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A direct method is devised to prove, without information-theoretic arguments, the ~(N2/log2N) wire area lower bound for 
the shuffle-exchange and cube-connected cycles graphs. We further show the high occurrence of long edges in two ways: (1) In 
any layout, there are f~(N/log N) edges whose lengths are at least N/32 log2N. (2) The edges whose lengths are at least 
N/64 log2N occupy fi(N2/log2N) wire area. 
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1. Introduction 

In VLSI computat ion,  if a solution to some 
problem is in the form of a communica t ion  graph 
of processors, an efficient layout is desired to 
implement  the graph. Minirni7.irtg wire area is a 
critical concern due to the fact that  layouts con- 
suming a larger amount  of chip area are more 
expensive to fabricate and less reliable. Speed of 
course is another  critical factor in chip perfor- 
mance. Long wires raise propagat ion delays which 
can slow down the clock and hence reduce the 
throughput  of the system. These are two of the 
major VLSI layout problems which have stimu- 
lated considerable interest in theoretical study [1]. 

For  the formal model of VLSI graph layouts, 
we shall adopt  the simple and widely accepted 
grid model [6,7]. Layouts are assumed to be on 
rectangular grids formed by horizontal and verti- 
cal grid lines which are spaced apart by unit  
intervals. The nodes of a graph are located only at 
the intersections of grid l ines - - the  grid points. 
Edges are routed as wires through the grid lines to 

connect  nodes. Any two edges are not  allowed to 
overlap for any distance, and an edge cannot 
overlap any node which is not  an end-node of that 
edge. The layout area is defined to be the number  
of all grid points  in the grid. The wire area, 
however, is the count  of those grid points covered 
by the edges. 

The shuffle-exchange [5] and cube-connected 
cycles [4] graphs are two pre-eminent structures 
for parallel computa t ion  because of their eco- 
nomic  interconnection patterns. In them, the 
hardware cost and efficiency are traded off in 
search of the best compromise for a contemplated 
range of applications. Thompson  [6] first showed 
that  any layout of a graph which computes an 
N-poin t  Fourier  t ransform in T steps requires 
f~(N2/T 2) chip area. This implies that any layout 
of  the N-node  shuffle-exchange or cube-connected 
cycles graph requires f~(N2/log2N) chip area. For 
the proofs, see also [7]. Leighton [3] then proved 
an analogous but  stronger lower bound  statement 
for the wire area. He also proved that any graph 
which computes  an N-point  Fourier transform 
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must have a wire which crosses f i ( N / T  2) other 
wires. This, in particular, means that any layout of 
the N-node shuffle-exchange or cube-connected 
cycles graph contains a wire of f~(N/log2N) 
length. 

All the lower bound results mentioned above 
are indirectly derived through information-theo- 
retic (area-time tradeoff) arguments. In this paper, 
we shall devise a method to prove these lower 
bounds directly. The basic idea is roughly as fol- 
lows. If we separate some or all of the nodes of 
the graph into two parts, between them there must 
be at least a certain amount of communicating 
paths. According to the interconnection pattern of 
the graph, removing one edge can only destroy 
some communicating paths, hence there must be 
at least a certain number of edges connecting 
these two parts. By using this kind of information, 
we are not only able to derive wire area lower 
bounds but also lower bounds on the number  of 
long edges. In fact, we strengthen Leighton's result 
by showing that there are f~(N/log N) edges which 
are at least N / 3 2  log2N long. Furthermore, we 
show that the wire area occupied by the edges 
whose lengths are at least N / 6 4  log2N is as large 
(up to a constant) as the whole wire area. 

2. Communication power of edges 

In order to extract the communication ability 
of a given graph, we shall consider 'path-edges'  
which are paths properly selected from the origi- 
nal graph. The concept of 'path-edge' will become 
explicit when we deal with those two particular 
graphs in the next section. We need a few defini- 
tions for describing the communication power of 
edges. 'Edges' used in this section really are 
'path-edges' when applied to concrete examples in 
the next section. 

Definition 2.1. The diameter D of a given graph is 
the smallest integer such that, for any two nodes i 
and j, i can be connected to j in at most D steps. 

Definition 2.2. Let e be any edge, 1 ~< d ~< D, 1 ~< h 
d. A communication circle can be defined as the 

set of node pairs 

C(e, d, h ) =  { (i, j ) l i  and j are nodes such that 
there is a d-step path from i to j, 
with e as the hth step in the path}. 

Definition 2.3. If e is an edge, we define the 
pairing set of e as 

P(e) = {(i, j)Ji  and j are nodes such that there is a 
path from i to j through e and the number 
of steps in the path is at most D}. 

To serve our purpose, we should constrain the 
graphs to be of bounded degree. In this paper, we 
are only interested in the case that the in-degree 
and out-degree of each node are bounded by 2, 
although the results obtained here can be ex- 
tended naturally. The following easy lemma can 
be used to bound from above the size of com- 
munication circles and pairing sets. 

Lemma 2.4. I f  the diameter is D and the degree 
bound is 2, then, for any e, 1 ~< d ~< D, 1 ~< h ~< d, 

(a) I C(e, d, h) I ~< 2 a-  1, 
(b) I P(e) I ~ D(2 D -  1). 

Proof. (a) In C(e, d, h), let m count the starting 
nodes with multiplicity and n count the ending 
nodes with multiplicity. It is clear that m ~< 2 h-1 
and n ~< 2 d- h. So, 

IC(e, d, h) l ~ m n  ~ 2h-12 d - h =  2 d-1. 

(b) Since 

a ( e ) =  [,.J C(e, d, h), 
l < d ~ < D , l < h < d  

we have 

D D 

IP(e) I ~< E d2d-a ~< D E 2d-a 
d = l  d = l  

~< D(2D-- 1). [] 

If we purposely choose a set of nodes S to be 
observed, we can define the communication power 
of an edge relative to that set as the number of 
communicating pairs through that edge with both 
starting and ending nodes in S. Also, the diameter, 
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if necessary, should be reduced to fit the situation 
of the set of observed nodes. 

i ° 2P %1 

Definition 2.5. Suppose S is a set of observed 
nodes and e is any edge in the graph. We define 
the communicat ion power of e relative to S as 

Ps(e) = { (i, j ) l i ,  j ~ S and (i, j) ~ P(e) }, 

and define 

R s = max IPs(e)I.  
e 

3. Shuffle-exchange and cube-connected cycles 

The shuffle-exchange graph consists of N = 2" 
nodes as shown for n = 3 in Fig. 1. Each node is 
associated with a unique n-bit binary number.  
Node  i is linked to j via a shuffle edge (uni-direc- 
tional dashed line) if j is the left cyclic shift of i. 
Two nodes i and j are linked via an exchange edge 
(bi-directional solid line) if i and j differ only in 
the rightmost bit. According to the interconnec- 
tion pattern, any two nodes can be connected 
through a path of at most  2n = 2 log N steps. ] 
This is not  good enough, and we should combine 
edges to lower the diameter somewhat. If we con- 
sider the shuffle-then-exchange and shuffle-only 
paths as the 'path-edges' ,  we arrive at a new graph 
whose diameter is log N only. We shall observe all 
nodes in the graph, so Ps(e) = P(e) for any e, and 
hence R s ~< N log N by Lemma 2.4(b). 

The cube-connected cycles graph consists of 
N = n log n nodes, organized as log n ranks of n 
nodes each. One example for n = 2 3 is shown in 
Fig. 2. Let us denote the ith node on the rth rank 
by p~. Node  P~i is linked to node Pr+l,i via a cycle 
edge (uni-directional dashed line), where r is taken 
as an integer mod log n. Node  p,~ is also l inked to 
po on the same rank via a cross edge (bi-direc- 
tional solid line) if i and j only differ in the rth bit 
from the right. We can select any rank, say rank 0, 
as the set of observed nodes S. Any two nodes in S 
can be connected through a path of at most  2 log n 
steps. Again, this is not  good enough, and we 
should consider the cycle-then-cross and cycle-only 

Fig. 1. Shuffle-exchange graph. 
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Fig. 2. Cube-connected cycles graph. 

paths as the 'path-edges '  and reduce the diameter 
to log n. It is not  hard to see that, for any edge e, 
Ps(e) = C(e, log n, h) for some h. Therefore, from 
Lemma 2.4(a), we know that R s < 2 l°g"-I = ½n. 

4. Wire area and long edges 

We will use a " # "  sign part i t ion technique due 
to Leighton [3] to prove wire area lower bounds  
and lower bounds  on long edges. We observe the 
diagram in Fig. 3, where a given graph is laid out 
arbitrarily. We slice it vertically by two boundaries 
b 1 and b 2 with a single jog each, so that {ISI 
observed nodes are to the left of  b a, and the same 
number  to the right of b 2. Similarly, we divide the 
layout horizontally by another two boundaries, 
with ~ I SI observed nodes above and below the 
top and bo t tom boundaries. We assume, without 
loss of generality, that the width w of the center 
rectangle is as great as the height. 

b, b 

W 

Isl18 Isl lB 

IS l18 

h 

Is l /8  

1 Throughout this paper, log represents the base-2 logarithm. Fig. 3. " # "  sign partition of layout. 



Volume 23, Number 1 INFORMATION PROCESSING LETTERS 20 July 1986 

Lemma 4.1. w >~ IS 12/32Rs • 

Proof. The number of observed nodes in the center 
rectangle is at least ½1S [, and there are at least 
¼ I SI in the rest area. So, there are at least 
1_ 21SI ×¼1S1=11SI 2  node pairs across the pe- 
rimeter of the center rectangle. By the definition 
of R s we know that the perimeter should cut at 
least IS I2/8Rs edges. Hence, 

4w>t I S I2 /8Rs  or w>~ I SI2 /32Rs  • [] 

Lemma 4.2. The wire area of any layout is 
~2( I SI 4/R%). 

Proof. Any vertical boundary between bl and b2 
must cut at least (I  IS I × -~ IS [ ) /Rs  = IS 12/64Rs 
edges. Consequently, the occupied wire area be- 
tween b~ and b 2 is at least 

w( IS [ 2/64Rs)  = IS 14/(32 x 64R2). [] 

at least one edge whose length is at least w /D .  
But such an edge can communicate at most R s 
node pairs. We thus conclude that there are at 
least (-~ IS I × ~ IS I ) /Rs  = IS [ 2/64Rs edges whose 
lengths are at least w / D .  [] 

Theorem 4.5. Any layout of N-node shuffle-ex- 
change or cube-connected cycles graph contains 
f~(N/ logN)  edges whose lengths are at least 
N / 3 2  log2N. 

Proof. The proof immediately follows from Lem- 
mas 4.1 and 4.4. [] 

For both graphs, if we take the sum of the 
lengths of the long edges, we find that the wire 
area occupied by the long edges is fl(n2/log3N), 
which is slightly smaller than the lower bound of 
the Whole wire area by a factor of log N. Nonethe- 
less, we can match up these two bounds by consid- 
ering half-long edges also. 

Theorem 4.3. Any layout of the N-node shuffle-ex- 
change or cube-connected cycles graph occupies 
~2 (N 2/log 2 N) wire area. 

Lemma 4.6. In any layout, the wire area occupied 
by the edges whose lengths are at least w / 2 D  is 
f~( IS 14/REs). 

Proof. For the shuffle-exchange graph, as dis- 
cussed in the previous section, we have R s 
N log N, where IS I = N. By Lemma 4.2, we get 
the desired wire area lower bound. For the 
cube-connected cycles graph, IS1 = n  and R s 

½n, therefore the wire area, by Lemma 4.2, is 
f~(n2), i.e., f~(N2/log2N). [] 

As regards Fig. 3 again, an observed node left 
to ba can be connected to any observed node right 
t o  b E by a path whose length is at least w. The 
average edge length in the path is at least w / D  if 
the number of steps is not greater than D. So we 
are sure that there must be one edge in the path 
whose length is at least w / D .  Such an edge is 
considered to be long. 

Lemma 4.4. In any layout, there are  (ISI2/Rs) 
edges whose lengths are at least w / D .  

Proof. In any path connecting an observed node 
left to b 1 to an observed node right to b2, there is 

Proof. Use the same layout partition as before. In 
any path connecting an observed node left to b 1 
and an observed node right to b 2, if the total 
length of the path is L (>~ w) and there are y 
(<  D) edges whose lengths are less than w/2D,  
then the length sum of the edges whose lengths are 
at least 

w / 2 D  >/L - yw/2D >i L - y L / 2 D  

= L ( D +  ( D -  y)/2D)>~½L. 

Recall that in the proof of Lemma 4.2 we estimate 
the whole wire area (=   2(IS 14/R%)) by this kind 
of paths. Since at least half of the length of these 
paths is occupied by those long and half-long 
edges, we have proven the lemma. [] 

Theorem 4.7. In any layout of N-node shuffle-ex- 
change or cube-connected cycles graph, the wire 
area occupied by the edges whose lengths are at least 
N / 6 4  logZN is ~(N2/log2N).  
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5. Concluding remarks 

Another  popular interconnection-economic 
structure is the butterfly (or unfold shuffle-ex- 
change) graph [5], which is illustrated in Fig. 4. 
Unlike the cube-connected cycles graph, its cycle 
edges, instead of wrapped, are ended at the extra 
top rank. Besides, the cycle-then-cross and cycle- 
only paths in the cube-connected cycles graph are 
now considered as edges instead of 'path-edges' in 
the butterfly graph. Without altering the matter of 
layout complexity, we can view the vertical-up 
edges as bi-directional, and consider each vertical- 
up path from Plogn+l,i to  P0i as a 'path-edge'. If 
we observe rank 0, the relative diameter is log n + 1 
and R s ~< 2 l°gn+1-1 = n. As a consequence, all the 
lower bounds previously obtained for the cube- 
connected cycles graph also apply to the butterfly 
graph. 

The layout depicted in Fig. 4 is already chip 
area optimal for the butterfly graph. Chip area 
optimal layouts for the shuffle-exchange and 
cube-connected cycles graphs can be found in [2] 
and [4] respectively. As mentioned in [3], the wire 
area is worth minimizing because chips with lower 

Ran k 3 

Ronk 2 

Ronk I 

Rank 0 

Fig. 4. Butterfly graph. 

wire density will be less likely to be ruined by 
localized random errors. Unfortunately, the wire 
area is usually as large (up to a constant0 as the 
chip area. We redo the proof by baring down the 
nature of the interconnection patterns to avoid 
using any information-theoretic argument. 

Along this line of proving process, we establish 
some lower bounds for the long edges. Our results 
indicate that there are somehow two very long 
edges which occupy at least a constant portion of 
the whole chip area. Drivers, which cost extra 
area, must be added to the long edges to either 
synchronize or speed up the system. Since long 
edges are 'almost everywhere', it will surely take a 
lot of engineering efforts to put these graphs on 
chips. 
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