
1335 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 11, NOVEMBER 1995

Fast Vectorization for Calculating
a Moving Sum

Kuo-Liang Chung, Member, IEEE, and Wen-Ming Yan

Abstract-A simple vectorized method for calculating a moving sum is
developed. Our proposed method is suitable for register-to-register vec-
tor computers and entails much less redundant floating-point operations
than the vectorized algorithm of Mossberg [3]. We demonstrate the per-
formance of our vectorized algorithm on the CRAY X-MP EA/116se
supercomputer.

Index Terms-Automatic gain control, CRAY X-MP, Fortran, mov-
ing sum, prefix sum, vectorization.

I. INTRODUCTION
Among many methods used for smoothing and normalization of

seismic traces, the automatic gain control (AGC) method is the best
known. Commonly, more than 10-20% of the total time used for a
seismic processing sequence is spent in an AGC subroutine. An es-
sential part of the computations involved in the AGC method is the
calculation of a moving sum. Given an input vector A = (ai) for
1 I i 5 n and a window of length w (6 n), a moving sum calculation
generates an output vector B = (bj) for 1 S j I n, where

W

bj = z a j - f + l (ai = 0 outside 1 I i 5 n) . (1)
r=1

By replacing the summation operator with an absolute-value sum-
mation operator, the moving sum of absolute values can be obtained
directly. Although in [3], the window of odd length w used to com-
pute the jth output value is centered around the jth element of the
input vector, by adjusting the initial index, the computation of (1) can
be obtained exactly the same computation as in [3].

On a vector machine, the output vector B as defined by (1) can be
straightforwardly computed using the sequential method called the
scalar algorithm (SA) [3]. The number of floating-point (FP) opera-
tions required in SA is about 2n but the SA is not a vectorization
approach. Mossberg [3] first presented a vectorized moving sum
algorithm for the CYBER 205 memory-to-memory supercomputer in
which the floating-point functional units can communicate directly
with main memory to receive and transfer data. Mossberg's vector-
ized algorithm can be accomplished by means of s + t vector opera-
tions, and each needs operands of vector length n, where 2" < w < 2"'
and t is defined as the number of 1 s in the binary representation of w.
Totally, the number of FP operations required is (s + f)n which
ranges from (flog wl + 1)n to (f l o g wl - l)n, where the logarithm is
base two and rl denotes the ceiling function. Since the concerning
vector is of length n and with stride 1, Mossberg's algorithm is par-
ticular for the memory-to-memory supercomputer [2]. Nowadays,
except for the CYBER 205 and ETA 10 all other vector computers
are register-to-register machines such as the CRAY series, Fujitsu VP
series, Hitachi S series, and NEC SX series [l].

The purpose of this paper is the design of a new vectorized mov-
ing sum algorithm for the register-to-register vector computers. The

Manuscript received Sept. 23, 1993; revised June 1, 1994.
K.-L. Chung is with the Department of Information Management, National

Taiwan Institute of Technology, Taipei, Taiwan 10672, Republic of China;
e-mail: klchung@cs.ntit.edu.tw.

W.-M. Yan is with the Department of Computer Science and Information
Engineering, National Taiwan University, Taipei, Taiwan 10764, Republic of
China.

To order reprints of this article, e-mail: transactions@computer.org, and
reference IEEECS Log Number C95110.

number of FP operations required in our proposed method is shown
to be (2 + (w - 4)/k)n, which ranges from 2n to 2 3 , where the value
of k (2 2w) is determined according to the partition of the array. We
show that the ratio of the number of FP operations required in our
algorithm over Mossberg's algorithm ranges from (flog wl + 1)/2.5
to [log wl - 1/2. For the case w > 4, our method entails much less
redundancy than the vectorized algorithm of Mossberg [3]. To alle-
viate the memory-bank conflicts, the value of stride in our program
can be selected as an odd number since the number of memory banks
is even in CRAY X-MP EN1 16se. We demonstrate the performance
of our vectorized algorithm on this supercomputer.

The rest of the paper is organized as follows. In Section 11, we de-
scribe the proposed vectorized algorithm for computing a moving
sum. It also provides the complexity analysis. In Section 111, we pres-
ent some experimental results that examine the performance of our
method. Section IV concludes the paper.

11. A VECTORIZED MOVING SUM ALGORITHM

Recall that the input vector is A = (al, a 2 , ..., an) and the output vec-
tor is B = (b l , b 2 , ..., bn). First we partition A into p q groups of k ele-
ments. (al , a2, ..., a k) (k 2 2w) constitutes the first group, (a k + l , 4 + 2 , ...,
a%) constitutes the second group, and so on. If kpq (= m) > n, then a i for
i > n is assigned to zero. We partition B in the same way. For conven-
ience, we assume that kpq = n. In order to reveal the new structure of A
and B, let us rearrange A and B into two q x k block matrices by

I I I I

and

B =

b l

bk+l

...

... I bn-k+l

b 2

bk+2

...

...
bn-k+2

...

...

...

...

...

4 . 2

B2.2

Bq.2

...

...

...

...

...

where Ai j and Bij , 1 I i I q and 1 Ij I k, are p X 1 matrices, i.e., A i j

= (a(i-I)p&+j, a(i-l)pk+j+k, . . ., a(i-I)pk+j+(pl)k)' and B i j = (b(i-l)pk+j, b(i-l)pk+j+k,

. . ., b(i-l)pk+j+(pI)k)' .
For 1 I i I q, by (l), it follows that

W

Bi,j = C A i , j - r + l for w I j I k
1=l

and
j k -

B ~ , ~ = CA~,, + C A~, , for 1 I j < W ,
f = l f=k- (w- j)+l

-
where A j , j = (a(i - i)pk+j -k , U(i-I) , ,k+j, . . ., U(j-1),,k+j+(,,-2)k I f . Notice that

ai = 0 outside I 2 i I n (see (1)).

all partial sums
Given a set of inputs x l , x2, ..., xn and a summation operator +, find

n

XI, X I + x 2 , ..., C X i .
i=l

This problem is known as the prefix sum problem. Similarly, find all
partial sums:

0018-9340/95$04.00 0 1995 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 23:48 from IEEE Xplore. Restrictions apply.

mailto:transactions@computer.org

1336 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 11, NOVEMBER 1995

in Mossberg's method ranges from (log wl + I)n to (f log wl - 1)n. For
the case w > 4, our method entails much less redundant FP operations
than the vectorized algorithm of Mossberg [3]. For example, if w = 65
and k = low, our method needs about 2. In FP operations, but Moss-
berg's method needs FP operations ranging from 8n to 1 5 ~ . ne ap-

able for either the vector computer with multiple vector elements or
for on-line reading of the input vector.

i=l i=Z

This problem is known as the suffix sum problem.
Based on some prefix-sum and suffix-sum operations in vector-

ized Ways, Our VectoriZed moving Sum algorithm works as follows. proach of into blocks our vectorized method suit-
Consider the first band of A

A l , l , A l , Z , . . . ,A l,k.

First, we compute the following suffix-sum computations by means
of (w - 2) vector summations:

i=k-w+2 i=k-w+3

where the symbol '6' denotes an assignment operator. Equivalently,
the above suffix-computations can be performed by the following
vectorized process, where each vector summation takes operands of
vector length p.

cw-l &,k

F o r i = w-2 downto 1 do

ci ci+l + &.k-w+i+l

For the vectors AI, , , A,,,, ..., Al,k, we compute the prefix sum by
means of (k - 1) vector summations, and each needs operands of
vector length p. We then obtain all partial-sum vectors

I

i=l

Thereafter, for i from k down to (w + l), we do Di t Di - Di-,. It
takes (k - w) vector subtractions, and each also needs operands of
vector length p. For i from 1 to (w - l), we do D,+i t D,+i + C,i.
Then, the moving sum of the first band of A is flowed from Di for
1 I i I k. That is, the values of bj of (1) for 1 I jI kp have been de-
termined. If q = l then we stop the algorithm; otherwise the following
do-loop is performed.

Forj= 2 to q do

Step-1. Compute the suffix sum for the vectors
- - -
Aj ,k -w+Z, Aj.k-w+3. " ' 3 A j , k .

We then obtain all partial-sum vectors

Step-2. Compute the prefix sum for the vectors
Thus, we obtain all partial-sum vectors

Aj.2, ..., Aj,k.

k

Dl Aj.1, 4 + Aj.1 +Aj.Z, ..., +- x A j , i .

Step-3. For i from k down to w + 1 , we perform Dj t Di - Di-,.
Step-4. Perform the additions: DWi t D,. + C , for 1 I i I w - 1
The moving sum is flowed from Di, 1 I i I k.

i=l

Enddo

After completing the above vectorized algorithm for calculating a
moving sum of A, the total number of FP operations needed in the
suffix-sum computations of Step-1 is pq(w - 2); the number of FP
operations needed in the prefix-sum computations of Step-2 is pq(k - 1);
the number of FP operations needed in S t e p 3 is pq(k - w); the num-
ber of FP operations needed in Step-4 is pq(w - 1). So it takes
(2 + (w - 4)/k)n (= pqw - 4pq + 2pqk) FP operations to finish com-
puting a moving sum of A. The number of FP operations used in our
algorithm ranges from 2n to 2 3 , while the number of FP operations used

111. IMPLEMENTATIONS ON CRAY X-MP EN1 16sE

In this section, we implement our vectorized moving sum algo-
rithm on the Cray X-MP EN1 16se supercomputer. Before illustrat-
ing the corresponding experimental results, let us introduce some
features of this machine. This machine has a register-to-register
architecture without cache memory and has one vector processor
which contains eight 64-bit vector registers of length 64. Memory is
divided into 16 banks and each bank contains 1M 64-bit words.

The input vector A is generated by a random number generator, a
function call rad(). The length of the vector A is specified to be
10,000, 20,000, 30,000, ..., and 90,000, respectively. The Cray For-
tran 77 source code of our vectorized algorithm called movesuml is
listed in the Appendix. Table I shows the performance of running our
vectorized algorithm. The operating system used here is UNICOS 6.1.6
and the compiler is called CF77.

TABLE I
CRAY X-MP EN1 16se EXECUTION TIMES FOR OUR ALGORITHM

r 7 T
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

W -
11
11
21
21
31
31
41
41
51 -

time
0.483mi
0.960mi
1.45 h i
1.941mi
2.482mi
2.849mi
3.365mi
3.852"
4.223mi

m

10,176
20,352
30,400
40,768
50,304
60,480
70,272
80,192
90,240

k
53
53
95
91
131
135
183
179
235

- 4
3
6
5
7
6
7
6
7
6 -

In Table I, the symbols n, w, q, and mi denote the size of A, the
size of the window, the number of the bands in A, and millisecond,
respectively. m and k have been defined in Section 11. To alleviate the
memory-bank conflicts, the value of k is selected as an odd number
and is greater than 4w.

IV. CONCLUSIONS
We have presented the design of a new vectorized moving sum al-

gorithm for register-to-register vector computers. Our algorithm is
not only more efficient than Mossberg's, but also based on a simpler
idea which could be applied to pattern matching problems. Some
experimental results for our method have been obtained on the
CRAY X-MP EN116se supercomputer. In addition, due to the ap-
proach of partitioning into blocks, our vectorized algorithm is suit-
able for either the vector computer with multiple vector elements or
for on-line reading of the input vector.

APPENDIX
C--Our vectorized algorithm for moving sum--

C--b:initially save seismic vector; eventually

C--bb: save one copy of seismic vector used for

Program movesuml

save the moving-sum vector-

the brute force method -

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 23:48 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 1 1 , NOVEMBER 1995 1337

C--bbb: save the moving-sum vector of bb by

c--c: temporary array for boundary processing-
brute force method -

real b(100000), bb(100000). bbb(100000),

real starttime,totaltime

integer i,j,k,n,m,p,ww,w
integer q, nt, kk, 1

tween two consecutive bands-
real wt(1000)
write(*,*) ‘INPUT N:’
read(*,*) n
write(*,*) ‘INPUT w: ‘
read(*,*) w

c(100000), sum

c--w: window size; n: length of seismic vector--

C--array wt is used for boundary processing be-

c--the vector length is 64--

C--generate random seismic vector-
p=64

do 5 i=l,n
b (i) =range*ranf ()
bb (i) =b (i)

5 continue
C--start timing-

starttime=SECOND()
k=4*w+l
kk=k*p

q=(n+kk-1) /kk
if (q.gt.1) then

C--q=ceiling function of (n/kk)--

q=q-1
k= (n+64*q-l) / (64*q)
k=2*(k/2)+1
kk=k*p

endi f
m=kk*q
ww=((w+l) /2) *2-1
do 8 i=n+l,m
b(i) =O. 0

8 continue
wt (1 : w-1) =o . 0
nt=O
do 200 l=l,q

do 10 i=l,p
C--calculate array c-

c((i-1) *ww+w-l)=b(i*k+nt)
10 continue

cdir $ ivdep
do 20 j=w-2,1,-1

do 30 i=l,p
c ((i-1) *w+j) =c ((i-1) *ww+ j +1) +b(i*k+ j+nt-
w+l)

30 continue
20 continue,
C--prefix sum for one band-

cdir $ ivdep
do 40 j=2,k

do 50 i=l,p
b((i-1) *k+j+nt)=b((i-1) *k+j+nt)+b((i-1) *k+j-
l+nt)

50 continue
40 continue
C--calculate partial moving sums-

cdir $ ivdep
do 60 j=k,w+l,-1

do 70 i=l,p
b((i-l)*k+nt+j)=b((i-l)*k+nt+j
1) *k+nt+j-w)

70 continue
60 continue
C--boundary processing for (p-1) pa

secutive rows-
do 71 j=l,w-1
b (j+nt) =b(j+nt) +wt (j)

71 continue

cdir $ ivdep
do 80 j=l,w-1

-b((i-

r of con-

do 90 i=2,p
b((i-l)*k+nt+j)=b((i-l)*k+nt+j)+c((i-
2)*ww+j)

90 continue
80 continue
do 72 j=l,w-1
wt (j) =c ((p-1) *ww+j)

72 continue
nt=nt+kk

200 continue
C--end of timing-

totaltime=SECOND()-starttime
print *, ‘OUTPUT FOR MOVSUM1.F’
print *,‘n=,’n,’ m=,‘m
print *,‘CPU TIME FOR OURS=,’totaltime
print *,‘w=,‘w.‘ k=,‘k,’ q=,‘q

C--calculate moving sums by brute force method-
C--which takes (w-l)n FP operations and is used

to verify the result-
bbb (1) =bb (1)
do 100 i=2,w
bbb (i) =bbb (i-1) +bb (i)

100 continue
do 110 i=w+l,m

sum=o. 0
do 120 j=i-w+l,i
sum=sum+bb (j)

120 continue

110 continue
C--calculate the difference between our method

C--by sup-norm measurement--

bbb(i)=sum

and the brute force method-

sum=o. 0
do 130 i=l,m
if (sum.lt.abs(bbb(i)-b(i))) then

endi f
130 continue

sum=abs (bbb (i) -b (i))

write(*,*) ‘The difference is , ’ sum
end

ACKNOWLEDGMENTS

The authors appreciate the anonymous referees and Dr. Kornerup
for their constructive comments that helped to improve the paper.

This research was supported in part by the National Science
Council of the Republic of China under Grants NSC83-0408-EO11-
008 and NSC84-0408-E011-011.

REFERENCES
[I] K. Hwang and F. Briggs, Computer Architecture und Purullel Process-

ing, Chapter 4: “Pipeline computers and vectorization methods.” New
York McGraw-Hill, 1984.
J.M. Levesque and J.W. Williamson, A Guidebook to Fortrun on Su-
percomputers, Section 2.2.1 : “Memory-to-memory vector processors,”
pp. 28-35. New York: Academic Press, 1989.

[3] B. Mossberg, “Vectorization of the calculation of a moving sum,” IEEE
Trans. Computers, vol. 36, pp. 362-365, Mar. 1987.

[4] “Supercomputer programming (I): Advanced Fortran: Architecture,
vectorization, and parallel computing,” Working manual for CRAY X-
MP EAll16se. 1991.

[2]

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 23:48 from IEEE Xplore. Restrictions apply.

