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Abstract--Using the methods of bisection and inverse iteration respectively, this paper presents 
a parallel solver for the calculation of the eigenvalues of a real symmetric tridiagonal matrix on 
hypercube networks in O(ml logn) time using O(n2/logn) processors, where ml is the number of 
iterations. The corresponding eigenvectors problem can be solved in O(log n) time on the same 
networks. 

1. I N T R O D U C T I O N  

Given a real symmetr ic  tridiagonal matr ix  of order n - 1, A = (bi_laibi) for 1 < i < n - 1. 
Let Aj be the leading j x j principal submatr ix  of A and define the characteristic polynomial 
Qj(A) = det(Aj - AI), 1 < j < n - 1. We assume that  no off-diagonal element is zero, i.e., 
bi ~ 0 for all i, 1 < i < n - 2. The original problem, namely, solving the symmetr ic  tridiagonal 
eigenvalues and eigenvectors problem, can be divided into two subproblems if some bi is equal to 
zero. By simple determinantal  expansion [1], the S turm sequence is derived by 

Qj(A) = (aj - A)Qj_I(A) - b2_IQj_2(A) (1) 

with the initial conditions Q0(A) = 1 and QI(A) = al - A. 
Based on modified Sturm sequence evaluations coupled with the inverse iteration [2,3], 

where (1) is rescaled and replaced by the nonlinear recurrence: PI(A) -- al  - A ,  Pi = a i -  
A - (b~_l) / (Pi_l)  , Ipsen and Jessup [4] proposed a parallel algorithm consisting of six compli- 
cated parts  to solve the eigenvalues and eigenvectors problems on a p-processor hypercube.  In 
their algorithm, each processor in the hypercube network computes k ( =  n/p)  eigenvalues and 
k eigenvectors of A. Without  the t ime-complexity analysis, they presented the numerical results 
and timings for Intel 's  iPSC-1. Evans and Margaritis [5] proposed a pipelining systolic array to 
find all the eigenvalues in O ( m n )  t ime using O(n) processors, where m is the number  of  iterations. 
In addition, by utilizing the LU decomposition method with partial  pivoting, the corresponding 
eigenvectors can be solved in O(n 2) t ime using O(1) processors. 

By using the methods of bisection and inverse iteration respectively, this paper  presents a 
parallel solver for the calculation of the eigenvalues of a real symmetr ic  tridiagonal matr ix  on 
hypercube networks in O(rnl log n) t ime using e ( n ~ / l o g  n) processors, where m l  is the number  
of iterations. The  corresponding eigenvectors problem can be solved in O( logn)  t ime on the 
same networks. Under the same cost, theoretically, our solver is faster than the one by Evans 
and Margaritis.  
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improved version of the paper. 
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2. T H E  C O M P U T A T I O N  OF T H E  E I G E N V A L U E S  

To use the Givens' bisection method for finding all the eigenvalues, we first require the following 
theorem. 

THEOREM 2.1. [1] The number of eigenvalues smaller than a given z is equal to the number of 
sign disagreements, S(z), in the Sturm sequence Qo(x), Q1 (x), . . . ,  Q,_ 1 (x). 

In order that  the above theorem should be meaningful for all values of x, we must associate a 
sign with zero values of Qi(z). If Qi(x) = 0, then Qi(x) is taken to have the same sign to that  
of Q,_l(X). It is easily proved that  no two consecutive terms Qi-l(x) and Q,(x) are zero [3]. 

For finding the feasible interval, say, (a0,/30), to confine every eigenvalue of A, we need the 
following theorem due to Gerschgorin [3]. 

THEOREM 2.2. Every eigenvalue of A lies in the interval (no, #o), where ao = rain (ai - 
x<_i<,-1 Ibi -x l -  Ibil) and/30 = max (ai "4" [bi-ll + Ib/I). 

L<i<,-I  

Let A~(A) denote the i th largest eigenvalue of A. From Theorem 2.2, we know that  any A~(A) 
must lie in the interval (ao,/30). First, let cl = (ao +/3o)/2 be the middle point of (ao,/3o). Then 
compute the sequence Q o ( c l ) , Q x ( c l ) , . . . , Q , - l ( c , )  and hence determine S(m). If s (m)  < i, 
then set (~1 = c1 and/31 =/30; otherwise set a l  = a0 and/31 = cl. Next, let cx = (al  +/31)/2, 
and we repeat the above bisection process again. Finally, we can locate Ai(A) in an interval 
(am,, bin,) of width (rio - no)~2 m~ after mx iterations. Totally, there are n - 1 such eigensystems 
to be solved. 

For each task to compute Ai(A), observe that  the major work in each iteration is to first 
compute the prefix values of Q,- , (c l ) ,  and then to determine the sign disagreement S(c~). 
Using the recursive-doubling method [6], the Sturm sequence (1) can be rewritten as 

t c Qj(cl) = Uj(c l )Q~_,(  ,), 

where Q~ (cl) = (Qj (cx), Qj-1 (cx))t with Q~ = (1,0)* and Mj (cl) = (v, w), where v = (aj -cx,  1)*, 
I b 2 0~' = Q ' - l ( m ) ,  w = ~-  j - l ,  ] and b0 0. After finishing the prefix computation of each Qi(Cl) can 

be determined directly when we select the first component of Q~(cl). 
An overlaid tree network to perform the typical prefix computation has been presented in [7]. 

Given Q~, Ml(Cx), M2 (Cl) , . . . ,  M7(cl), an example of how the overlaid tree network works for the 
prefix computation of Q7(cl) is shown in Figure 1. 

stage 0 stag," 1 stag(: 2 ~tagc ,~ ~lage 4 

~o " ~ \  "O----'K~ " QO ~C') 

M~ (c,)----~O.~ . . . ~ \  : . . ,  \ -  k~"~4~--.C) -Q----- O ~ (c:) 

MT(C,)  * O -  ~ - " Q ~  . . . .  ' . j - - ~  0 7 ( C , )  
step 1 step 2 step 3 stcp 4 

F igure  1. A ne twork  for c o m p u t i n g  t he  prefix values  of  Ql(Cl  ). 

In Figure 1, the white nodes in the leftmost stage 0 are used for preparing input data  only. The 
white nodes in stages 1, 2, and 3 are used for transmitting data  only. The black nodes perform 
the 2 x 2 matrix multiplications. The slash nodes ® select the desired data. Initially, 8 input 
data  Q'o, Mx(c,), M2(cl) , . . . ,  M~(cl) are fed into the white nodes in stage 0. Passing through five 
stages, the prefix values of Q7(cl) are obtained. For exposition, let the number of input data  Q~, 
Ml(cl), M2(cl) , . . . ,  M , - , ( c l )  be a power of 2, i.e., n = 2 r. Therefore, there are log n + 2 stages 
in this network, and the computation time is only O(log n) time. If each node is implemented by 
a processor, the number of processors is as large as O(n log n), which is reduced to O(n/log n) 
in Section 3, while retaining the same time complexity. 
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3. M A P P I N G  I N T O  T H E  H Y P E R C U B E  N E T W O R K  

We now present how to map the prefix computations introduced in Section 2 into a hypercube 
network. An r-dimensional hypercnbe [8] has n = 2 r nodes. Each node is incident to r (=  log n) 
other nodes, one across each dimension. The node can be labeled from 0 to 2 r - 1 (in binary- 
reflected Gray code, which will be defined later), and two processors are linked if and only if their 
labels differ in exactly one bit position. Figure 2 shows the construction of a 16-node hypercube 
from two 8-node hypercubes. 

/ -  I 

i / / / 1 / ! I 

"-..l.J 
O1 t ' 0  C) l ] 1 1 1 1 0  

Figure 2. A 16-node hypercube. 

Refer to Figure 1 again. Denote the i th processor of stage k by P( i ,k ) ,  0 < i < n - 1, 
1 < k < logn.  At step k (from stage k - 1 to stage k), 1 < k < logn, processor P ( i , k  - 1) sends 
its data  to processors P(i,  k) and P(j ,  k), where j = i + 2 k-1. Processor P(j ,  k) receives the data  
sent from P ( j  - 2 k - i ,  k - 1) and calculates it with the data  sent from P(j ,  k - 1). 

Let Gi = g l o g n - l g l o g n - 2 . . . g o  be the binary-reflected Gray code of i = bios,~-lbtogn-2.., bo, 
i.e., 

~logn--1 : b |ogn- l ,  

g j = b j + l ~ b j  f o r 0 < j < l o g n - 2 ,  

where ~ is the exclusive-or operator [9]. We denote the i th processor by Gi (simply called 
processor Gi) and will simulate all the functions of P( i ,k ) ,  1 <_ k <_ logn, on that  processor. 
By [10], we have the following lemma and theorem. 

LEMMA 3.1. The binary-reflected Gray codes Gi and Gi+2k-1, k > 1, differ in precisely two 
bit positions. Those bits are gt and g,, where s is the bit position in which the carry stops 
propagating when 2 k- 1 is added to i. 

THEOREM 3.2. In simulating the overlaid tree network on the n-node hypercube network, two 
data transfer steps in the hypercube are needed for each step in the overlaid tree network except 
the first, which needs only one data transfer step. Let the edge in the hypercube be bidirectional. 
The following routing guarantees disjoint data transfer paths: processor Gi sends data to pro- 
cessor x with the address obtained by complementing the lower order bit where Gi and Gi+9.k-i 
differ, then processor x sends its data to processor Gi+2k-~. 

The simulations of Step 2 and Step 3 of Figure 1 on an 8-node cube are illustrated in Figure 3a 
and 3b respectively. For processor P(i,  1) of Figure 1, the corresponding processor in the 8-node 
cube as shown in Figure 3 is denoted by the index i, which is encapsulated in a circle, and is 
associated with Gi. First, the data  in processor Gi, 0 < i < 5, are transmitted to the intermediate 
processor x simultaneously. The direction of each data  transfer is denoted by the arrow as the 
left figure of Figure 3a shows. Next, the data  in processor z are t ransmit ted to processor Gi+2 
as the right figure of Figure 3a shows, and then the 2 x 2 matrix multiplications are performed 
in parallel. For simplicity, throughout the rest of the paper, we assume that  the cost of one data  
transfer is equal to the cost of one computation. This assumption is reasonable since the ratio 
of one data  transfer cost and one computation cost can be bounded by a constant factor [11]. 
This assumption will not alter the result of complexity analysis when we use the big O notation. 
As a result, Step 2 of Figure 1 can be simulated by two steps on the 8-node cube. By the same 
way, Step 3 of Figure 1 can be simulated by two steps as shown in Figure 3b. In general, the 
prefix values of Qn-l(Cl)  can be computed in O(logn)  steps on a hypercube of n nodes. Note 
that  the tree-like computations of Figure 1 can also be mapped onto an Omega network [12], and 
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(a) Simulation of Step 2. 

(b) Simulation 
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of Step 3. 

Figure 3. Simulation of Figure 1 on an 8-node hypercube. 

if the adjacent pairs of nodes in an Omega network correspond to pairs of nodes along different 
dimensions of a hypercube, then the above mapping between trees and hypercubes become clear. 

Suppose we have t processors, t <_ n. Let the n input data (Q'o,Ml(Cl),...,M,_l(Cl)) be 
evenly divided into t pipes to be stored in the processors separately. Algorithm 3.1 describes how 
the hypercube network works. 

ALGORITHM 3.1. 

PHASE 1. (Local computations) 
Each processor Gi sequentially computes nit prefix values from its corresponding pipe of n/t 

data and stores them in its local memory. The register R(Gi) residing in processor Gi contains 
the result M(i+l),/t-l(Cl) x ... x Min/t(Cl) , 0 < i < t - 1, where M0(cl) = Q~. 
PHASE 2. (Global prefix computations) 

All the processors work together using the routing mechanism described in Theorem 3.2 for 
prefix computations on the content of R(Gi)'s. The register R(Gi) holds the value Q~i+ 1)n/t-1 (Cl), 
0 < i < t - 1 .  
PHASE 3. (Adaptation) 

Each processor Gi except processor G0 receives the value of R(GI-1) from processor Gi-1, and 
sequentially modifies the prefix values calculated in Phase 1 by multiplying the value of R(Gi-1) 
to each of those local prefix values. 

Both Phase 1 and Phase 3 contain O(n/t) computation steps. Phase 2 contains 2 1 o g t -  1 
data transfer steps and O(log t) computation steps. By the assumption of one data transfer cost 
being equal to one computation cost, the three-phase algorithm takes O(n/t + log t) time to finish 

I C computing all the prefix values of Q , - I ( 1 ) .  It needs O(1) time to obtain the prefix values of 
qn--l(C1). 

We use n = 8 and t = 4 as an example to illustrate the algorithm briefly. Initially, the 8 input 
data (Mo(cl), Ml(c l ) , . . . ,  MT(cl)) are evenly divided into 4 pipes, each containing 2 data. The 
processor Gi, 0 < i < 3, has the data M2i(Cl) and M2i+l(Cl). After Phase 1 of Algorithm 3.1, the 
register R(Go) has the resultant of Ml(Cl) x Mo(cl), R(G1) has the resultant of M3(cl) x M~(Cl), 
and so on. After Phase 2, R(Go) has the resultant of Ml(Cl) x M0(cx), R(G1) has the resultant 
of M3(cl) x ... x Mo(cl), and so on. After Phase 3 for adaptation, the prefix values of Q~.(Cl) 
are obtained, and then the prefix values of Qt(cl) are obtained directly. That is, processor Go 
has the values {Q0(cl), Ql(cl)}, G1 has the values {Q2(Cl), Q3(Cl)}, and so on. 

For the subsequent parts of computation, namely, computing the number of sign disagreements, 
S(cl), the similar three-phase concept works equally well. In Phase 1, each processor Gi does sum 
up the number, say Si(cl), of its corresponding pipe of sign disagreement sequentially. This step 
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needs about O(n/t) computation steps. In Phase 2, processor Gi sends the value of Q(i+l)nl,-I 
to processor Gi+l for 0 < i < t - 2 ,  and the value of Sj(Cl), 1 < j < t -  1, is updated based on the 
sign disagreement of Qjn/t-1 and Qjn/t. In Phase 3, these new values of Si(Cl)'S, 0 < i < t - 1 
are summed by a tree method. It takes about O(logt) steps because it is well known that  a 
tree-structured computation can be performed in logrithmic time on a hypercube network. We 
have the following lemma. 

LEMMA 3.3. The number of sign disagreements, S(c1), in the Sturm sequence of (1) can be 
determined in O(n/t  + logt) time on a hypercube network of t  processors. 

The performance of a parallel algorithm can be measured by Cost = Number of Processors x 
Execution Time. Given a problem, if the cost of a parallel algorithm matches the sequential 
time lower bound within a constant, the parallel algorithm is said to be cost-optimal. In the 
case of determining the sign disagreement in the Sturm sequence, since there are n - 1 signs to 
be produced and calculated, the sequential time lower bound is f~(n). For the bootstrapping 
method [13], if we set t = O(n/logn) in Lemma 3.3, we have the following theorem. 

THEOREM 3.4. The value of S(cl) can be cost-optimally determined in O(logn) time on a 
hypercabe network of O(n/ log n) processors. 

Now let's return to the eigenvalues problem. From Theorem 3.4, one can see that  a sign 
disagreement can be determined in O(log n) time on a log(n/log n)-dimensional hypercube. To 
solve n -  1 sign disagreements simultaneously, we need n -  1 such hypercubes. A natural approach 
is to connect these n - 1 hypercubes, each of them an n~ log n-node hypercube, by a simple 
network. Therefore, we have the following main result. 

THEOREM 3.5. The eigenvalues problem can be solved in O(ml log n) time on hypercube net- 
works o fO(n2 / log  n) processors, where ml has been discussed in Section 2. 

4. T H E  C A L C U L A T I O N  OF T H E  E I G E N V E C T O R S  

Using the inverse iteration method [2,3], the eigenvector x of A with respect to the eigenvalue 
can be approximated by solving the symmetric tridiagonal system 

(A - M ) x  = b, (2) 

where b is an arbitrarily normalized vector. 
If we apply the cost-optimal parallel tridiagonal system solver [14], then (2) can be solved by 

means of Gaussian elimination and backward substitution. The first iterate of the eigenvector x, 
the approximated eigenvector x l  can be determined in O(logn) time on a hypercube using 
O(n/log n) processors. Next we solve the system 

( A  - A I ) x 2  = x l  

again, and the improved approximated eigenvector xa is obtained. 
In practice, if we select a suitable b, then the second vector xa would usually be a very 

good approximation to the exact eigenvector corresponding to the specific eigenvalue ,L How to 
determine the choice of initial vector b is suggested in [3]. 

For each eigenvalue Ai, 1 _< i _< n - 1, the corresponding approximated eigenvector can be 
determined in O(logn) time on a log(n/logn)-dimensional hypercube. To solve n -  1 such 
symmetric tridiagonal systems simultaneously, we need n -  1 such hypercubes. By the same 
arguments in Section 3, we have the following theorem. 

THEOREM 4.1. The eigenvectors problem can be solved in O(log n) time on hypercube networks 
Ol e O ( n 2 / l o g  n) processors. 
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5. C O N C L U D I N G  R E M A R K S  

A parallel algorithm for solving the symmetric tridiagonal eigenvalues and eigenvectors problem 
has been presented. On hypercube networks of O(n2/log n) processors, the eigenvalues problem 
can be solved in O(ml log n) time; the corresponding eigenvectors problem can be solved in 
O(log n) time. 

Under the same cost, theoretically, our parallel solver is faster than the one proposed by Evans 
and Margaritis [5]. However, our parallel solver may suffer from the possibility of overflow and 
underflow in the absence of rescaling before each iteration. In practice, if the floating-point 
number system has high precision, the drawback can be remedied. 
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