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Abstract-Based on the matrix perturbation technique. a fast-fitting algorithm using uniform cubic B-spline 

curves is presented. Our algorithm entails much less floating-point operations when compared with Gaussian 
elimination method. In addition, our result can be applied to solve the closed cubic B-spline curve-fitting 
problem. Experimental results are included for a practical version. These experimental values confirm our 
theoretic results. 

I. INTRODU(JTION 

Curve fitting is important in computer graphics, com- 
puter-aided design, pattern recognition, and picture 
processing[ 11, 13, 151. The task of curve fitting is to 
construct a smooth curve that fits a set of given points 

in the space. 
In practice, a curve-fitting algorithm should meet 

two criterions: First, adjusting a control point of the 
curve affects only its vicinity, and second, it should be 

fast enough to be incorporated into an interactive pro- 
gram. The cubic B-spline curve interpolation[ I I] is a 
good fitting tool to meet the first criterion. Gaussian 
elimination has been used to solve the cubic B-spline 

curve-fitting problem. How to speed up the compu- 
tation of the cubic B-spline curve-fitting in order to 
meet the second criterion is a very interesting research 

problem. This paper only considers the uniform cubic 
B-spline case[2]. 

Based on the matrix perturbation technique, a fast- 
htting algorithm using uniform cubic B-spline curves 

is presented. Given n points, the number of floating- 
point (FP for short) operations required for our algo- 

rithm is about Sn. While using Gaussian elimination, 
it takes about 7n FP operations to solve the same fitting 
problem. Our algorithm entails much less FP opera- 
tions when compared with Gaussian elimination 

method. In addition, our result can be applied to solve 
the closed cubic B-spline curve-fitting problem, and 
the number of FP operations used in our algorithm 
over the number of FP operations used in Gaussian 
elimination is about one-third. Experimental results 
are included for a practical version. These experi- 
mental values confirm our theoretic results derived in 

this paper. 

2. THE CUBIC B-SPLINE CURVE FIITING 

Suppose we are given a set of points, B, = (hj”, 
hj”. hl”) for I i i 5 n. According to [2], for an uniform 

cubic B-spline curve, each given point can be expressed 
by a weighted average of three control points: 

B, = t(C,_, + 4C, + C,,,), 1 I i 5 n, 

where C, = (cl , i’) d2’, cl”). They form a system of n 

equations in n + 2 unknowns for all given points. In 
order to completely solve the system, we need the fol- 
lowing two additional equations to specify how the 

boundary control points are interpolated: Co = C,; C,, , 
= C,,. For simplicity, we only consider b = (h,, b2, . , 
h,)’ = (h\‘), by’. . . , b!:‘)’ and c = (cl, c2, . . , c,)’ = 
(cd,“, c$“, . , c’,“‘)’ throughout this paper. In what fol- 

lows, matrices are represented by bold uppercase letters, 
vectors by bold lowercase letters, and scalars by plain 
lowercase letters. Thus, the above system of equations 
can be equivalently transformed into 

zz -AC = 6b. (I) 

First, it takes n FP operations to perform the mul- 
tiplication 6b. Using Gaussian elimination, the first is 
the forward-elimination phase, where Eq. ( 1) is trans- 
formed, by eliminating variables from equations, into 
a system with all zeros below the diagonal. It takes 
about 4n FP operations to perform this triangulation 
phase. At this moment, the coefficient matrix A be- 
comes an unit upper-triangular matrix. The second 
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phase is the backward-substitution phase, where the 
values of  the variables are computed using the trian- 
gulated matrix produced by the first phase. In this 
phase, it takes about 2n FP operations. Totally, solving 
Eq. ( 1 ) takes about 7n FP operations by using Gaussian 
elimination. The C language code of  the cubic B-spline 
curve fitting algorithm using Gaussian elimination is 
given in Appendix A. 

After solving the tridiagonal system of Eq. (1), we 
can obtain the control points, Cg, of the n + 2 defining 
polygon vertices. Letting P,{I) be the position vectors 
along the ith piecewise cubic curve as a function of  the 
parameter t, the ith cubic B-spline curve segment is 
given by 

where 

2 

C~+jNj(t) for l _ < i _ < n -  1 (2) 
j =  I 

and 0 ~ t < 1, 

Fig. 1, where no curve end condition[ 1] is included to 
handle the two end segments of  the curve. 

3. A FAST ALGORITHM 
Based on the matrix perturbation technique, this 

section presents a new three-phase algorithm for solving 
Eq. (l). It will be shown that our algorithm entails 
much less FP operations when compared with Gauss- 
ian elimination method. Due to the coefficient matrix 
A in Eq. (1) being near-Toeplitz, consider a perturbed 
matrix of  A, 

O 

O 

7 ' 4 1 
A'  = = L 'U ' ,  

l 4 
1 

where the Nj( t )  are the normalized B-spline blending L = 
functions. By the Cox-de Boor formulas[2], these 
periodic uniform basis functions in Eq. (2) are de- 

- t  3 + 3l  2 - 3t  + 1 
fined by: N ~(t) = ; No(t)  = 

6 
3t 3 - 6t 2 + 4 -313 + 3fl + 3t + 1 

6 , N~(I) = 6 ; N2(I)  U = 

t 3 

6 

Given 10 points denoted by the "star" symbols, by 
Eqs. (1) and (2), the corresponding control points de- 
noted by the "circle" symbols and the curve interpo- 
lation denoted by a boldfaced line are illustrated in 

lb - b  1 
1 

- b  

and 

1 

a 1 

a 

then it implies that a - b = 4 and - a b  = 1. By solving 

the two equations, we obtain a = 2 + 1/3 and b = 
- 2. It is clear that 
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Fig. 1. An example of the cubic B-spline curve fitting. 
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o f  the  f ight  h a n d  side of  Eq. (5) can  be negligible w h e n  
p _> 10. H e n c e  x is a good  a p p r o x i m a t i o n  o f  A ]ej 

(3) w h e n  p >_ 10. Similar ly ,  let 

T h e  a b o v e  Toepl i t z  fac to r iza t ion  p rocedu re  is cal led 
the  first phase  in our s  a lgo r i thm,  a n d  it can  be f inished 
in O(1) t ime.  T o  solve Ac = 6b, we first solve A'c' - 
6b  (=  b'). It can  be  solved by the  fol lowing forward  
a n d  b a c k w a r d  s u b s t i t u t i on  p rocedure ;  it is also cal led 
the  s econd  phase  in ou r  a lgor i thm,  where  /~ = 

1 
- - because  - a b  = 1. 

a 

for i=l to n do b} : 6bi 

d : bl 

for i--2 to n do C; = b~ + b*d , 

c;, = - b , c ;  

for i=n--i downto i do c; = b*(c~+l - b[) 

It is no t  ha rd  to verify tha t  the  n u m b e r  of  F P  opera t ions  
requ i red  in the  a b o v e  p rocedure ,  i.e., in the  second  
phase,  is a b o u t  5n. By Eq. (3) a n d  b' = 6b, we ob ta in  

(4)  

, t  Ac' = A'c '  + (1 - b)c le l  + ~ ,e .  

= 6b + (1 - b)clel  + c~en, 

where  e~ = (1, 0 . . . . .  0) '  a n d  e.  = (0, 0 . . . . .  0, 1)' 

n n 

Hence ,  it yields 

c = c' (1 - b )c [A- le l  - c ' A - ] e . .  

it can  be  easily verif ied tha t  Ac = 6b. 
Solv ing  the  r ecu r r ence  relat ions:  & ] + 4& + x~+~ 

= 0 f o r 2 _ < i _ < n -  l, we o b t a i n  x, = ~b i +  - for 

s o m e  c o n s t a n t s  ~ a n d  3'. I f 7  =P 0, t h e n  the  va lue  o f x i  
will b e c o m e  too  large for  sufficiently large i. In o rder  
to  der ive  an  a p p r o x i m a t e d  so lu t ion ,  t empora r i ly ,  we 

try x, = fib ~. By the  first e q u a t i o n  5& + .v2 = 1, we 
b ~ 

have  & - for  1 _<: i _< n. W h e n  i is sufficiently 
b 1 

large, say, i = n, x~ ~ 0 a n d  the  last e q u a t i o n  x,-z  + 

5x .  ~ O. 
Since the  s equence  (x3 converges  to zero soon.  let 

IS / /  if  1 < i -< p ( p :  a smal l  integer)  
- 1  

if  p +  1 < _ i < _ n  
) ( i  = 

a n d  x = (&,  x2 . . . . .  x , ) ' ,  t h e n  we have  

hi,+ i b p 
.;Ix : el - ~ ep + ~ e,,+l. (5) 

No te  tha t  since b = - 0 . 2 6 7 9 4 9 2  . . . .  the  last two t e rms  

bn+]-i  if  n -- p + 1 _< i < n 

~b[0- 1 if  1 < i < _ n - p  
vi = 

, t a n d  y = 0'1. )'2 . . . . .  3 . ) .  t h e n  we have  

by+ 1 b p 
Ay = e .  - b - - ~ -  1 e.+l p + ~ e,_, .  (6) 

Let  

c : c ' -  c'l(1 - b)x - c~y 

= C' + c'](b, b 2 . . . . .  b v, 0 . . . . .  0) '  

p n p 

C'n . . . .  bp /)2 
b 1 (0,  0 . . . . . .  b) ' ,  

n p p 

which  will be  p e r f o r m e d  in the  upda te  phase  ( the th i rd  
phase  in ou r  a lgor i thm) ,  t hus  is yields 

Ac - 6b = -c 'abP+lep + c'jbPep+] 

'~ 1 bP+le"+~ p ( ' ~ /  + b  b - ]  
- - -  bPe,,_p. (7) 

U n d e r  a sa t isfactory res idual  r e q u i r e m e n t ,  say, ]IAc 
- 6bll is o f  o rde r  10 -3, how to d e t e r m i n e  the  va lue  o f  
p to  satisfy the  res idual  r e q u i r e m e n t  d e p e n d s  on  Eq. 
(7) a n d  the  fo l lowing L e m m a .  

L e m m a  1 .  IIc'll -< 3Ltbl[, where  [IxlL = m a x l < i < . (  Ix, I ). 
P r o o f .  Suppose  IIc'll > 311bll. If  Ic'il = IIc'll, for s o m e  i 
(2 < i ~< n - 1), we have  c', 1 + 4c'i + c',+j = 6bi. T h u s  

it gives t4# ,1-< [6bil + [c~ i1 + Ic ' ,+~l , i .e . ,  

_ , t  
16b~[ > t4c '~L-  [ c , - ] l -  IC;+ll 

411c'11 - IIc'll - IIc'H = 211c'll > 611bll. 

It is a con t r ad i c t i on .  

( ' ) '  I f  Ic*il = IIc'[I fo r  i = l ,  w e  have  - ~ c~ = 6b~ - 

2, a n d  - c~ _< 16b~l + I c i I . T h u s i t g i v e s  

16b, I >_ ( - ~ ) c ' ~ -  Ichl > - ( - ~ ) l l c ' [ I - I [ c ' l l  

= ( l  + ¢3)LIc'11 > 3(1  + ¢3)11b11. 

It is a con t r ad i c t i on .  
I f  Ic',l = Hc'l[ for  i = n. we have  4c.' = 6b., - ~." i, 

_ , P  a n d  [4c~,l < 16b.] + I ( .  ,[ .  T h u s  it gives 
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16b.I ~> 14c~[ - IcL-, I ~ 4 ] l c ' l l -  Ile'll 

: 311e'll > 9[Ibll. 

It is a contradiction. We complete the proof. Q. E. D. 
From Eq. (7) and Lemma 1, assuming that p, p + 

1, n + 1 - p, and n - p are distinct, then ]our three- 
phase algorithm has the residual 

IIAc - 6bll 

~n bp+l c' < m a x  Ic '~b '+~l ,  Ic'~b~l, b -  1 ' b~-n l bp 

= max( I c'mb p I c" ' b - 1  bp ) 4 

<-max(3[lb[llbP['3[[b[] bb~P-1)=3][blllbP] ( i  

That is, we have 

IIAc - 6bll -< 31lbll IbPl .  

For example, if [[bll -< 1000 and p = 10, then the 
residual _<5.7 × 10 -3. Under  this conditions, in our 
implementation,  the residual for the solution e(n > 10) 
is about of order 10 -3. Totally, it takes about 5n FP 
operations to solve Eq. (1) using our three-phase al- 
gorithm. Our algorithm entails much less FP operations 
when compared with Gaussian elimination method. 
Note that it takes 7n FP operations to solve Eq. (1) by 
using Gaussian elimination. The C language code of 
our fast cubic B-spline curve fitting algorithm is given 
in Appendix B. 

Table 1 shows the performances of running our al- 
gorithm and the one using Gaussian elimination on 
IBM-386 personal computer (PC for short), where the 
symbol "s" denotes the time unit  "second." 

It is observed that our three-phase algorithm for 
solving Eq. (1) is faster than the method using Gaussian 
elimination. The value of "ratio" denotes the time 
spent on our algorithm over the time spent on Gaussian 
elimination method. The value of "ratio" is near to 
the theoretic value 5/7. 

4. APPLICATION TO C L O S E D  CUBIC B-SPLINE 
CURVE FITTING 

In this section, the application of the closed cubic 
B-spline curve fitting is investigated. Following the no- 

tations used in Section 2 and the definitions in [2], in 
the closed cubic B-spline curve fitting, each given point 
can be expressed by a weighted average of three control 
points: 

B, = ~(C.  + 4C,  + C2). 

B.  = ~ ( G - ,  + 4(7. + e l )  , 

O i = l ( c i _  I q- 4 (7  + G + , )  

and 

for 2 < i -< n - 1 .  

They form a system of n equations in n unknowns for 
all given points. The above system of equations can 
be equivalently transformed into 

1 

4 1 

1 4 

1 

l ~ [  c, 

1 c~ j 

4 / \  c, 

=6(1:/ • -~ T c :  6b. (8) 

First, it takes n FP operations to perform the mul- 
tiplication 6b. Using Gaussian elimination, the first is 
the triangulation phase, where Eq. (8) is transformed, 
by eliminating variables from equations, into a system 
with all zeros below the diagonal. It takes about 10n 
FP operations to perform this triangulation phase. The 
second phase is the backward-substitution phase, where 
the values of the variables are computed using the unit- 
triangulated matrix produced by the first phase. In this 
phase, it takes about 4n FP operations. Totally, it takes 
about 15n FP operations to solve Eq. (8) using Gaussian 
elimination. 

After solving the circulant tridiagonal system of Eq. 
(8), we can obtain the control points ci of  the n defining 
polygon vertices. Given 10 given points denoted by 
the "'star" symbols, by Eq. (8) and the similar definition 
in Eq. (2), the corresponding control points denoted 
by the "circle" symbols and the curve interpolation 
denoted by a boldfaced line are illustrated in Fig. 2. 

Following our three-phase approach described in 
Section 3, to solve Eq. (8) we first solve the perturbed 
system A'c' = 6b, where A' and c' have been defined in 
Section 3. Then c can be obtained by updating c'. It is 
clear that 

Table 1. Time required when running on IBM-386 PC for 
cubic B-spline curve fitting. 

Gaussian Our 
n elimination algorithm Ratio 

64 0.0027s 0.0022s 0.815 
128 0.0055s 0.0043s 0.782 
256 0.0Il ls  0.0083s 0.747 
512 0.0223s 0.0164s 0.735 

1024 0.0446s 0.0326s 0.731 
2048 0.0894s 0.0651s 0.728 

T = A ' +  

- b  ) 
By Eq. (9) and b' = 6b, we obtain 

T c ' =  A 'c '+  (c~ - bc])el +c]e. 

(9) 

= 6b + (c" - bc'Oe, + c'~e,. (10) 
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1 1 
Let v = ~ - ~  (x + by) and  w = ~ (bx + y), then  

we have 

0 

0 0 

o 

Fig. 2. An example of the closed cubic B-spline curve fitting. 

Therefore ,  we have 

c = c ' - -  (1 -- b ) c ' l A  Je~ - c ; ,A  le,. 

It can  be easily verified that  Tc = 6b. By the  s imilar  
a r g u m e n t s  in c o m p u t i n g  x and  y, which  are approxi -  

m a t e d  so lu t ions  o f  A-%~ and  A ~e. [see Eqs. (5) and  
(6)], the  a p p r o x i m a t e d  so lu t ion  o f  c can be solved as 
follows. 

1 
We have k n o w n  that  x - (b, b 2 . . . . .  b p, 

b - 1 ,  • 

1 
0 . . . . .  0 ) ' y : ~ - - 7 ( 0 , . . . , 0 ,  b p, . . . .  b2, b ) ' . S o w e  

n--p n p p 

have 

( 1 -  1)Tx : Q4b + b 2 , 0  . . . . .  O, b v ' + 4 b  v, 

P 

b v, 0 . . . . .  0, b) ~ 

.~, 

= el + ben - -  bp+lep + bPep+l . (11) 

Similarly,  we have 

(b - l )Ty = bej - e .  - bP+len+l_p + b P e .  p. (12) 

By Eqs. (11) and  (12), it gives 

(b 1)T(x + by) = b 2 - 1)el - b P + J %  

+ bPep+l -- bV+2e.+l p 11 b P + l e ,  p; 

(b - 1)T(bx + y) = (b 2 -- l )e ,  - bp+2ep 

+ b]'+Jep+~ - bV+te.+~ p + b V e . _ w  

Tv = e l - - -  

T w  = en --  - -  

b p 

h 2 1 

b v 

b 2 -  1 

(bep -- ep+l + b2e.+l p -- be .  p): 

(b2ep - bep+l  + b e . + l  p - e .  p). 

Let c = c' - ( c "  - b c ' O v  - c~w, t hen  Tc = Tc' - 

( c ;  - b c ' l ) T v  - c~ T w .  F u r t h e r m o r e ,  we have 

b p 
Tc - 6 b  = (c), - b e ' 0  ~ (bep  - ep+l  

b v 
+ 32e .+1  p - bet, p ) +  c'i ~ (b2% b % + ,  

b p 
+ be.+ j p C. p) = ~ (c~+bep - -  ('~ep+ i 

+ (c',,b 2 + c'l(b - b3))e.÷l p 

-- (c'nb + C'I(I -- b2))en p). 

Before discussing the  b o u n d  o f  II Tc - 6bll, we first 

need  the  fol lowing l emma .  

L e m m a  2. Itc'll -< 31Lbll. 
P r o o [ )  T h e  p r o o f  is s imilar  to L e m m a  1. 

If/y+ p + 1, n + 1 - p+ n - p are dis t inct ,  by L e m m a  

2, t hen  it yields 

[I Wc - 6bll b P  t d + 2 
~5--L--~_ 1 max( ]bc , , I ,  I~ol, Ic,,b 

+ G ( b -  b3)l, [ ( c ' b  + 4 ( 1  b2)l) 

b t, 
= ~-2-i-_ 1 max(Ic ' l ,  I(c'b + 4(1 - b2)l) 

= ~ m a x ( 3 1 1 b l l ,  3llb[l(Ibl 

+ I I - t72t))  

= b ~  311bll¢lbl + II - h 2 P )  

3 ( 3 - 4  
41/3 - 6 Ibl"31lbll < 3.8661blV[lbll. 

For  example ,  if  Hbl[ -< 1000 and  p = 10, then  the  re- 
sidual is <7 .4  × 10 3. U n d e r  this cond i t ions ,  in our  
i m p l e m e n t a t i o n ,  the  residual  for the  so lu t ion  c (n > 
10) is o f  o rde r  IO 3. 

Therefore ,  the  closed cubic  B-spl ine curve  fitting be- 
c o m e s  a th ree -phase  process,  namely ,  pe r fo rming  Toe-  
plitz fac tor iza t ion  first, s econd  solving A'c' - 6b for c' 
and  then  c o m p u t i n g  
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c = c ' -  ( c ' .  - b c ' O v  - c '~w 

- -  C'  
c" bc" + (1 - b2)c~ 

b + l  x b + l  Y 

- -  C '  
c'. 

b l(b,b  . . . . .  . . . . .  o)' 
p n - p  

bc" + (1 - b2)c] 
b 2 1 (0 . . . . .  O, b p . . . . .  b ~, b) t, 

n'-p ~" 

which is performed in the update phase, the third phase, 
to obtain c. The corresponding three-phase algorithm 
can be designed in a similar way as in the open case, 
and the number of  FP operations required is also about 
5n. It comes to a conclusion that the number  of FP 
operations required in our algorithm is one-third as 
many as the one using Gaussian elimination. The C 
language code of  the closed cubic B-spline curve fitting 
algorithm using Gaussian elimination and our three- 
phase approach are given in Appendix C and Appendix 
D, respectively. 

Table 2 shows the performances of  running our al- 
gorithm and the one using Gaussian elimination on 
IBM-386 PC. 

It is observed that our three-phase approach for 
solving Eq. (8) is faster than Gaussian elimination 
method. The value of  "rat io"  is near to the theoretic 
value 1/3. 

5. CONCLUSIONS 

We have presented fast three-phase algorithms for 
open and closed cubic B-spline curve fittings. Our al- 
gorithms have been implemented in C language codes 
on IBM-386 PC to show the good performances when 
compared with Gaussian elimination methods. In fact, 
our result can be applied to design fast algorithms for 
solving many other curve fitting problems such as the 
quadratic B-spline curve fitting[ 14, 16]. However, our 
result cannot be extended to handle the nonuniform 
case[ 12] but how to speed up the computat ion for this 
case is our future research topic. 

Previously, many methods were proposed for solving 
the tridiagonal near-Toeplitz systems. These methods 
are special L U  factorization[10], cyclic reduction[9], 
reversed triangular factorization[5-7], and Toeplitz 
factorization with Sherman-Morrison formula[8]. The 
interested readers are suggested to consult the survey 
paper by Boisvert[3]. For solving the open as well as 

the closed cubic B-spline curve fitting problems, the 
number  of  FP operations required in our new algo- 
rithms is the same as the previous fastest ones such as 
the special L U  factorization and reversed triangular 
factorization[3]. Pham[ 14] proposed a digital filter ap- 
proach to solve the quadratic B-spline curve fitting 
problem, but his paper did not analyze the t ime com- 
plexity needed, error analysis, and the comparison with 
Gaussian elimination. 
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Table 2. Time required when running on IBM-386 PC for 
closed cubic B-spline curve fitting. 

Gaussian Our 
n elimination algorithm Ratio 

64 0.0060s 0.0023s 0.383 
128 0.0160s 0.0043s 0.269 
256 0.0285s 0.0084s 0.295 
512 0.0534s 0.0164s 0.307 

1024 0.1030s 0.0326s 0.316 
2048 0.2032s 0.0649s 0.319 

APPENDIX A 
/*Gaussian Elimination for Open Cubic B-spline 
Curve Fitting*/ 
#include <stdio.h> 
#include <stdlib.h) 
main() 
{ float res,temp,a[5000],b[5000],c[5000]; 
int i,n; 
printf(''GaussianEliminationforOpenCubic 
B-spline Curve Fitting\n"); 
printf(''INPUTN:''); /*N:numberofthegiven 
points*/ 
scanf(''%d'',&n); 
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/*Generate Random Given Points*/ 
for (i=l; i<=n; i++) la[i]-rand() % 
1000;b[i]=a[i];} 
for (i=l;i<=n;i++) a[i]*-6.0; 

/*Forward-elimination*/ 
c[i]=0.2;a[i]*=0.2; 
for (i-2;i<:n--l;i++) I 
c[i]-i/(4.0--c[i-l]); 
a[i]-(a[i] a[i-l])*c[i]; 

I 
a[n]-(a[n]--a[n 1])/(5.0 c[n--l]); 

/*Backward-substitution*/ 
for (i=n l;i>=l;i -) a[i] =c[i]*a[i+l]; 

/*Check the Residual of Solution*/ 
res-5.0*a[l]+a[2] 6.0*b[l];/*resisusedto 
save the residual*/ 
if (res<0) res- res; 
for (i-2;i<-n-l;i++) I 
temp-a[i-l]+4.0*a[i]+a[i+l]-6.0*b[i]; 
if (temp<0) temp- temp; 
if (res<temp) res-temp; 

temp-a[n l]+5.0*a[n]-6.0*b[n]; 
if (temp<0) temp--temp; 
if (res<temp) res=temp; 
printf(''\nThe Residual=%10.7f\n",res); 

APPENDIX B 
/*Our Method for Open Cubic B-spline Curve Fit- 
ting*/ 
#include <stdio.h> 
#include <stdlib.h> 
#define alpha -0.2679492 / 
*sqrt(3)-2- 0.2679492*/ 
#define p i0 
main() 
I float temp,res,x[20],a[5000],b[5000]; 
int i,n; 
printf(''Our Method for Open Cubic B-spline 
Curve Fitting\n"); 
printf(''INPUTN:'');/*N:numberofthegiven 
points*/ 
scanf(''%d'',&n); 

/*Generate Array X for Updation*/ 
for (i=l,x[0]=l.0;it-p;i++) 
x[i]=alpha*x[i-l]; 

/*Generate Random Given Points*/ 
for (i=l;i<-n;i+4) la[i] rand() % 
1000;b[i]-a[i]; ~ 

/*Solving L'Y=6B*/ 
for (i-l;i<=n;i+4 -) a[i]*-6.0; 
for (i-2;i<=n;i++) a[i]+-alpha*a[i--l]; 

/*Solving U'C=Y*/ 
a[n]*-( alpha); 
for (i-n l;i>=l;i -) 
a[i]=alpha*(a[i+l]-a[i]); 

/*Updation*/ 
temp-a[l]; 
for (i-l;i<-p;i+4) a[i]+=x[i]*temp; 
temp-a[n]/(alpha-l); 
for (i=l;i<=p;i++) a[n+l i]--x[i]*temp; 

/*Check the Residual of Solution*/ 
res-5.0*a[l]+a[2]--6.0*b[l];/*res is used to 
save the residual*/ 
if (res<0) res=-res; 
for (i-2;i<=n-l;i++){ 
temp-a[i-l]+4.0*a[i]+a[i+l]-6.0*b[i]; 
if (temp<0) temp--temp; 
if (res<temp) res=temp; 

I 
temp a[n-l]+5.0*a[n]-6.0*b[n]; 
if (temp<0) temp- temp; 
if (res<temp) res-temp; 

printf(''\nTheResidual=%10.7f\n'',res); 

APPENDIX C 
/*Gaussian Elimination for Closed Cubic B- 
spline Curve Fitting*/ 
#include <stdio.h~ 
#include<stdlib.h~ 
main() 
I float res,temp,a[3000],b[3000],c[3000], 
d[3000]; 
int i,n; 
printf(''GaussianEliminationforClosedCu o 
bic B-splineCurve Fitting\n''); 
printf(''INPUTN:'');/*N:numberofthegiven 
points*/ 
scanf(''%d'',&n); 

/*Generate Random Given Points*/ 
for (i=l;i<-n;i++)la[i]-rand() 
%1000;b[i]-a[i]; I 
for (i-l;i<-n;i++) a[i]*-6.0; 

/*Forward-elimination*/ 
c[l] 0.25;d[l]-0.25;a[l]*-0.25; 
for (i-2;i<-n-2;i++){ 
c[i]-i/(4.0-c[i l]);d[i]- d[i l]*c[i]; 
a[i] (a[i] a[i-l])*c[i]; 

c[n--l] 0; 
temp-l.0/(4 c[n-2]); 
d[n-l]-(l.0-d[n 2])*temp; 
a[n l]-(a[n-l] a[n--2])*temp; 

temp-l.0/(4.0 d[n--l]); 
a[n]-(a[n] a[n l])*temp; 
d[n]-l.0; 
for (i-l;i<-n 2;i++) I 
a[n]=a[n]-temp*a[i]; 
d[n]-d[n]-temp*d[i]; 
temp- c[i]*temp; 

a[n]-(a[n] temp*a[n-l])/ 
(din] temp*d[n-l]); 

/*Backward-substitution*/ 
for (i-n-l;i>-l;i -) 
a[i]-a[i] c[i]*a[i+l]-d[i]*a[n]; 

/*Check the Residual of Solution*/ 
res=4.0*a[l]+a[2]+a[n] 6.0*b[l]; 
if (res<0) res--res; 
for (i-2;i<-n l;i++) I 
temp--a[i l]+4.0*a[i]+a[i+l]-6.0*b[i]; 
if (temp<0) temp -temp; 
if (res<temp) res-temp; 

temp=a[l]+a[n l]+4.0*a[n]--6.0*b[n]; 
if (temp<0) temp--temp; 
if (res<temp) res-temp; 
printf(''\nThe Residual=%10.7f\n'',res); 

APPENDIX D 
/*Our Method for Closed Cubic B-spline Curve 
Fitting*/ 
#include <stdio.h~. 
#include <stdlib.h~ 
#define p i0 
#define alpha -0.2679492 
main() 
I float templ,temp2,temp,res,x[20],a[5000], 
b[5000]; 
int i,n; 
printf(''OurMethodforClosedCubicB-spline 
Curve Fitting\n''); 
printf(''INPUTN:'');/*N:numberofthegiven 
points*/ 



334 K.-L. CHUNG and W.-M. YAN 

scanf ( ' '%d' ' , &n) ; 
/*Generate Array X for Updation*/ 

for (i=l,x[0]=l.0;i<=p;i++) 
x[i]=alpha*x[i-l] ; 

/*Generate Random Given Points*/ 
for (i=l;i<=n;i++) {a[i]=rand() % 
1000;b[i]=a[i] ; } 

/*Solving L'Y= 6B*/ 
for (i=l;i<=n;i++) a[i]*=6.0; 
for (i=2;i<=n;i++) a[i]+=alpha*a[i--l]; 

/*Solving U'C=Y*/ 
a [n] *= (--alpha) ; 
for (i=n--l;i>=l;i - ) a[i]=alpha * 
(a[i+l]--a[i]) ; 

/*Updation*/ 
templ =a [ n ] / ( alpha*alpha-i ) ; 
temp2 =-a [ 1 ] +a [ n ] *alpha/( alpha*alpha--1 ) ; 

for (i=l;i<=p;i++) a[i]--=x[i]*templ; 
for (i=l;i<=p;i++) a[n+l-i]--=x[i]*temp2; 

/*Check the Residual of Solution*/ 
res=4.0*a[l]+a[2]+a[n]-6.0*b[l] ; /*res is 
used to save the residual*/ 
if (res<0) res=-res; 
for (i=2;i<=n-l;i++){ 

temp=a [i-l] +4 • 0*a [i] +a [i+l] -6.0*b [i] ; 
if (temp<0) temp=-temp; 
if (res<temp) res=temp; 

} 
temp=a [i] +a In-l] +4.0*a [n] -6.0*b In] ; 
i f ( temp< 0 ) temp =-temp ; 
if (res<temp) res=temp; 
printf ( ' '\nThe Residual=%10.7f\n ' ' ,res) ; 


