
edge coloring for every graph with maximum degree
which is a power of 2.

D. Bipartite graph

Now we study generalized edge coloring for bi-
Theorem 4: There exists a(2,1,0) generalized Partite graph. The reason we study bipartite graphs

edge coloring for every graph. is as follows. In a wireless network usually there
are certain nodes that are directly connected to the
C. Power of 2 backbone. Depending on the distance to the backbone,

o ) the nodes can be arranged in level-by-level fashion

We now return to the quest of finding optimal 54 that those that are far away from the backbone

(2,0,0) generalized edge coloring for special classesan send information to the backbone by the relaying

of graphs. We first describe an algorithm that con-ngdes between it and the backbone. As a result the

structs a(2,0,0) for every graph with maximum nodes only need to communicate with those nodes in
degree which is a power of 2, i.e., the graph= " the adjacent levels, as indicated by Figure 6. @ftae

(V,E) has the maximum degre® = 2¢ for an level-by-level graph is a bipartite graph.
positive integerd.

The basic idea of the construction is to divide
the original graphGG into two subgraphs, so that the
maximum degrees of both subgraphs are equal. Recall
that during the construction @2, 0, 0) g.e.d. forD <
4, we use a Euler cycle to color every edge so that
that the number of 0-edges and 1-edges adjacent to a
node differ by at most 1. Now we apply the alternating
coloring process (Figure 4) tds, then divide the
edges according to their colors. We have two induced
subgraph&ry = (V, Ey) andGy = (V, E4), whereEy
are those edges i@ that are colored 0, andl; are
those colored byt. Both the maximum degree @f, backbont
andé, are?.d . We Ca.'n recursive apply this coloring ig. 6. A level-by-level connection graph in a wireless v
process until the maximum degree is down to 4, an
derive a(2,0,0) for each subgraph. Now when we

put all these 9-8"’- t_ogether and view those colors "haracterizes bierarchical data grid model, due to its
different g.e.c.s as different cqlors, we have2a0, *). resemblance to hierarchical grid management, usually
g.e.c.C. Note that the key point of this construction ¢ i current grid systems [13], [14], [15], [16]. For
s that we use an)D colors_to color the entire graph, example, in LCG (World-Wide Large Hadron Collider
so the global discrepancy is 0. Computing Grid) [13] project 70 institutes from 27
Next we need to reduce the local discrepancy’of countries form a grid system. The system is organized
for every node. Recall that during the construction foras a hierarchy, with CERN (the European Organization
the (2,1,0) in Section IlI-B, we are able to convert for Nuclear Research) as the root, or tier-0 site. There
a color ¢ edge into ad edge, as long as they are are 11 tier-1 sites directly under CERN that help

Another reason to study bipartite graph is that it



distribute data obtained from Large Hadron Collider

There are several interesting open problems along

(LHC) at CERN. Other tier-2 sites in LCG hierarchy this line of research. For example, although it is
receive data from its corresponding tier-1 site. Theimpossible to find(k,0,0) generalized edge coloring
entire LCG grid can be represented as in Figure 7. for every graph wherk > 3, is it possible to find
a (k,1,1) solution by relaxing the local discrepancy
requirement? Also wheh = 2 we can derive optimal
generalized edge coloring for bipartite graphs and
some special values of maximum degrée Is it

CERN

true that we can always find optimal generalized edge

coloring for any graphs? The authors will continue the
investigation on these interesting problems.
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Fig. 7. A data grid connection graph in LGS grid system. 2]

It is well known that given a bipartite graph with [3]
maximum degreeD, we can find an edge coloring
with D colors in polynomial time [17]. In our ter-
minology, it is easy to compute @, 0,0) g.e.c. for
bipartite graphs. By combining thig, 0,0) g.e.c. with
the concept of: — d path, we are able to fin(2, 0, 0)
g.e.c. for every bipartite graph.

Given a bipartite graph, the algorithm first finds an
edge coloring withD colors. We then group the colors
into [£7 new colors. This results in &,0,+*) g.e.c.
We then examine every node If there are two colors
candd, so thatV (v, c) = N(v,d) = 1, we find ac—d
path for them. Eventually we have(a,0,0) g.e.c.

Theorem 6: There exists a(2,0,0) generalized

edge coloring for every bipartite graph. 4
[10]
IV. CONCLUSION [11]

This paper introduces a new graph theory problenj12]
called generalized edge coloring. We show that when
k = 3, there are graphs that do not have generalizeg
edge coloring that could achieve the minimum numbef14]
of colors for every vertex. On the contrary, when
k = 2 we show that if we are given one extra color, 15
we can find a generalized edge coloring that uses
the minimum number of colors for each vertex. In
addition, we show that for certain classes of graphg;g
we are able to find a generalized edge coloring that
uses the minimum number of colors for every vertex
without the extra color. These special classes of graph[sm
include bipartite graph, graphs with a power of 2
maximum degree, or graphs with maximum degree
no more than 4.
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